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Introduction: The gut microbiota plays an important role in the development of

nonalcoholic steatohepatitis (NASH). This study investigated the preventive effect

of Dendrobium officinale (DO), including whether its effect was related to the gut

microbiota, intestinal permeability and liver inflammation.

Methods: A NASH model was established in rats using a high-fat diet (HFD) and

gavage with different doses of DO or Atorvastatin Calcium (AT) for 10 weeks. Body

weight and body mass index along with liver appearance, weight, index, pathology,

and biochemistry were measured to assess the preventive effects of DO on NASH

rats. Changes in the gut microbiota were analyzed by 16S rRNA sequencing, and

intestinal permeability and liver inflammation were determined to explore the

mechanism by which DO treatment prevented NASH.

Results: Pathological and biochemical indexes showed that DO was able to

protect rats against HFD-induced hepatic steatosis and inflammation. Results of

16S rRNA sequencing showed that Proteobacteria, Romboutsia, Turicibacter,

Lachnoclostridium, Blautia, Ruminococcus_torques_group, Sutterella,

Escherichia-Shigella, Prevotella, Alistipes, and Lactobacillus_acidophilus differed

significantly at the phylum, genus, and species levels. DO treatment modulated the

diversity, richness, and evenness of gut microbiota, downregulated the abundance

of the Gram-negative bacteria Proteobacteria, Sutterella, and Escherichia-Shigella,

and reduced gut-derived lipopolysaccharide (LPS) levels. DO also restored

expression of the tight junction proteins, zona occludens-1 (ZO-1), claudin-1,

and occludin in the intestine and ameliorated the increased intestinal permeability

caused by HFD, gut microbiota such as Turicibacter, Ruminococcus, Escherichia-

Shigella, and Sutterella, and LPS. Lower intestinal permeability reduced LPS delivery

to the liver, thus inhibiting TLR4 expression and nuclear factor-kappaB (NF-kB)
nuclear translocation, improving liver inflammation.

Discussion: These results suggest that DO may alleviate NASH by regulating the gut

microbiota, intestinal permeability, and liver inflammation.

KEYWORDS

dendrobium officinale, nonalcoholic steatohepatitis, gut microbiota, lipopolysaccharide,
intestinal permeability, liver inflammation, traditional chinese medicine
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1 Introduction

Nonalcoholic steatohepatitis (NASH) is the inflammatory

subtype of nonalcoholic fatty liver disease (NAFLD), defined by the

simultaneous appearance of more than 5% fat accumulation,

hepatocyte injury (ballooning), and inflammation, with or without

fibrosis (Kanwal et al., 2021). The prevalence of NASH is increasing

and is predicted to rise by 63% by 2030 (Estes et al., 2018). More than

20% of NASH patients develop irreversible cirrhosis or hepatocellular

carcinoma (HCC) (Sheka et al., 2020). The “multiple hit” hypothesis

is the currently accepted explanation of the complex etiology and

pathophysiology of NAFLD (Salvoza et al., 2022). The “multiple hit”

pathogenesis of NASH is closely related to the composition of the gut

microbiota and intestinal permeability which can influence the

development of NASH by regulating liver inflammation(Zhu et al.,

2021). Effectively controlling NASH is critical to prevent the

development of cirrhosis or HCC. While NAFLD-specific drug

research is primarily focused on NASH, however, no specific drugs

have been approved by the Food and Drug Administration or

European Medicines Agency (Fraile et al., 2021). Lifestyle changes

such as healthy eating and physical exercise are suggestions for

treating NASH, however, these methods are not always reliable.

Potent natural products such as Traditional Chinese Medicine

(TCM), a conventional and effective therapeutic strategy associated

with few side effects, are shown to improve gut microbiota and inhibit

NASH progression (Chen M, et al., 2021). Dendrobium officinale

(DO), a plant that is widely used as a TCM and homologous food

product, contains many compounds, including polysaccharides,

phenanthrenes, and bibenzyls (Chen WH, et al., 2021), with a

variety of pharmacological effects such as lowering lipid content,

regulating gut microbiota, protecting the liver, preventing

inflammation and hypoglycemia, and protecting intestinal health

(Wang K, et al., 2020; Yang J, et al., 2020; Liu et al., 2021; Fang

et al., 2022). DO can also alleviate lipopolysaccharides (LPS)-induced

gastric cancer cell injury by inhibiting TLR4 signaling and can reverse

intestinal epithelial cell damage by regulating TLR4 (Zhang et al.,

2019; Yang K, et al., 2020).

