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Purpose: To explore the genetic characteristics of the IMP-4 and SFO-1 co-

producing multidrug-resistant (MDR) clinical isolates, Enterobacter

hormaechei YQ13422hy and YQ13530hy.

Methods: MALDI-TOF MS was used for species identification. Antibiotic

resistance genes (ARGs) were tested by PCR and Sanger sequencing analysis.

In addition to agar dilution, broth microdilution was used for antimicrobial

susceptibility testing (AST). Whole-genome sequencing (WGS) analysis was

conducted using the Illumina NovaSeq 6000 and Oxford Nanopore platforms.

Annotation was performed by RAST on the genome. The phylogenetic tree was

achieved using kSNP3.0. Plasmid characterization was conducted using S1-

pulsed-field gel electrophoresis (S1-PFGE), Southern blotting, conjugation

experiments, and whole genome sequencing (WGS). An in-depth study of

the conjugation module was conducted using the OriTFinder website. The

genetic context of blaIMP-4 and blaSFO-1 was analyzed using BLAST Ring Image

Generator (BRIG) and Easyfig 2.3.

Results: YQ13422hy and YQ13530hy, two MDR strains of ST51 E. hormaechei

harboring blaIMP-4 and blaSFO-1, were identified. They were only sensitive to

meropenem, amikacin and polymyxin B, and were resistant to cephalosporins,

aztreonam, piperacillin/tazobactam and aminoglycosides, intermediate to

imipenem. The genetic context surrounding blaIMP-4 was 5′CS-hin-1-IS26-
IntI1-blaIMP-4-IS6100-ecoRII. The integron of blaIMP-4 is In823, which is the

array of gene cassettes of 5′CS-blaIMP-4. Phylogenetic analysis demonstrated

that E. hormaechei YQ13422hy and YQ13530hy belonged to the same small

clusters with a high degree of homology.

Conclusion: This observation revealed the dissemination of the blaIMP-4 gene in

E. hormaechei in China. We found that blaIMP-4 and blaSFO-1 co-exist in MDR

clinical E. hormaechei isolates. This work showed a transferable IncN-type
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plasmid carrying the blaIMP-4 resistance gene in E. hormaechei. We examined

the potential resistance mechanisms of pYQ13422-IMP-4 and pYQ13422-

SFO-1, along with their detailed genetic contexts.
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Introduction

Enterobacter cloacae complex (ECC) is the most common

group of species among the genus Enterobacter, including six

closely related species: E. cloacae, E. asburiae, E. hormaechei, E.

kobei, E. ludwigii, and E. nimipressuralis (Mezzatesta et al.,

2012). Enterobacter hormaechei can be widely found in

different environments such as the nature (Osei Sekyere and

Reta, 2021), feces of humans or animals. But it is also an

important pathogenic bacteria in hospitals, which can be

responsible for nosocomial infections, such as wounds, urinary

tract, and soft tissue infections (Xu et al., 2015). The horizontal

spread of bacterial resistance genes, especially the carbapenemase-

encoding gene, has brought great difficulties to clinical treatment

(Annavajhala et al., 2019).

Since blaIMP-1 was firstly declared in Japan in 1991

(Watanabe et al., 1991), IMP- producing ECC has been

playing an increasingly significant role in the world antibiotic

resistance stage, like Malaysia (Liew et al., 2018), Portugal

(Goncalves et al., 2021), and Korea (Lee et al., 2017). As time

progressed, more and more IMP variants appeared in China,

including IMP-2 (Riccio et al., 2000), IMP-8 (Yan et al., 2001),

IMP-4 (Chu et al., 2001), IMP-26 (Gou et al., 2020). In China,

IMP-4-positive carbapenemase-producing Enterobacterales

(CPE) have become important carbapenem-resistant bacteria

(Hu et al., 2014), since it was first discovered in Hongkong (Chu

et al., 2001) in 2001. The blaIMP-4 is mainly found in

Pseudomonas aeruginosa, but has been gradually reported in

Enterobacteriaceae (Matsumura et al., 2017), such as E.

hormaechei (Chen et al., 2022). More importantly, the

coincidence of blaIMP and other antibiotic resistance genes is

becoming increasingly common, such as co-carrying blaIMP-4

and blaNDM-1 (Zhang et al., 2021a), further increasing the

tremendous pressure of clinical treatment.

