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Anti-osteoporotic drugs affect
the pathogenesis of gut
microbiota and its metabolites:
a clinical study
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Gui-jin Li2, Xiao-gang Chen2, Lin-pu Ge2, Feng Cheng2,
Zhi-neng Chen2 and Xin-miao Yao2*

1The Third Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical
University, Hangzhou, Zhejiang, China, 2Department of Orthopedics, The Third Affiliated Hospital of
Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
Background: Disordered gut microbiota (GM) structure and function may

contribute to osteoporosis (OP). This study explores how traditional Chinese

medicine (TCM) intervention affects the structure and function of the GM in

patients with OP.

Method: In a 3-month clinical study, 43 patients were randomly divided into two

groups receiving conventional treatment and combined TCM (Yigu decoction,

YGD) treatment. The correlation between the intestinal flora and its metabolites

was analyzed using 16S rDNA and untargeted metabolomics and the

combination of the two.

Results: After three months of treatment, patients in the treatment group had

better bone mineral density (BMD) than those in the control group (P < 0.05).

Patients in the treatment group had obvious abundance changes in GM

microbes, such as Bacteroides, Escherichia-Shigella, Faecalibacterium,

Megamonas, Blautia, Klebsiella, Romboutsia, Akkermansia, and Prevotella_9.

The functional changes observed in the GM mainly involved changes in

metabolic function, genetic information processing and cellular processes. The

metabolites for whichmajor changes were observed were capsazepine, Phe-Tyr,

dichlorprop, D-pyroglutamic acid and tamsulosin. These metabolites may act

through metabolic pathways, the citrate cycle (TCA cycle) and beta alanine

metabolism. Combined analysis showed that the main acting metabolites were

dichlorprop, capsazepine, D-pyroglutamic acid and tamsulosin.

Conclusion: This study showed that TCM influenced the structure and function

of the GM in patients with OP, which may be one mechanism by which TCM

promotes the rehabilitation of patients with OP through the GM.
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Introduction

Osteoporosis (OP) has become a nonnegligible disease affecting

the quality of life of the elderly (Qaseem et al., 2017). It has an

insidious onset and is characterized by low bone mass and

destruction of bone structure, which impairs bone strength and

leads to an increased risk of fracture (Johnston and Dagar, 2020).

Because OP does not receive much attention, many patients suffer

secondary fractures that lead to serious complications, resulting in

the waste of medical resources (Kanis et al., 2020). The gut

microbiota (GM) ecosystem is considered to be a system in the

human body (Qin et al., 2010). An increasing number of studies

have investigated the microenvironment to explain the relationship

between the GM and OP. The maintenance of bone health requires

normal bone resorption and good bone formation. It has been

reported that the GM is directly or indirectly involved in

maintaining normal activity of the gastrointestinal tract and

maintaining normal bone health (Espinoza et al., 2016; He et al.,

2020). Relevant studies have shown that the GM can promote

normal cell metabolism, maintain bone health, and inhibit calcium

loss in bone (Schepper et al., 2020; Ling et al., 2021; Zhang et al.,

2021b; Guan et al., 2022). A large cohort study of 1776 people in

China demonstrated that the GM structure in patients with OP is

altered, and its metabolites may be involved in the pathogenesis of

OP (Ling et al., 2021).

At present, research efforts on drugs used to treat OP are

focused on the field of bone metabolism. There are three main

types of drugs that target OP: drugs that promote bone formation,

drugs that inhibit bone resorption, and drugs that promote bone

mineralization (Srivastava and Deal, 2002; Wang et al., 2009;

Coughlan and Dockery, 2014). Although the efficacy of the above

drugs is definite, it is still unclear whether they affect the

pathogenesis of OP by affecting the composition of the GM or

the metabolites of the GM. Most of the recent research has been

based on animal experiments that mainly explore the relationship

between the GM and OP (Li et al., 2019; Cooney et al., 2020;