The impact of DO on NASH remains unknown. Polysaccharides

are the pharmacologically active ingredient of DO and while not

easily digested and absorbed, it is able to regulate gut microbiota (Li

et al., 2019). Our previous network pharmacological studies also

identified TLR4 as a possible target for DO in the treatment of

NASH (Supplementary Material). Gut-derived LPS, intestinal

permeability, and the receptor TLR4 of LPS are the critical

mechanisms by which gut microbiota impact the development of

NASH (Xiang et al., 2022). Patients with NASH often have an

imbalanced gut microbiota, increased intestinal permeability, high

LPS levels, and elevated expression of liver TLR4 (Abdel-Razik et al.,

2018; Ghetti et al., 2019; Craven et al., 2020). The gut and liver have

bidirectional communication across the portal vein and alterations in

the balance of microbial populations and function, known as

dysbiosis, can disrupt the intestinal barrier tight junctions (Albillos

et al., 2020; Bauer et al., 2022). This morphological alteration leads to

increased intestinal permeability and allows the translocation of

bacteria and/or bacterial products such as LPS through the portal

vein to the liver (Plaza-Dıáz et al., 2020). The gut microbiota is a
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source of Toll-like receptor (TLR) ligands, and compositional changes

in the microbiota can increase the delivery of TLR ligands to the liver

(Miura and Ohnishi, 2014). TLR4 is widely distributed in liver cells, is

involved in several liver diseases, and plays a key role in inflammatory

pathogenesis following activation by bacteria and/or bacterial

products (Wang Y, et al., 2020). TLR4 is a natural receptor of LPS

and LPS-induced activation of TLR4 leads to NF-KB nuclear

translocation, promotes the release of proinflammatory factors such

as IL-6 and TNF-a, and induces the progression from simple fatty

liver disease to NASH (Heida et al., 2021). Indeed, in TLR4 knockout

NASH mice, liver inflammation and fibrosis are significantly reduced

(Csak et al., 2011). Thus, the current study sought to assess whether

DO can regulate gut microbiota, intestinal permeability, and liver

inflammation to alleviate NASH.
2 Materials and methods

2.1 Chemicals, reagents, and materials

DO powder was purchased from Yunnan Tianbao Betula

Biological Resources Development Co., Ltd. (Yunnan, China) and

Atorvastatin calcium (AT) tablets were purchased from Beijing Jialin

Pharmaceutical Co., Ltd. (Beijing, China). The normal diet was

purchased from Jiangsu Medisen Biological Medicine Co., Ltd. (Bei

Jing, China). Kits used to measure alanine transaminase (ALT),

aspartate transaminase (AST), triglyceride (TG), total cholesterol

(TC), low-density lipoprotein cholesterol (LDL-c), high-density

l ipoprotein cholesterol (HDL-c) , and gamma-glutamyl

transpeptidase (GGT) and the total protein assay were purchased

from the Nanjing Jiancheng Bioengineering Institute (Nanjing,

China). Kits used to measure interleukin-6 (IL-6), interleukin 1-b
(IL-1b), LPS, tumor necrosis factor-a (TNF-a), and diamine oxidase

(DAO) were purchased from the Jiangsu Meimian Industrial Co., Ltd.

(Jiangsu, China). D-lactate (D-LA) kit was purchased from Jiangsu

Addison Biotechnology Co., Ltd. (Jiangsu, China). Anti-Occludin

rabbit pAb, anti-Claudin-1 rabbit pAb, anti- Zona occludens-1

(ZO-1) rabbit pAb, and anti-NF-kB p65 (p 65) rabbit pAb were

purchased from Servicebio (Wuhan, China). Ultrapure RNA Kit,

cDNA Synthesis Kit, and UltraSYBR Mixture were purchased from

CoWin Biosciences (Jiangsu, China). TLR4 rabbit pAb was purchased

from Proteintech Group, Inc (Rosemont, USA). Phospho-NF-kB p65

(p-p65) antibody was purchased from Affinity Biosciences Ltd. (OH,

USA). Anti-beta actin (b-actin) antibody was obtained from Abcam

Inc. (Cambridge, UK).
2.2 Animals and experimental design

All experimental procedures followed the guidelines of the

Animal Ethics Committee of the Yunnan University of Chinese

Medicine (Approval lot: R-062021024).

Healthy male Sprague-Dawley (SD) rats (180–200 g; SPF) were

provided by Hunan Slike Jingda Laboratory Animal Co., Ltd. (Hunan,

China). The rats were maintained in a specific pathogen-free standard

environment on the public platform for animal experiments in the
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Science and Technology Department of the Yunnan University of

Chinese Medicine. The rearing temperature was 20–25°C and the

relative humidity was 50% ± 10%, with 12 hours of alternating light.

All experimental rats had free access to distilled water and were fed a

normal or a high-fat diet (HFD, 82.5% normal diet, 10% lard, 2%

cholesterol, 0.5% sodium cholate, and 5% egg yolk powder).

After 1 week of adaptive feeding, the rats were randomized into

the following six groups (n = 8 rats per group): 1) Control group, fed

with a normal diet and gavaged with distilled water; 2) HFD group,

fed with a HFD and gavaged with distilled water; 3) AT group, fed

with a HFD and gavaged with 20 mg/(kg·d) AT; 4) High-dose DO

group (DOH), fed with a HFD and gavaged with 1000 mg/(kg·d) DO

powder; 5) Middle-dose DO group (DOM), fed with a HFD and

gavaged with 500 mg/(kg·d) DO powder; 6) Low-dose DO group

(DOL), fed with a HFD and gavaged with 250 mg/(kg·d) DO powder.

AT and DO powder were prepared separately using distilled water.