In 1999, a clinical E. cloacae 8009 isolate possessing a

transferable plasmid harboring blaSFO-1 was reported in Japan

(Matsumoto and Inoue, 1999). The reports of blaSFO-1 and

coexisting antibiotic resistance genes have recently increased in

China (Zhou et al., 2020). In comparison with other broad-

spectrum-beta-lactamases, the blaSFO-1 gene has a low

occurrence of antimicrobial resistance that has been ignored
02
by routine monitoring. We found a carbapenem-resistant E.

hormaechei clinical isolate co-harboring blaSFO-1 and blaIMP-4.

There are few studies on the transmission of blaSFO-1 and

blaIMP-4 in ECC in China, especially E. hormaechei. Therefore, it

is vital to further explore the genome and phenotypic

characteristics of the blaSFO-1 and blaIMP-4 in E. hormaechei in

China. We identified clinical isolates of E. hormaechei

YQ13422hy and YQ13530hy co-producing blaIMP-4 and

blaSFO-1, and described the detailed content of a conjugative

IncN-plasmid. Furthermore, we revealed the underlying

transmission mechanisms of blaIMP-4.
Materials and methods

Bacterial strains

We continuously collected ECC clinical isolates from a

tertiary hospital affiliated to Wenzhou Medical University

from 2015 to 2017 for routine surveillance. A total of eight

carbapenemase producing ECC clinical isolates have been

identified using the MALDI-TOF MS (Bruker, Bremen,

Germany). Among them, the two isolates of IMP-4-producing

E. hormaechei strains (25%) were identified using PCR and next-

generation sequencing (NGS), designated as YQ13422hy

and YQ13530hy.
Multilocus sequence typing and
antimicrobial susceptibility testing

As described previously, multilocus sequence typing (MLST)

was conducted (Gou et al., 2020). A new sequence type has been

submitted to MLST and have been approved by PubMLST

(http://pubmlst.org/ecloacae). Agar dilution and broth

microdilution were used for antimicrobial susceptibility testing

(AST), and Escherichia coli ATCC 25922 was used as control.

AST results were interpreted based on the Clinical and

Laboratory Standards Institute (CLSI) 2021 standards, while

tigecycline and colistin clinical breakpoints were based on the

2022 EUCAST (http://www.eucast.org). Sixteen antimicrobial
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resistance genes were searched using PCR, including blaKPC,

blaNDM, blaIMP, blaOXA-23, blaOXA-48, blaVIM, and mcr-1-10.
Plasmid characterization and
conjugation assays

Pulsed-field gel electrophoresis (PFGE) was used to

determine the homology between strains YQ13422hy and

YQ13530hy. PFGE was undertaken on the CHEF-DR III

system (Bio-Rad. Hercules, CA, United States), and patterns

were evaluated and interpreted according to the published

guidelines (Xu et al., 2018). The profiles of plasmids in strains

YQ13422hy and YQ13530hy were analyzed by the S1-PFGE, as

previously described (Wang et al., 2019). Then we used a

digoxigenin-labeled blaIMP-4 probe made by a dig-high prime

DNA Labeling and Detection Starter Kit II (Roche Diagnostics)

to determine the location of plasmid harboring blaIMP-4 via

southern blotting and hybridization. The transferability of

plasmids was investigated by using E. coli J53, a NaN3-

resistant standard strain, as a receptor for conjugation assays.

Subsequently, transconjugants carrying blaIMP-4 were first

selected using Mueller-Hinton agar (OXOID, Hampshire,

United Kingdom) plates containing both 1 mg/L meropenem

and 200 mg/L NaN3. Further, the selected conjugates were

confirmed by MALDI-TOF/MS, PCR identified the blaIMP-4

gene, and AST was used to confirm the expression of drug

resistance genes.
Whole genome sequencing and in silico
analyses

Genomic DNA was extracted using a Genomic DNA

Isolation Kit (QIAGEN, Hilden, Germany) and sequenced

using Illumina Novaseq 6000 (Illumina, San Diego, CA,

United States) and Oxford Nanopore platforms (Oxford

Nanopore Technologies, Oxford, United Kingdom). RAST 2.0

was used to annotate the draft genomes obtained by SPAdes

version 3.9.1 (Aziz et al., 2008) (http://rast.nmpdr.org/). ISfinder

and INTEGRALL were used to detect insertion sequence

elements and integrons (https://www-is.biotoul.fr/) .