Schepper et al., 2020; Shen et al., 2021; Hong et al., 2022). Among

these studies, research on natural medicine used to treat OP has

received increasing attention (Wang et al., 2020; Li et al., 2021; Li

et al., 2022b). There are only a few studies on how changes in the

GM and its metabolites affect bone metabolism in OP patients after

they receive drugs for OP (Lambert et al., 2017). Previous studies

have shown that the traditional Chinese medicine (TCM) Yigu

decoction (YGD) can treat OP by regulating the expression of

proteins in bone tissue (Zhang et al., 2021a), and its efficacy in the

treatment of OP has been confirmed in clinical studies (Chen et al.,

2021b). To more intuitively study how the GM affects the

pathogenesis of OP, we believe that results obtained by

investigating the GM of patients with OP would be more

convincing. Multi omics can be used to identify and validate

molecules involved in the development of diseases influenced by

the GM and metabolites. 16S rDNA can be used to identify

characteristic nucleic acid sequences and reveal biological species

and is considered to be the most suitable method for identifying

bacterial phylogeny and taxonomy (Woo et al., 2008). Untargeted
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metabolomics can be used to investigate the link between identified

metabolites and biological processes or biological states when

performed using samples and can reveal statistically significant

differential metabolites between different populations (Chen

et al., 2021a).

Microbiome data can be used to identify the differences in the

structure of the GM based on the differences in the abundance of

GM microbes, and this analysis can be used to predict or annotate

the differences in the functions of the GM. The metabolome is a

direct reflection of the interaction between the GM and the host,

and the two complement each other. Therefore, the combined

analysis of the microbiome and metabolome can enable a better

understanding of how the environment of the microbiome affects

the metabolic state of the organ environment or host through

microbial metabolism and microbial co-metabolism with the host.

Therefore, we developed a hypothesis and designed a clinical trial. It

was hypothesized that there are beneficial changes in the structure

of the GM after the administration of drugs targeting OP. We

enrolled 43 patients with OP and randomly divided them into two

groups. They were given different treatments, and the GM was

evaluated 3 months after treatment. Then, they were analyzed to

explore the mechanism by which GM affects OP. It is expected to

provide a new direction for the treatment of OP.
Materials and methods

Ethics statement, informed consented and
clinical trial registration

A total of 43 patients who met the diagnostic criteria for OP

were enrolled in this study and randomly divided into two groups

between June 2020 and December 2021 at the Department of

Orthopedics, The Third Affiliated Hospital of Zhejiang Chinese

Medical University. The study was approved by the ethics

committee of The Third Affiliated Hospital of Zhejiang Chinese

Medical University (approval No. ZSLL-KY-2021-017-01).

Moreover, the study has been submitted for registration in the

Chinese clinical trial registry using the following registration

number: ChiCTR2200056265. All participants provided written

informed consent before inclusion in the study.
Participants and study design

The participants met the diagnostic criteria for a diagnosis of

primary OP provided by the guidelines of the National

Osteoporosis Foundation (Cosman et al., 2014). We included

patients with a vertebral bone mineral density T-score ≤ -2.5

measured by dual-energy X-ray absorptiometry (DXA). Exclusion

criteria were as follows: 1) patients with secondary OP; 2) patients

with comorbid severe chronic functional disease; 3) patients who

had been treated with bisphosphonates, denosumab, and calcitonin

within 3 months; and 4) patients with digestive system or liver or

kidney function diseases.
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Sample collection and evaluation of
clinical parameters

A total of 43 patients were included in the study, and their ages

ranged from 71-87 years. Basic information such as the age, height,

and weight of all participants was collected before treatment, and

there was no significant difference in general characteristics between

the two groups (P >0.05). Both groups were given 1 tablet of a-
Calcitol (0.5 mg/capsule) orally per day for 3 months, and the

treatment group was additionally given YGD orally for 3 months.

Bone mineral density (BMD) measures were collected before

starting treatment and 3 months after treatment, and fecal

samples were collected at 3 months after treatment. All patients

had fecal samples taken while in the fasted state and at similar time

points in the morning.
Sequencing and bioinformatics analysis

Fecal samples were collected in sterile plastic cups and stored at

-80°C before further processing. Total genomic DNA from samples

was extracted using the SDS method. DNA concentration and

purity were evaluated on 1% agarose gels. According to the

concentration, DNA was diluted to 1 ng/µL using sterile water.

Genomic DNA extraction and PCR amplification were performed

using fecal samples, and PCR products were pooled and purified.

Finally, sequencing libraries were generated using the TruSeq®

DNA PCR-Free Sample Preparation Kit (Illumina, USA)

following the manufacturer’s recommendations, and index codes

were added. The library quality was assessed on a Qubit@ 2.0

Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100

system. Finally, the library was sequenced on an Illumina

NovaSeq platform, and 250 bp paired-end reads were generated.