Rats were gavaged with the corresponding drug (or distilled water)

once a day for 10 weeks.
2.3 Sample collection

Body weights were recorded weekly during the experiment. After

the last administration at the end of 10 weeks, rat feces were collected

from the anus of each rat using sterile EP tubes and immediately

preserved in liquid nitrogen. Rats were euthanized after fasting for 12

hours, and liver tissue, small intestine tissue, and serum samples were

collected. Serum samples and a portion of both the liver and small

intestine tissues were stored at -80°C.
2.4 Serum and hepatic biochemical assay

Serum AST, ALT, GGT, TG, TC, LDL-c, HDL-c, and D-LA levels

and liver TG, TC, LDL-c, and HDL-c levels were measured using a

commercial kit.
2.5 Enzyme-linked immunosorbent assay

LPS levels in the liver, serum, and ileum, IL-6, IL-1b, TNF-a levels

in the liver and ileum, and DAO levels in the ileum were detected

using ELISA kits.
2.6 Histopathological analysis

Liver and ileum tissues fixed in 4% paraformaldehyde solution

were dehydrated with different concentrations of ethanol, made

transparent with xylene, embedded in liquid paraffin, stained with

H&E, and sealed with neutral gum. The fixed liver tissue was

dehydrated in different concentrations of sucrose solution,

embedded in an optimal cutting temperature compound, sliced

using a cryostat, stained with oil red O, and sealed with glycerol

gelatin. A slide scanning image analysis system (Shenzhen

Shengqiang Technology, China) was used to observe the staining of
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the pathological sections at 400x, and the oil red O-positive area was

analyzed by ImageJ software (NIH, Bethesda, MA, USA).
2.7 Western blot

TLR4, p-p65 and p65 expression in liver tissues were determined

by Western blot. Liver tissue (50 mg) and 0.5 ml RIPA lysate were

added to an EP tube, ground for 60 s, and centrifuged at 4°C at

10,000×g for 10 min. BCA protein quantification was used to measure

the protein concentration. The protein solution was added to a 5x

reduced protein loading buffer at a ratio of 4:1 and denatured in a

boiling water bath for 15 min. Electrophoresis was conducted at 80V

for 20 min and then at 120V until the bromophenol blue ran to a

position 1 cm from the lower end of the glass plate. TLR4 (1:8000), p-

p65 (1:1000), p65 (1:1000), and b-Actin (1:2000) were incubated for

60 min and washed with TBST until no skimmed milk powder was

present. The universal secondary antibodies (1:5000) were incubated

for 60 min at room temperature and washed three times with TBST

for 5 min each. Immunoreactive protein bands were visualized with a

chemiluminescence HRP substrate using a ChemiDoc XRS image

detector (Jena Analytical Instruments AG, Jena, Germany). The blots

were analyzed using ImageJ software.
2.8 Immunohistochemistry

Sections of paraffin-embedded ileum tissue were deparaffinized

and rehydrated. Antigen was repaired using citric acid antigen repair

buffer and 3% hydrogen peroxide was used to block any endogenous

peroxidase. BSA was added dropwise for serum blocking followed by

the addition of ZO-1 (1:1000), occludin (1:1000), or claudin-1 (1:800).

After incubating the samples overnight, a secondary antibody was

added dropwise. The colour was developed with DBA, the cell nuclei

were re-stained, and the samples were dehydrated to seal the slides. A

slide scanning image analysis system (Shenzhen Shengqiang

Technology, China) was used at 400x to observe the samples.

Ultimately, the Image-Pro Plus software (U.S. MEDIA

CYBERNETICS) was used to count the mean density and analyze

the integrated optical density (IOD) of positive staining.
2.9 16S rRNA gene sequencing and analysis

2.9.1 DNA extraction and PCR amplification
Total microbial genomic DNA was extracted from rat feces

samples using the E.Z.N.A.® Stool DNA Kit (Omega Bio-tek,

Norcross, GA, U.S.). The quality and concentration of DNA were

determined by 1.0% agarose gel electrophoresis and a NanoDrop®

ND-2000 spectrophotometer (Thermo Scientific Inc., USA) and kept

at -80 °C prior to further use. The hypervariable region V3-V4 of the

bacterial 16S rRNA gene were amplified with primer pairs 338F (5’-

A C TCCTACGGGAGGCAGCAG - 3 ’ ) a n d 8 0 6 R ( 5 ’ -

GGACTACHVGGGTWTCTAAT-3’) by an ABI GeneAmp® 9700

PCR thermocycler (ABI, CA, USA). The PCR reaction mixture

including 4 mL 5 × Fast Pfu buffer, 2 mL 2.5 mM dNTPs, 0.8 mL
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each primer (5 mM), 0.4 mL Fast Pfu polymerase, 10 ng of template

DNA, and ddH2O to a final volume of 20 µL. PCR amplification

cycling conditions were as follows: initial denaturation at 95 °C for

3 min, followed by 27 cycles of denaturing at 95 °C for 30 s, annealing

at 55 °C for 30 s and extension at 72 °Cfor 45 s, and single extension at

72 °C for 10 min, and end at 4 °C. All samples were amplified in

triplicate. The PCR product was extracted from 2% agarose gel and

purified using the AxyPrep DNA Gel Extraction Kit (Axygen

Biosciences, Union City, CA, USA) according to manufacturer’s

instructions and quantified using Quantus™ Fluorometer

(Promega, USA).