Antimicrobial resistance genes (ARGs) were identified by

Resfinder (https://cge.cbs.dtu.dk/services/ResFinder/). Different

plasmid genome sequences were compared by BLAST Ring

Image Generator (Alikhan et al., 2011) (BRIG). The figures

about the genetic context surrounding the antibiotic resistance

genes were drawn by Easyfig 2.3 (Sullivan et al., 2011). To verify

whether the plasmids pYQ13422-IMP-4, pYQ13530-IMP-4,

pYQ13422-SFO-1 and pYQ13530-SFO-1 were conjugative

plasmids, we used the OriTFinder website (https://tool-mml.

sjtu.edu.cn/oriTfinder/oriTfinder.html).
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Phylogenetic analysis

We downloaded all available IMP-carrying ECC from the

NCBI genome database in May 2022 to study the phylogenetic

relationships of YQ13422hy and YQ13530hy with other ECC.

KSNP3.0 (Gardner et al., 2015) was used to construct the

phylogenetic tree based on the previously-mentioned

downloaded data via SNPS. ITOL was used to visualize and

modify the phylogenetic tree (https://itol.embl.de/).
Results

Species confirmation and
homology analysis

The YQ13422hy strain was isolated from a sputum

specimen of a 36-year-old male suffering from hypoxic

encephalopathy on March 12, 2017. YQ13530hy was

isolated from a sputum specimen of a 60-year-old male with

brain herniation on April 2, 2017. The patient carrying

YQ13422hy was hospitalized for 3 months, from March 01,

2017 to June 10, 2022. The patient carrying YQ13530hy

was hospitalized for 1 month from April 01, 2017 to April 19,

2022. Patient carrying YQ13422hy was treated with

intravenous vancomycin, Imipenem and Cilastatin Sodium, as

well as Cefoperazone Sodium and Sulbactam Sodium. Patient

carrying YQ13530hy was treated with vancomycin, meropenem

and levofloxacin. Both patients were hospitalized in the same

ward. ANI analysis (Figure S2 and Table S2) and WGS showed

that the two isolates were highly homologous, and the blaIMP-4-

bearing plasmids had 99.97% similarity, indicating the isolates’

clonal spread. In fact, it is not clear how the clonal spread

happened, but we suspect that it may have been through

contact or through the air, because both strains were detected

in sputum.
AST of Enterobacter hormaechei
YQ13422hy and YQ13530hy

The isolates YQ13422hy and YQ13530hy both displayed

resistance to aztreonam, ceftriaxone, cefotaxime, ceftazidime,

levofloxacin, ciprofloxacin, gentamicin, piperacillin/tazobactam,

chloromycin, amoxicillin-clavulanate, cefepime, with sensitivity

to meropenem, amikacin, and polymyxin B. For imipenem,

YQ13422hy and YQ13530hy were determined as intermediate.

In the case of YQ13422hy, it exhibited intermediate resistance to

fo s fomyc in , and suscep t ib i l i t y t o t r ime thopr im/

sulfamethoxazole and tigecycline. On the other hand,

YQ13530hy showed re s i s t ance to t r ime thopr im/

sulfamethoxazole and tigecycline, while it was susceptible to
frontiersin.org
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fosfomycin. AST results revealed that both strains were MDR E.

hormaechei. The results of AST of E. hormaechei YQ13422hy

and YQ13530hy are shown in Table 1.
Location of blaIMP-4 and blaSFO-1 and the
conjugation assays

S1-PFGE and hybridization experiments on YQ13422hy and

YQ13530hy (Figure S1) showed that the plasmid harboring the

blaIMP-4 resistance gene was about 53 kb and it was named

pYQ13422-IMP-4. The plasmid carrying blaSFO-1 resistance

gene was designated as pYQ13422-SFO-1.