The sequencing data were processed to obtain the effective tags

(ET), and the uparse algorithm was used to cluster all the effective

tags obtained from all samples, followed by operational taxonomic

unit (OTU) clustering and species annotation; finally, alpha

diversity and beta diversity were calculated, and functional

annotation was performed.
Analysis of the association between
untargeted metabolomic and GM data

Samples stored in a -80°C freezer were thawed on ice. A 400 mL
solution (methanol: water = 7:3, V/V) containing an internal

standard was added to a 20 mg sample, and the mixture was

vortexed for 3 min. Each sample was sonicated in an ice bath for

10 min, vortexed for 1 min, and then placed at -20°C for 30 min.

Each sample was then centrifuged at 12000 rpm for 10 min (4°C).

The sediment was removed, and the supernatant was centrifuged at

12000 rpm for 3 min (4°C). A 200 mL aliquot of supernatant was

obtained for Liquid chromatography–mass spectrometry (LC MS)

analysis. All samples were analyzed by the LC MS system following

the manufacturer’s instructions. The analytical conditions were as

follows: UPLC: column, Waters ACQUITY UPLC HSS T3 C18 (1.8
Frontiers in Cellular and Infection Microbiology 03
µm, 2.1 mm*100 mm); column temperature, 40°C; flow rate, 0.4

mL/min; injection volume, 2 mL; solvent system, water (0.1% formic

acid): acetonitrile (0.1% formic acid); gradient program, 95:5 V/V at

0 min, 10:90 V/V at 11.0 min, 10:90 V/V at 12.0 min, 95:5 V/V at

12.1 min, 95:5 V/V at 14.0 min.

Unsupervised PCA (principal component analysis) was

performed by the statistics function prcomp using R software

(www.r-project.org ). The data were unit variance scaled before

unsupervised PCA was performed. The HCA (hierarchical cluster

analysis) results obtained during the analysis of the samples and

metabolites were presented as heatmaps with dendrograms, while

Pearson correlation coefficients (PCCs) between the levels of

molecules in the samples were calculated by the cor-function in R

and presented as only heatmaps. Both HCA and PCC calculation

were carried out by the R package Complex Heatmap. Identified

metabolites were annotated using the Kyoto Encyclopedia of Genes

and Genomes (KEGG) Compound database (http://www.kegg.jp/

kegg/compound/ ), and annotated metabolites were then mapped to

the KEGG Pathway database (http://www.kegg.jp/kegg/

pathway.html ). Significantly enriched pathways were identified

using a hypergeometric test p value in the analysis of a specific list

of metabolites.
Statistical analysis

Regarding demographic and clinical parameters, two-tailed t

tests were used for paired analyses (before and after intervention) by

using the Statistical Package for the Social Sciences (SPSS) version

25.0 (SPSS Inc., Chicago, IL, United States). For the GM data,

Wilcoxon’s signed-rank test was used for comparisons of paired

samples, and the Mann Whitney U test was used to evaluate

independent samples.
Results

General characteristics of participants
at baseline

A total of 43 individuals were included in the study. They were

randomly divided into two groups with 21 in the treatment group

and 22 in the control group. The general characteristics of the two

groups did not differ significantly and were comparable. After 3

months of treatment, patients in the treatment group showed

significantly more improvements in BMD than those in the

control group (Table 1).
Species annotation

Paired-end sequencing of the GM samples obtained from both

groups of patients was performed using the Illumina NovaSeq

sequencing platform. Tiling and quality control were performed

on the resulting data to obtain clean tags, which were then filtered

for chimerism to yield effective tags that could be used for
frontiersin.org
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subsequent analysis. Clustering of OTUs was performed on the

effective tags with 97% concordance (identity), followed by species

annotation of the OTUs. A total of 2646 OTUs were identified, of

which 755 were common to both groups, 1172 were unique to the
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treatment group and 719 were unique to the control group

(Figure 1A). Based on the annotation results, the top 10 species

ranked by the maximum abundance at the genus level for each

sample were selected, and a column-shaped additive plot of the
A B

D

E

F

C

FIGURE 1

species annotation of the GM in the two groups of OP patients. FRA represents the control group and YGD represents the treatment group. (A) Venn
diagram based on OTUs. (B) The species relative abundance display for each sample at the genus level. (C) The top 10 ranked species in abundance at
the genus level in both groups. (D) Species abundance clustering. (E) Species abundance clustering Heatmap. (F) Genus level species evolution tree.
TABLE 1 General data and BMD after 3 months of treatment in both groups.