2.9.2 Illumina MiSeq sequencing
Purified amplicons were pooled in equimolar amounts and paired-

end sequenced on an Illumina MiSeq PE300 platform platform

(Illumina, San Diego,USA) according to the standard protocols by

Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China). The raw

sequencing reads were deposited into the NCBI Sequence Read Archive

(SRA) database (Accession Number: PRJNA872008).

2.9.3 Statistical analysis
Bioinformatic analysis of the gut microbiota was carried out using

the Majorbio Cloud platform (https://cloud.majorbio.com). Based on

the OTUs information, Species accumulation curve, rank-abundance,

alpha diversity indices including observed OTUs, Chao, Qstat and

Smithwilson index were calculated with Mothur v1.30.1.The

similarity among the microbial communities in different samples

was determined by Principal Component Analysis (PCA) based on

Bray-curtis dissimilarity using Vegan v2.5-3 package. The

PERMANOVA test was used to assess the percentage of variation

explained by the treatment along with its statistical significance using

Vegan v2.5-3 package. The linear discriminant analysis (LDA) effect

size (LEfSe) (http://huttenhower.sph.harvard.edu/LEfSe) was

performed to identify the significantly abundant taxa of bacteria

among the different groups (LDA score > 3, p < 0.05).
2.10 Quantitative real-time-PCR analysis

Total RNAwas extracted from liver tissue using Ultrapure RNAKit

and was reverse transcribed into cDNA using cDNA Synthesis Kit. The

PCR cycle systemwas set as follows: at 95°C for 10min, at 95°C for 15 s,

and at 60°C for 60 s, for a total of 40 cycles. A total of 1mL cDNA

template was used for PCR amplification using the following primers:

TLR4, forward: 5′-CCGCTCTGGCATCATCTTCA-3′, reverse: 5′-
TGGGTTTTAGGCGCAGAGTT-3′; GAPDH, forward: 5′-GCC
CAGCAAGGATACTGAGA-3′, reverse: 5′-GGTATTCGAGAGAAG
GGAGGGC′.
2.11 Statistical analysis

Statistical analysis was conducted using SPSS software (Version

25, SPSS Inc., Chicago, USA) and graphs were created using

GraphPad Prism software (Version 9.4.0, GraphPad Software Inc.,

CA, USA). Data are shown as the mean ± SD. Normally distributed
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data were tested by one-way ANOVA followed by the LSD or

Dunnett’s test. Other types of data were tested using the non-

parametric Mann-Whitney test (Kruskal-Wallis test for multiple

groups). Differences were considered statistically significant at a p-

value <0.05.
3 Results

3.1 Effect of DO on the body weight and
liver weight of rats

HFD rats had a higher food intake than those in the other groups

at 4 weeks. While food intake gradually decreased in the last 6 weeks,

possibly due to an anorexic reaction caused by overeating the HFD,

there was no significant difference in intake among the groups

(Figure 1A). The HFD rats gained weight faster than rats in the

other groups (Figure 1B). HFD rats had significantly higher body

weight (p-value < 0.001), body mass index (p-value <0.05), liver

weight (p-value <0.001), and liver index (p-value <0.001) than

Control rats. The AT and DO interventions significantly reduced

the body weight, body mass index, liver weight, and liver index (p-

value <0.05, <0.01, and <0.001, respectively) (Figures 1C–F). In

addition, the livers of HFD rats were significantly larger and more

yellow than those of the Control, AT, and DO rats, suggesting that

HFD rat livers may have accumulated more lipids (Figure 1G). These

results indicate that DO effectively inhibited HFD-induced weight

gain, lipid deposition, and liver enlargement.
3.2 Effect of DO on liver pathology and
biochemical parameters

After 10 weeks of HFD feeding with or without DO treatment,

liver cells from Control rat livers were neatly arranged, the liver cords

were clear, and no obvious lipid deposition was observed. In contrast,

liver cells from HFD rat livers were disordered, with more extensive

and robust steatosis accompanied by intralobular inflammatory foci

and balloon-like changes. Inflammation and steatosis were lower in

the livers of rats in the DO and AT groups than those in the HFD

group (Figure 2A). The NAFLD activity score (NAS), semi-

quantitative data used to assess NAFLD progression (NAS >4),

showed that NASH was occurring in the HFD group, indicating

that a HFD successfully induced NASH. NAS scores were significantly

lower following DO and AT treatment (p-value <0.001) (Figure 2C).

Liver oil red O staining showed no obvious lipid deposition in Control

rats and a large amount of deposition in HFD rats (p-value <0.001).

The area of lipid deposition was decreased following DO and AT

treatment (p-value <0.01 and <0.001, respectively) (Figures 2B, D).

These results supported the success of NASH modeling in this study

and indicated that DO treatment reduces lipid accumulation and

inflammation in rat livers.