The transconjugant was identified as E. coli by MALDI-

TOF/MS. Then PCR and Sanger sequencing were performed to

determine that the transconjugant was carrying the blaIMP-4

resistance gene. The results of AST also indicated that the

plasmid pYQ13422-IMP-4 was successfully transferred into

recipient J53. A comparison of AST results between

YQ13422hy and YQ13422-J53, YQ13530hy and YQ13530-J53

showed that the transconjugant was resistant to ceftriaxone,

cefotaxime, ciprofloxacin, ceftazidime, amoxicillin-clavulanic

acid and cefepime, sensitive to aztreonam, gentamicin,

piperacillin/tazobactam, chloromycin and fosfomycin, and

intermediate to levofloxacin and imipenem, but significantly

increased the MIC value of the transconjugant to levofloxacin.
Frontiers in Cellular and Infection Microbiology 04
Through the analysis by the OriTFinder website, the complete

conjugative modules on the plasmid pYQ13422-IMP-4,

pYQ13530-IMP-4, pYQ13422-SFO-1, and pYQ13530-SFO-1

were identified, including the origin of transfer site (oriT),

gene cluster for bacterial type IV secretion system (T4SS), gene

encoding type IV coupling protein (T4CP), and relaxase gene

(Table S4). Based on these results, it appears they are MDR

plasmids that can be horizontal transferred (Figure 1). Because

pYQ13422-IMP-4 and pYQ13530-IMP-4 are exactly the same,

we only show pYQ13422-IMP-4 in Figure 1.
Characterization of the genome of E.
hormaechei YQ13422hy and YQ13530hy

The result of S1-PFGE showed that YQ13422hy and

YQ13530hy both carried three plasmids of different sizes, as

mentioned above. WGS showed that YQ13422hy and

YQ13530hy both carried four plasmids of different sizes. The

plasmid pYQ13422hy-3 and Pyq13530hy-3 are not visible in the

S1-PFGE result due to its small size; 4995bp.

According to the WGS results, YQ13422hy and YQ13530hy

were shown by MLST to carry the genes fusA (4), leuS (6), rplB

(4), rpoB (6), dnaA (4), gyrB (4), pyrG (37), confirming its typing

as ST51. Specific genome information on plasmid sizes, Inc and

MLST typing and resistance genes is displayed in Table 2.
TABLE 1 MIC values of antimicrobials for E. hormaechei YQ13422hy andYQ13530hy, recipient strain J53, transconjugants YQ13422hy-J53 and
YQ13530hy-J53, and control strain E. coli 25922.

Antimicrobials MIC values (mg/L)

YQ13422hy YQ13422hy-J53 YQ13530hy YQ13530hy-J53 J53 25922

Aztreonam >128 (R) 0.5 (S) 128 (R) 0.5 (S) 0.5 (S) 0.5 (S)

Imipenem 2 (I) 2 (I) 2 (I) 2 (I) 0.5 (S) 0.25 (S)

Meropenem 1 (S) 1 (S) 1 (S) 1 (S) 0.03 (S) 0.03 (S)

Ceftriaxone >128 (R) 128 (R) >128 (R) 128 (R) 0.06 (S) 0.06 (S)

Cefotaxime >128 (R) 128 (R) >128 (R) 128 (R) 0.125 (S) 0.125 (S)

Ceftazidime >128 (R) >128 (R) >128 (R) >128 (R) 0.25 (S) 0.5 (S)

Levofloxacin 4 (R) 1 (I) 8 (R) 1 (I) 0.015 (S) 0.03 (S)

Ciprofloxacin 2 (R) 1 (R) 8 (R) 1 (R) 0.03 (S) 0.015 (S)

Amikacin 16 (S) 16 (S) 16 (S) 16 (S) 16 (S) 16 (S)

Gentamicin >128 (R) 4 (S) >128 (R) 4 (S) 4 (S) 4 (S)

Piperacillin/Tazobactam >128/4 (R) 16/4 (S) 128/4 (R) 16/4 (S) 4/1 (S) 4/1 (S)

Fosfomycin 128 (I) 0.5 (S) 64 (S) 0.5 (S) 0.25 (S) 0.5 (S)