group gender Age (years) PAS (score) Pre-BMD Aft-BMD

Male/Female

Control 5/17 79.77 ± 4.253 160.39 ± 6.543 -2.845 ± 0.222 -2.577 ± 0.148*

Treatment 4/17 79.29 ± 3.635 161.99 ± 7.214 -2.814 ± 0.176 -2.262 ± 0.132*#
PAS, Physical Activity Scale for the Elderly; Pre-BMD, Pretreatment bone mineral density; Aft-BMD, Bone mineral density after treatment. * Represents a statistically significant within group
difference before and after treatment (P < 0.05). #Represents a statistically significant difference between the groups before and after treatment (P < 0.05)
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relative abundance of each species and their ratio in each sample at

different taxonomic levels was generated (Figure 1B). The top 10

ranked species by maximum abundance at the genus level in each

group (Escherichia-Shigella, Bacteroides, Faecalibacterium,

Klebsiella, Megamonas, Akkermansia, Blautia, Bifidobacterium,

Romboutsia, Holdemanella) are shown in Figure 1C. Based on

the genus level data on species abundance, the top 35 genera were

selected, the abundances of the microbes in each sample were used

to cluster the microbes at the species and sample levels, and a

heatmap of the species abundance was generated (Figure 1D). Of

these genera, 15 had significantly more species clustered in the

treatment group, and 20 had significantly more species clustered in

the control group (Figure 1E). To further investigate the

phylogenetic relationship of species at the genus level, the

representative sequences of the top 100 genera were obtained by

multiple sequence alignment (Figure 1F). Among them, the top five

were Proteobacteria, Bacteroidetes, Firmicutes, Verrucomicrobiota,

and Actinobacteria.
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Sample complexity analysis and
statistical testing

The dilution curve can directly reflect the sufficiency of the

amount of sequencing data and indirectly reflect the abundance of

species in the sample, and when the curve is flat, the amount of

sequencing data is reasonable. The diversity of the microbes within

the two patient groups was substantial and homogeneous

(Figure 2A). The a-diversity index Chao1 was used to determine

the ecological diversity within the microbial community. Analyses

of the intergroup differences in the alpha diversity index indicated

that the two groups of patients had significantly different flora

species (Figure 2B). We performed principal coordinate analysis

(PCoA, principal coordinates analysis) based on the weighted and

unweighted UniFrac distances and selected the combinations of

principal coordinates with the largest contribution for mapping

(Figure 2C). The more similar species structure within the two

patient groups is indicated in the figure. Box plots of the beta
FIGURE 2

Diversity analysis and statistical tests. (A) Species diversity curves. (B) Alpha Diversity Index Difference Analysis Between Groups. ***represents
p < 0.01. (C) PCoA analysis based on two groups of species. (D) Beta Diversity Index Difference Analysis Between Groups. **represents p < 0.05.
(E) Weighted UniFrac distance matrix UPGMA clustering tree. (F) Unweighted Unifrac distance matrix UPGMA clustering tree. (G) Differential species
analysis between groups (T-test). The figure on the left shows the difference in species abundance between groups. (H) Differential species analysis
between groups (Simper). (I) Differential species analysis between groups (LEfSe) - LDA value distribution histogram. (J) Differential species analysis
between groups (LEfSe) - Evolutionary branch diagram. Red represents the Biomarker of the different species with obvious changes in the control
group, green represents the Biomarker of the different species with obvious changes in the treatment group, and yellow represents the Biomarker of
the different species with no obvious difference.
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diversity data show significant differences in species between the