TC, TG, HDL-c, and LDL-c are clinical indicators used to reflect

blood lipid levels and lipid metabolism. HFD significantly increased

serum and liver TC, TG, and LDL-c and reduced HDL-c levels (p-

value <0.001). These blood and liver lipid indexes were significantly
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improved following DO and AT treatment (p-value <0.05, <0.01, and

<0.001, respectively) (Figures 2E, F). ALT, AST, and GGT are the

most used clinical indicators of liver function. When the liver is

damaged, hepatocytes produce these proteins, resulting in an increase

in serum ALT, AST, and GGT levels and indicating the occurrence of

liver disease and inflammation. HFD significantly increased serum

ALT, AST, and GGT levels (p-value <0.001) and these indexes were

significantly decreased following DO and AT treatment (p-

value <0.05, <0.01, and <0.001, respectively) (Figure 2G).
3.3 Effect of DO on the gut microbiota of
NASH rats

Structural changes in the gut microbiota of rats that received DO

treatment were assessed using 16S rRNA sequencing analysis. A total

of 1,548,295 sequences were obtained from 30 samples, and 1,033

OTUs were collected at a 97% similarity level. The species

accumulation and rank-abundance curves showed that most of the

diversity and species were included and the amount of sequencing

data was adequate (Figures 3A, B).
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3.4 Effect of DO on the Alpha diversity and
Beta diversity of rat gut microbiota

Alpha diversity was determined using Chao, Qstat, and

Smithwilson to calculate the complexity of species diversity in

samples. The Chao, Qstat, and Smithwilson indexes describe the

richness, diversity, and evenness of the gut microbiota, respectively.

In the current study, changes in these indexes are shown in

Figures 3C–E. The Chao (p-value <0.01) and Qstat (p-value <0.001)

were lower and the Smithwilson (p-value <0.001) was higher in the

HFD group than in the Control group, suggesting that a HFD can

significantly reduce microbiome richness, diversity, and evenness.

The Chao and Qstat increased and the Smithwilson decreased

following DO treatment (p-value <0.05 and <0.01, respectively)

suggesting that DO may effectively improve the diversity, richness,

and evenness of gut microbiota in NASH rats.

Beta diversity principal component analysis (PCA) was

performed to clarify the effects of HFD and DO intervention on the

composition and structure of the gut microbiota. As expected, PCA

revealed a clear separation between the Control and HFD groups, and

the composition of the gut microbiota exhibited a clear response to
A B

D E F

G

C

FIGURE 1

(A) Temporal changes in food intake by group; (B) temporal changes in body weight by group; (C) final body weight by group; (D) body mass index by
group; (E) liver weight by group; (F) liver index by group; (G) representative photo of a liver from each group. All data are shown as the mean ± SD (n=8).
#p < 0.05, ###p < 0.001 vs. the Control group; *p < 0.05, **p < 0.01, ***p < 0.001 vs. the HFD group.
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DO intervention (Figure 3F). The unique and common OTUs in the

Venn diagram more directly indicated the unique species information

of each group. Different numbers of OTUs were detected in each

group, including 884 in the Control group, 627 in the HFD group, 711

in the DOH group, 702 in the DOM group, and 754 in the DOL

group. A total of 462 OTUs were shared by all groups and each group

had unique OTUs. These results showed that DO could ameliorate

the gut microbiota disorder induced by HFD in NASH

rats (Figure 3G).
3.5 Effect of DO on the gut microbiota at
the phylum, genus, and species levels

To evaluate the effect of DO on the gut microbiota of NASH rats,

the microbial abundance at the phylum, genus, and species levels was

determined using taxonomic analysis. At the phylum level, 13 phyla

were found in five groups, of which Firmicutes and Bacteroidetes

accounted for the largest proportion. The abundance of Firmicutes,
Frontiers in Cellular and Infection Microbiology 06
Bacteroidetes, and Proteobacteria related to NASH was changed

(Figure 4A). Proteobacteria were positively correlated with the HFD

group (Figure 4B). While the relative abundances of Firmicutes and

Proteobacteria were higher in the HFD group than in the Control group

(p <0.05), Bacteroidetes were lower in the HFD group (p <0.05). After

DO intervention, the relative abundance of Proteobacteria was

significantly decreased in the DOH group (p <0.05) (Figure 4C).

These results indicated that compared with the Control group, the

composition of gut microbiota in the HFD group changed significantly

at the phylum level, especially for Proteobacteria.

The abundance of gutmicrobiota at the genus and species levels also

differed by group (Figure 5A, 6A). To identify specific bacterial taxa that

arose after DO supplementation, LEfSe analysis (all-against-all) with a

3.0 threshold for discriminative features on the logarithmic LDA scale

was performed. In LEfSe, different colours represent different groups.