Chloromycin >128 (R) 4 (S) 64 (R) 4 (S) 4 (S) 4 (S)

Trimethoprim/Sulfamethoxazole 0.5/9.5 (S) 0.125/2.375 (S) 4/76 (R) 0.125/2.375 (S) 0.125/2.375 (S) 0.125/2.375 (S)

Amoxicillin-Clavulanic acid 128/64 (R) 128/64 (R) 128/64 (R) 128/64 (R) 4/2 (S) 8/4 (S)

Cefepime 32 (R) 16 (R) 32 (R) 16 (R) 0.06 (S) 0.06 (S)

Tigecycline 0.5 (S) 0.25 (S) 8 (R) 0.25 (S) 0.5 (S) 0.25 (S)

Polymyxin B 1 (S) 1 (S) 1 (S) 0.5 (S) 1 (S) 1 (S)
f

R, resistant; S, susceptible; I, intermediate.
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A B

C

FIGURE 1

Three conjugative plasmids pYQ13422-SFO-1 (A) and pYQ13530-SFO-1 (B) and pYQ13422-IMP-4 (C). AR (ARGs), acquired antibiotic resistance
determinant genes; VF, virulence factors.
TABLE 2 Genome information and acquired antibiotic resistance genes of E. hormaechei YQ13422hy and YQ13530hy.

Genome Size
(bp)

G + C (%) Typing Resistance gene

YQ13422hy

Chromosome 4,570,859 55.72% ST51 fosA, blaACT-7

Plasmids

pYQ13422hy-SFO-
1

295,136 47.62% IncHI2/
2A

aac(6’)-IIc, aac(3)-IId, ere(A), mph(A), qnrB4, blaSHV-12, blaDHA-1, blaTEM-1B, blaSFO-1, sul1, tet(D), qacE,
catA2

pYQ13422hy-2 60,348 42.47% undefined

pYQ13422hy-IMP-
4

52,492 50.85% IncN qnrS1, blaIMP-4

pYQ13422-3 4,995bp 51.73% undefined /

YQ13530hy

Chromosome 4,571,686 55.73% ST51 fosA, blaACT-7

Plasmids

pYQ13530hy-SFO-
1

268,722 46.72% IncHI2/
2A

aac(6’)-IIc, aac(3)-IId, ere(A),mph(A), qnrB4, sul1, blaSFO-1, blaTEM-1B, qacE

pYQ13530hy-2 60,311 42.45% undefined /

pYQ13530hy-IMP-
4

52,492 50.85% IncN qnrS1, blaIMP-4

pYQ13530hy-3 4,995bp 51.73% undefined /
Frontiers in Cellula
r and Infect
ion Microbiolo
gy
 frontiersin.org05

https://doi.org/10.3389/fcimb.2022.998578
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Qiao et al. 10.3389/fcimb.2022.998578
Structural characterization of the
transferable plasmid

The sequence length of plasmid pYQ13422-IMP-4 is

52,492bp, including 92 protein-encoding genes, and its G + C

content is 50.85%. This plasmid carries the blaIMP-4 gene and the

qnrS1 gene, which is known from above. Its plasmid type is IncN

by Plasmidfinder. The most similar plasmids (with 100%

coverage and 99% identities) identified by NCBI blast are as

follows: pIMP-GZ1517 (KT982618.1), pZHH-3 (CP059714),

p128379-IMP (MF344559) and pIMP-GZ1058 (KU051709.1)

from E. coli, and pIMP-HZ1 (KU886034) from K. pneumoniae.

BLAST, Ring Image Generator (BRIG) generated the circular

image of multiple plasmid comparisons, and the results were

demonstrated in Figure 2. The plasmids carry multiple insertion

sequences at different positions, such as IS6100, IS1X2, IS26 and

ISKpn19. Further, we investigated the genetic environment of

the IMP-4 resistance gene and found that it has an IntI1

upstream and also carries a group II intron reverse

transcriptase/maturase gene downstream of it. Comparison

with pIMP-GZ1517 (KT982618.1) and pIMP-GZ1058

(KU051709.1) revealed that an insertion sequence IS26 was

missing on the YQ13422-IMP-4 plasmid (Figure S5). Integron

In823 was identified by INTEGRALL, whose array of gene

cassettes is 5′CS-blaIMP-4. YQ13422-SFO-1 is demonstrated

in Figure 2B.