two patient groups (Figure 2D). The multidimensionality confirmed

the accuracy of the above results. To investigate the similarity

among different samples, clustering trees of the samples can be

generated by clustering the samples. The unweighted pair-group

method with arithmetic mean (Lü et al., 2019) is a more commonly

used method for cluster analysis. UPGMA clustering analysis was

performed using the weighted and unweighted UniFrac distance

matrices, and the clustering results were displayed by integrating

them with the species relative abundances of each sample at the

genus level (see Figures 2E, F). Statistical analysis was used to

identify the species with significantly different abundances among

the subgroups and evaluate the enrichment of the differential

species among the different subgroups (Figure 2G). The 193

species with significant differences in abundance at the genus

level between the two groups are presented in the figure along

with the top 47 differential species. Simper (similarity percentage) is

a decomposition of the Bray Curtis dissimilarity index that is used

to quantify the contribution of each species to the dissimilarity

between two groups (Hamidi et al., 2019). The top 10 ranked species

with contributions to the differences between the two groups and

their abundances are presented (Figure 2H). The top ten species

that contributed to the differences belonged to the genera

Bacteroides, Escherichia-Shigella, Faecalibacterium, Megamonas,

Blautia, Klebsiella, Romboutsia, Akkermansia, and Prevotella_9.

Using LEfSe (LDA effect size) to compare the statistical

significance and biological correlation of species differences

between two groups, we identified biomarkers with significant

differences between groups and identified features with different

abundances and associated categories. The statistical results of
Frontiers in Cellular and Infection Microbiology 06
LEfSe were visualized using three approaches: a histogram

reflecting the distribution of the LDA value (Figure 2I), an

evolutionary branch diagram (phylogenetic distribution) and

figure illustrating the comparison of the abundance of biomarkers

with significant differences between groups in different

groups (Figure 2J).
Association analysis, model and
functional predictions

Network analysis was performed after the data were filtered to

yield valid data by performing a correlation index calculation across

all samples (Figure 3A). Through the species co-occurrence

network analysis, we can readily identify the species that

dominate the interaction and the species groups that interact

closely. These dominant species and species groups may play a

unique and important role in maintaining the stability of the

microbial community structure and function in the environment.

The functional annotation of OTUs obtained from clustering was

performed using Tax4Fun. According to the database annotation

results, the top 10 functions of each sample or group with the largest

abundance at each annotation level were selected, and a columnar

stacking chart of the relative abundance of functions was generated

to visually display the relative abundance of each microbe at

different annotation level functions and their proportions

(Figure 3B). The top 10 functional information points were

analyzed and tested, and the functional information with

significant differences was identified (Figure 3C). Based on the

functional annotation and abundance information obtained from
B

C D

A

FIGURE 3

Figure of association analysis, model and functional prediction among species. (A) Network analysis. (B) Functional annotation relative abundance
display. (C) T-test for differential function between groups. (D) Functional relative abundance cluster analysis.
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the samples using the database, the top 35 ranked features by

abundance and their abundance information in each sample were

selected to draw a heatmap and clustered at the level of functional

differences (Figure 3D). The results showed that there were 4

functional clusters in the treatment group, and the enrichment of

3 functional clusters was significantly decreased.
Bioinformatic analysis of metabolites

To further investigate the differences in the sample metabolites

between the treatment and control groups, after quantitatively

identifying the statistically significant differential metabolites

between different groups, we next aimed to investigate the link

between the identified metabolites and biological processes or

biological states by untargeted metabolomics. Then, the results

were analyzed (Figures 4A, B) and indicated that the best model

interpretation was obtained. Based on the OPLS-DA results, after

the different varieties or differential metabolites between tissues

were initially identified, the p value obtained through univariate

analysis was combined to further identify the differential

metabolites and draw a volcano plot of the results (Figure 4C).

Fifty-five of the differential metabolites had higher levels and 19 had

lower levels in the treatment group than in the control group, and

623 metabolites had no significant difference in levels. After

qualitative and quantitative analysis of the detected metabolites,

the fold changes in metabolite levels between groups were

compared in addition to the grouping of specific samples

(Figure 4D). The top 20 differential metabolites are presented in

the figure. KEGG pathway enrichment was performed using the

differential metabolites (Figure 4E).
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Combined analysis of differential
metabolites and the GM

To further investigate the connection between the flora and

metabolites, we performed a combined analysis of the differences in

the patients’ gut microbes and differential metabolites. As shown in

Figure 5A, the differential metabolites were first subjected to PCA.

PCA of the GM microbes was then performed (Figure 5B).