The potentially harmful bacteria, Romboutsia, Turicibacter,

Lachnoclostridium, Blautia, Ruminococcus_torques_group, Sutterella,

and Escherichia-Shigella were enriched in the HFD group at the genus

level (Figure 5B). DO treatment reduced the abundance of Romboutsia,
A

B

D

E

F

G

C

FIGURE 2

Detection of liver pathology and biochemical criteria. (A) Representative H&E stained liver samples by group (400x magnification); (B) representative
images of oil red O stained liver samples by group (400x magnification); (C) liver NAS scores by group; (D) oil red O staining area by group; (E) serum
lipid content by group; (F) liver lipid content by group; (G) serum AST, ALT and GGT levels by group. All data are shown as the mean ± SD (n =8). ###p <
0.001 vs. the Control group; *p < 0.05, ** p < 0.01, ***p < 0.001 vs. the HFD group.
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Turicibacter, Lachnoclostridium, Blautia, Ruminococcus_torques_group,

Sutterella, and Escherichia-Shigella than the HFD group (p-

value <0.05, <0.01, and <0.001, respectively) (Figure 5C).

Meanwhile, the abundance of the potentially beneficial bacteria,

Prevotella and Alistipes, was significantly lower in the HFD group

than in the Control group (p-value <0.05 and <0.001, respectively),

and DO intervention increased the levels of these organisms (p-

value <0.05) (Figure 5C). At the species level, the probiotic

Lactobacillus_acidophilus was significantly enriched in the DOH

group (Figure 6B). The HFD group had a significantly lower

abundance of Lactobacillus_acidophilus than the Control group (p-

value <0.05), and the level of this bacteria increased significantly in

the DOH and DOL groups (p-value <0.01) (Figure 6C).
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3.6 Effect of DO on intestinal permeability
of rats

The gut microbiota plays an important role in maintaining the

integrity of the intestinal mucosal barrier, and intestinal tight junction

protein is the principal determinant of intestinal permeability. Each

layer of the ileum tissue in the Control and the AT groups was clearly

structured, the mucosal epithelium was intact, cell morphology was

normal, the intestinal villi were evenly distributed, the intestinal glands

were abundant and tightly arranged, and no obvious abnormalities

were found. In contrast, there was necrotic cellular debris in the

intestinal lumen of the HFD group and the apical epithelium of the

intestinal villi was separated from the lamina propria. This separation
A B

D E

F G

C

FIGURE 3

(A) Species accumulation curve; (B) rank-abundance curve; (C) Chao index by group; (D) Qstat index by group; (E) Smithwilson index by group; (F) PCA
plot of microbial communities based on the OTU level. (G) Venn diagram based on the OTU level. Data are shown as the mean ± SD (n=6). ##p < 0.01,
###p < 0.001 vs. the Control group; *p < 0.05, **p < 0.01 vs. the HFD group.
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was much rarer in rats receiving different doses of DO (Figure 7A).

Expression of the tight junction proteins, ZO-1, claudin-1, and occludin

was significantly lower in the HFD group than in the Control group (p-

value <0.001), and all three proteins were significantly increased

following DO intervention (p-value<0.05, <0.01, and <0.001,

respectively) (Figure 7B). Ileum DAO and serum D-LA levels were

significantly higher in the HFD group (p-value <0.001), and DAO and

D-LA levels were significantly lower after DO and AT treatment (p-

value <0.05, <0.01, and <0.001, respectively) (Figure 7C). Ileum IL-6,

TNF-a, and IL-1b levels were all significantly higher in the HFD group

than in the Control group (p-value <0.001), and significantly decreased

following DO and AT treatment (p-value <0.05, <0.01, and <0.001,

respectively) (Figure 7D). The protective effect of DO on intestinal

permeability was manifested by increased tight junction protein

expression and lower DAO activity and D-LA and inflammatory

cytokine production.
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3.7 Effect of DO on liver inflammation

At the phylum level, Proteobacteria were most dramatically

changed after 10 weeks of HFD, suggesting that there was a

concomitant rise in LPS. Disruption of the gut microbiota and

increased intestinal permeability allow LPS to enter the liver. TLR4

and NF-kB are important proteins related to liver inflammation

during NASH, and IL-6, IL-1b, and TNF-a were the major

inflammatory cytokines induced by TLR4 and NF-kB.
LPS levels in the ileum, serum and liver were significantly higher

in rats in the HFD group than in the Control group (p-value <0.001)

(Figure 8A), and relative TLR4 mRNA expression in the liver was

significantly increased (p-value <0.001) (Figure 8B). DO and AT

treatment resulted in significantly lower LPS levels in the ileum,

serum, and liver (p-value <0.05, <0.01 and <0.001, respectively) and

reduced relative TLR4 mRNA expression (p-value <0.001). Protein
A B

C

FIGURE 4

DO treatment modulated the gut microbiota composition at the phylum level. (A) Community abundance at the phylum level (%); (B) heat map of cluster
stacking at the phylum level; (C) the relative abundances of Firmicutes, Bacteroidetes, and Proteobacteria. Data are expressed as the mean ± SD (n=6).
#p < 0.05 vs. the Control group; *p < 0.05 vs. the HFD group.
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expression of TLR4 and the p-p65/p65 ratio were significantly higher

in the HFD group than in the Control group (p-value <0.001) and

both were decreased following DO and AT treatment (p-value <0.05,

<0.01, and <0.001, respectively) (Figure 8C). IL-6, IL-1b, and TNF-a
levels were significantly higher in the HFD group than in the Control

group (p-value <0.001) and were significantly decreased following DO

and AT treatment (p-value <0.01 and <0.001, respectively)

(Figure 8D). These results suggested that DO was able to attenuate

liver inflammation.
3.8 Correlation between gut microbiota and
biochemical factors and LPS

Spearman correlation analysis was performed to assess the potential

correlation between gut microbiota and the levels of biochemical factors

and LPS. The abundances of Firmicutes, Proteobacteria, Romboutsia,

Turicibacter, Lachnoclostridium, Blautia, Ruminococcus_torques_group,
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Sutterella, and Escherichia-Shigella were positively correlated with TG,

TC, LDL-c, AST, ALT, GGT, and LPS levels. Meanwhile, the abundances

of Bacteroides, Lactobacillus_acidophilus, Prevotella, and Alistipes were

positively correlated with HDL-c levels (Figure 9A).
4 Discussion

The current study established a HFD-induced NASH model in

rats to investigate the effect of DO treatment on NASH and

characterize the underlying mechanism caused by changes in the

gut microbiota. AT, the positive control, was able to lower serum pro-

inflammatory cytokine production, reduce serum cholesterol, hepatic

free cholesterol, serum alpha-fetoprotein (AFP) and ALT levels, and

ameliorate NASH (Domech et al., 2021; Zhang X, et al., 2021). While

HFD changed the community composition of the gut microbiota and

caused NASH, DO treatment regulated the gut microbiota and

mitigated the disease.
A B

C

FIGURE 5

DO treatment modulated the composition of the gut microbiome at the genus level. (A) Community abundance at the genus level (%); (B) LEfSe of the
gut microbiota at the genus level; (C) relative abundances of Romboutsia, Blautia, Turicibacter, Ruminococcus_torques_group, Lachnoclostridium,
Sutterella, Escherichia-Shigella, Prevotella, and Alistipe. Data are expressed as the mean ± SD (n=6). #p < 0.05, ## p< 0.01, ###p < 0.001 vs. the Control
group; *p < 0.05, **p < 0.01, ***p < 0.001 vs. the HFD group.
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NASH is associated with disordered gut microbiota, including

decreased richness and diversity. Thus, improving these elements can

be used to treat this disease (Boursier et al., 2016; Yan et al., 2022). To

investigate the mechanism by which DO treats NASH, 16S rRNA

gene sequencing was used to identify the composition of the gut

microbiome in different groups of rats. DO treatment was able to

prevent NASH by increasing the richness, diversity, and evenness of

the gut microbiota.

At the phylum level, HFD resulted in a significant increase in the

abundance of Firmicutes and Proteobacteria and a significant

decrease in the abundance of Bacteroidetes. Firmicutes and

Bacteroidetes are involved in energy absorption, and an unbalanced

proportion of these bacteria is associated with obesity (Tenorio-

Jiménez et al., 2020). Firmicutes were shown to exacerbate NAFLD

severity by modulating hepatic lipid metabolism after Firmicutes were
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isolated from healthy individuals and inoculated into HFD-fed germ-

free mice (Chen et al., 2019). NASH patients have a higher abundance

of Proteobacteria, Gram-negative bacteria, including the pathogens

Escherichia-Shigella and Escherichia-coli, whose outer membrane is

composed of LPS (Rizzatti et al., 2017; Delik et al., 2022). In addition,

Proteobacteria DNA isolated from morbidly obese patients was

associated with severe liver pathology (Sookoian et al., 2020).

Changes in gut microbiota promote the development of NASH.

While changes in the abundance of Firmicutes and Bacteroides

were not statistically significant after DO intervention, the

abundance of Proteobacteria decreased significantly. These results

suggest that the preventive effect of DO on NASH is associated with

the regulation of Proteobacteria.

At the genus and species level, changes in microbiota richness and

diversity during NASH were primarily associated with Romboutsia
A

B C

FIGURE 6

DO treatment modulated the gut microbiota composition at the species level. (A) Community abundance at the species level (%); (B) LEfSe of the gut
microbiota at the species level; (C) relative abundances of Lactobacillus_acidophilus. Data are expressed as the mean ± SD (n=6). #p < 0.05 vs. the
Control group; **p < 0.01 vs. the HFD group.
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(Zeng et al., 2019), Turicibacter, Lachnoclostridium (Li et al., 2022),

Blautia (Vallianou et al., 2021), Ruminococcus_torques_group,

Sutterel la , Escherichia-Shigel la, Prevotel la , Alistipe , and

Lactobacillus_acidophilus. Escherichia-Shigella produces ethanol that

can damage the intestinal mucosa and promote liver inflammation

(Zhu et al., 2013), Sutterella has pro-inflammatory effects on the

gastrointestinal tract (Hiippala et al., 2016), and Escherichia-Shigella

and Sutterella, both belonging to the Proteobacteria phylum, induce

LPS biosynthesis (Song et al., 2017; Xu et al., 2018).