Differential microbes and differential metabolites were subjected

to correlation analysis, and Spearman correlation coefficients were

calculated using the levels of microbes and metabolites; significant

correlations were defined as those with a correlation |r| > = 0.8 and a

p - value in the correlation coefficient significance test < 0.05. The

results of these analyses of the differential microbes and metabolites

are shown in Supplementary Table 2. The relevant microorganisms

and metabolites identified above were then plotted into a chord plot

(Figure 5C). This correlation analysis resulted in the identification

of significantly correlated microbes and metabolites at the genus

level (Supplementary Table 3). A chord diagram was drawn

(Figure 5D). Correlation network plots were generated separately

to demonstrate the correlations between microbes and metabolites

based on two correlation analysis modalities (Figures 5E, F).
Discussion

At present, the number of reports on the effects of the GM on

bone metabolism have increased (D’amelio and Sassi, 2018) yearly,

and the fact that the GM affects bone metabolism cannot be

ignored. It has been reported that the decreased diversity of the

GM in OP patients leads to an imbalance in bone homeostasis
A B

D

E

C

FIGURE 4

The analysis of the difference of metabolites. (A) The orthogonal partial least squares discriminant analysis (OPLS-DA) - S-plot figure. (B) OPLS-DA
model validation. (C) Differential metabolite volcano plot. (D) Differential metabolite bar plot. (E) Differential metabolite KEGG enrichment analysis.
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(Xu et al., 2020). Therefore, probiotics have also gradually begun to

be used for the prevention and treatment of OP (Collins et al., 2017;

Song et al., 2022). TCM also plays a nonnegligible role in the

prevention and treatment of OP (An et al., 2016). According to one

report, TCM prevention and treatment of OP can be directly or

indirectly involved in bone metabolic pathways affecting bone

formation and bone resorption (An et al., 2019; Ren et al., 2020;

Xiao et al., 2020); additionally, TCM improves the composition and

function of gut bacteria and their metabolic products to achieve the

goal of treatment for OP (Wang et al., 2020; Li et al., 2021).

In this study, the investigation of two groups of OP patients

with different GM conditions due to intervention and the

differences in the metabolites showed that the treatment group

improved more than the control group. The BMD in the treatment

group improved significantly more than that in the control group;

the results also indicate that YGD not only improves BMD in OP

patients but also improves the GM, which is indirectly involved in

the prevention of OP, confirming the results of our previous study

(Li and Gong, 2021; Zhang et al., 2021a). Among the top ten species,

Escherichia-Shigella is mainly associated with the inflammatory

response and lipid metabolism (Cattaneo et al., 2017; Li et al., 2020).

There have also been reports of a correlation between the

microbiota and BMD, with side effects suggesting that the

microbiota may influence BMD in the lumbar spine and femur,
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which improves intestinal phosphorus absorption and osteogenic

metabolic activity and reduces the excretion of phosphorus (Cheng

et al., 2021). The bacilli mainly include single, double, and multi

bacilli. Among them, Bacteroides, Faecalibacterium, and

Bifidobacterium have all been reported to be involved in the

occurrence and development of OP. Previous studies have shown

that the abundance of Bacteroides species in normal people is

higher than that in OP patients (Wang et al., 2017; Tang et al.,

2021), and in our study, the abundance of Bacteroides species in

patients in the treatment group was higher than that in the control

group, indicating that YGD can improve the abundance of this

flora. Faecalibacterium and Bifidobacterium have similarly been

reported to have some effects against OP (Xu et al., 2020; Kwon

et al., 2021; Lee et al., 2021). In addition, several other flora species

have been reported to be potentially involved in the process of OP

development (He et al., 2020; Tu et al., 2020; Kwon et al., 2021; Qin

et al., 2021). Holdemanella was reported to be associated not only

with OP but also with metabolic diseases such as diabetes, which

seems to indicate that there may be some connection between OP

and diabetes (He et al., 2020; Cheng et al., 2021; Romanı-́Pérez et al.,

2021). It is worth mentioning that Blautia species were more

enriched in the control group (P = 0.003) than in the treatment

group. The presence of this microbe is considered a predisposing

factor for OP; other study results indicated that YGD inhibited this
FIGURE 5

Joint analysis of gut microbiota and differential metabolites. (A) Metabolite principal component analysis, score plots of the first 2 PCA principal
components. (B) Principal component analysis of bacterial groups, score plots of the first 2 PCA principal components. (C) Spearman correlation
chord plot of differential microbial and differential metabolites. (D) Pearson correlation and string plot of differential microbes with differential
metabolites. (E) Spearman correlation network plots of differential microbes and differential metabolites. (F) Pearson correlation network plots of
differential microbes and differential metabolites.
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microbe, and the therapeutic effects of YGD were verified (Liu et al.,

2020). The GM has functional effects; therefore, we evaluated the

functional changes in the GM. The metabolic function of the GM is

an important factor affecting OP (Khosla and Hofbauer, 2017).