LPS was significantly correlated with NASH in NAFLD patients

and this confirmed the importance of dysbiosis during hepatic

inflammation, as well as fat deposition (Hegazy et al., 2020). HFD,

gut microbiota disorders, and specific physiological concentrations of

LPS affect the expression and distribution of tight junctions in the

intestinal mucosa and increase intestinal permeability, an early event

associated with the development of NASH (Binienda et al., 2020;
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Chopyk and Grakoui, 2020; Rohr et al., 2020; Stephens and von der

Weid, 2020). Intestinal permeability is primarily affected by tight

junction proteins such as occludin, claudin-1, and ZO-1 while DAO

and D-LA levels reflect the function and permeability of intestinal

barriers (Mouries et al., 2019). Low intestinal permeability can

prevent antigens, endotoxins, pathogens, and pro-inflammatory

substances from infiltrating the body (Maciejewska et al., 2019;

Zhang H, et al., 2021). LPS also specifically activates TLR4, an

important inflammatory receptor in the liver, which promotes NF-

kB nuclear entry and the release of inflammatory cytokines and

accelerates the development of NASH (Leng et al., 2022).

The current study found that the abundance of the LPS-

producing Gram-negative bacteria Proteobacteria was significantly

increased in NASH rats and was accompanied by higher levels of

intestinal LPS. Bacteroidetes, a Gram-negative bacteria, was

negatively correlated with LPS, suggesting that gut-derived LPS is
A

B
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FIGURE 7

Effect of DO on intestinal permeability. (A) Representative images of H&E staining of the ileum by group (400x magnification); (B) immunohistochemistry
of the ileal tight junction protein by group (400x magnification); (C) ileum DAO and serum D-LA levels by group; (D) ileum IL-6, TNF-a, IL-1b levels by
group. All data are shown as the mean ± SD (n=8). ###p < 0.001 vs. the Control group; *p < 0.05, **p < 0.01, ***p < 0.001 vs. the HFD group.
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mainly produced by Proteobacteria. Intestinal epithelial cells and tight

junctions were damaged while intestinal permeability and

inflammation were increased in the HFD group, which may be

explained by the significant enrichment of Turicibacter ,

Ruminococcus, Escherichia-Shigella, and Sutterella, bacteria known

to disrupt the intestinal barrier (Hänninen et al., 2018; Li et al., 2020).

Changes in intestinal permeability allow gut-derived LPS to enter the

liver through the portal vein, increasing LPS levels in the serum and

liver. Excess LPS activates liver TLR4, promoting NF-kB nuclear

translocation and the release of inflammatory factors. DO treatment

protects intestinal epithelial cells and tight junctions from damage,

thereby reducing intestinal permeability, inhibiting liver TLR4 and

NF-kB activation, and lowering inflammatory cytokine production.

The reduction in liver inflammation may be related to the decreased

abundance of LPS-producing bacteria, Proteobacteria, Sutterella, and

Escherichia-Shigella, the intestinal barrier-disrupting bacteria,

Turicibacter, Ruminococcus, and the increased abundance of

Lactobacillus_acidophilus following DO treatment (Figure 10).
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Lactobacillus acidophilus is shown to regulate gut microbiota and

intestinal permeability, reduce endotoxemia and inhibit TLR4/NF-kB
signaling, attenuating NASH progression (Lee et al., 2021; Chen et al.,

2022; Kang et al., 2022).

NASH occurs in the liver, but its pathogenesis is complex. TCM is

safe, comprehensive, and effective, the holistic and multi-target function

of TCMmay thus be an appropriate option for NASH treatment (Zhang

et al., 2020). Indeed, the ability of DO to improve NASH by regulating

gut microbiota is reflective of the characteristics of TCM.
5 Conclusion

In summary, findings from the current study indicated that DO

could regulate gut microbiota, intestinal permeability, and liver

inflammation to alleviate NASH. DO treatment alleviated microbiota

dysbiosis and reduced the abundance of the LPS-producing bacteria,

Proteobacteria, Sutterella, and Escherichia-Shigella, reduced the
A B

D

C

FIGURE 8

Impact of DO treatment on liver inflammation. (A) Ileum, serum, and liver LPS levels by group; (B) liver relative TLR4 mRNA expression by group; (C) liver
TLR4 protein expression and NF-kB nuclear translocation by group; (D) liver IL-6, TNF-a, IL-1b levels by group. A and D results are shown as the mean ± SD
(n=8), and B and C results are shown as the mean ± SD (n=3). ###p < 0.001 vs. the Control group; *p < 0.05, **p < 0.01, ***p < 0.001 vs. the HFD group.
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abundance of the intestinal barrier-disrupting bacteria, Turicibacter,

Ruminococcus, decreased intestinal permeability to reduce the

movement of gut-derived LPS from the portal vein blood into the

liver, inhibiting hepatic TLR4 activation and NF-kB nuclear

translocation, and improving hepatic inflammation and steatosis to

prevent NASH. The results also found that Lactobacillus_acidophilus

may play a critical role during NASH. Additional follow-up, including
Frontiers in Cellular and Infection Microbiology 13
sterility testing, is needed to further investigate the effect of DO treatment

on gut microbiota with the potential mechanism of action required to

prevent NASH. This study may provide theoretical support for the

clinical promotion of DO.
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