Genetic information processing has also been proven to participate

in the disease process of OP as a function of the GM (Xu et al., 2020;

Lee et al., 2022). Similarly, the function of GM cellular processes

affecting bone metabolism has been explained (D’Amelio and Sassi,

2018, Saxena et al., 2021). These results indicate that the above

microbes with distinct changes may be involved in these functions

and thus affect the pathogenesis of GM.

Metabolomics is performed by quantifying metabolites from the

GM and can be used to identify the relative relationship of

metabolites with physio pathological changes. Reports on

capsazepine suggest that it may direct bone marrow mesenchymal

stem cells toward pro-osteogenic differentiation to combat OP, and

the main mechanism may involve transient receptor potential

cation channel subfamily V member 1 (TRPV1) intervention

(Pan et al., 2013; Xiao et al., 2019). There is no related research

on how Phe-Tyr is involved in OP, but it has been reported in a

recent study that Phe-Tyr affects the onset of diabetes as a substance

affecting glucose metabolism (Jahja et al., 2014; Strasser et al., 2015),

which also confirms the finding in our previous study that there

may be a relationship between senile OP and diabetes (Zhang et al.,

2021a). Phe-Tyr is associated with inflammation of the bone and

joint (Muhammed et al., 2020). By performing KEGG pathway

enrichment on the differential metabolites, we found that there were

several predominant enriched signaling pathways as follows:

metabolic pathway, TCA cycle, and beta-alanine metabolism. The

TCA cycle is a component of the central metabolic pathways used in

all aerobic organisms, including gut microbes (Krebs and Johnson,

1980; Granchi et al., 2019). Dickens first pointed out the close

connection between citrate and bone in 1941(Dickens, 1941). An

increasing number of reports have confirmed that citrate can

contribute to the mineralization of bone cells and provide

sufficient energy for the osteogenic differentiation of BMSCs

(Franklin et al., 2014; Costello et al., 2015). Basic research has

also confirmed the involvement of this metabolite and its metabolic

pathway in OP (Si et al., 2020). Similarly, beta alanine metabolism

has been reported to be involved in the bone remodeling process

(Yu et al., 2019; Li et al., 2022a). This finding sheds light on the fact

that starting with metabolites and identifying their targets and

pathways that affect OP may be a research direction.

To maintain a stable niche, the interaction between microbial

metabolites and host signals influences a variety of metabolic

pathways in the host, strongly influences the host metabolic

phenotype, promotes the evolutionary adaptation of the host, and

promotes a mutually beneficial relationship between the host and

microbes. The combined study of the microbiome and metabolome

can help us better understand how environmental microbes and

their associated metabolism and cometabolism with the host

influence the environment within the host or the host metabolic

state. Through combined analysis, we found that the metabolites

dichlorprop, capsazepine, D-pyroglutamic acid and tamsulosin had

the strongest and most positive correlations with microorganisms.

However, at present, there are few reports on how the metabolites
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D-pyroglutamic acid and tamsulosin affect bone metabolism, and

further studies may need to confirm their mechanism in OP.

This study explored the role of TCM in improving the GM

through different intervention modalities. Through research, we

found that some gut microbes, such as Escherichia Shigella,

Bacteroides, Faecalibacterium, Bifidobacterium, Blautia and

Holdemanella, were changed significantly in OP patients under

TCM intervention. The functions of the GM that change

significantly are mainly reflected in three processes, including

metabolic function, genetic information processing and cellular

processes. The main metabolites that have been linked to the

development of OP include capsazepine and Phe – Tyr, and they

may mainly act through metabolic pathways, the TCA cycle, and

beta alanine metabolism. This finding validates previous relevant

studies and demonstrates that there may be a certain advantage of

TCM interventions targeting the GM. In this study, we also

identified differential metabolites with possible connections to

OP, including dichlorprop, capsazepine, D-pyroglutamic acid

and tamsulosin.
Conclusion

The composition and function of the GM influence the recovery

of patients with OP. In this study, we demonstrated the changes in

the GM and microbial metabolites in patients with OP under TCM

intervention and their effects on bone metabolism. The effects of

TCM intervention on GM were confirmed.
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