In addition to analyzing MDR plasmid characteristics, we

also examined mobile elements flanking the resistant genes

(Figure S5). The blaSFO−1 was detected on a Tn3 unit (TnAS3-

IS5075-traX-DTn3-ampR-blaSFO-1-DIS3). According to the

genetic mapping of blaSFO-1, ampR was upstream of blaSFO−1.

Regulation of SFO-1 is carried out by the regulator ampR,

which is inversely oriented upstream (Fernandez et al., 2011).

Tn3 and IS5075 were located upstream of ampR, and

genetic mapping also showed that the transposon Tn3

was interrupted.
Phylogenetic analysis

We downloaded all genomic data of the blaIMP-carrying

ECC isolates (n = 167) from NCBI publicly available data and

performed a phylogenetic analysis with YQ13422hy and

YQ13530hy (Table S1). The data showed that the vast

majority of bacteria carrying the blaIMP resistance genes in the

ECC are E. hormaechei, with 154 strains accounting for 91.12%

of all strains. The results revealed that the blaIMP resistance genes

carried by the ECC were blaIMP-1 (n = 66), blaIMP-4 (n = 77),

blaIMP-8 (n = 8), blaIMP-13 (n = 2), blaIMP-16 (n = 1), blaIMP-26 (n =

3), and blaIMP-70 (n = 12). Of these, 158 strains were isolated

from humans, and only 11 strains had no host information. The

majority of isolates were from Japan, China and Australia. The

source of these strains is almost exclusively clinical, mainly
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blood, urine, sputum, and screening swab. YQ13422hy and

YQ13530hy form a small cluster alone, and a larger cluster

with GCA_015684015, GCA_021165665, GCA_015683815, but

GCA_015684015 and GCA_015683815 are isolated from

Australia, while GCA_021165665.1 is recovered from Ireland.

They are both E. hormaechei and carry the drug resistance gene

blaIMP-4. More specific information is shown in Figure S6.
Discussion

ECC is increasingly being isolated from clinical specimens

and is now one of the world’s most critical nosocomial infectious

pathogens (Bolourchi et al., 2022). The ECC carrying blaIMP has

emerged in six countries, including United Kingdom, the

United States, Ireland, Japan, China, and Australia. Thus, the

prevalence of the blaIMP gene worldwide should be given

sufficient attention.

According to our susceptibility results, strains carrying

blaIMP-4 are intermediate to imipenem and sensitive to

meropenem. There is evidence suggesting that IMP-4 enzyme

has much stronger hydrolytic activity for imipenem than

meropenem, which is consistent with previous findings (Chu

et al., 2001). A considerable amount of literature now exists

suggesting that multiple different species of bacteria carrying

blaIMP-4 are intermediate or sensitive to imipenem and

meropenem (Chu et al., 2001; Lee et al., 2017; Tarabai et al.,

2021; Zhang et al., 2021b). However, the exact mechanism is still

unclear. Intermediate susceptibility to imipenem and

susceptibility to meropenem in strains carrying blaIMP-4

possible mechanism could be: i) related to the activity of efflux

pumps (Zhang et al., 2021b), or (ii) It is possibly that the

organisms had little or no expression of their blaIMP-4 gene

(Chu et al., 2001), or (iii) It seems that IMP enzymes confer

carbapenem resistance only in members of the family

Enterobacteriaceae with concomitant permeability lesions

(Chu et al., 2001).

Plasmids play a major role in the dissemination of antibiotic

resistance genes among Enterobacteriaceae (Huang et al., 2013).

Although there have been many studies on IncN-type plasmids,

few studies have found that IncN-type plasmids carrying the

IMP-4 resistance gene in E. hormaechei. IncN-type plasmids

carrying genes such as blaKPC (Gomez-Simmonds et al., 2022)

and blaNDM (Hirabayashi et al., 2021) have been found in E. coli

(Dorr et al., 2022) and Citrobacter (Yao et al., 2021). Also, a lot of

IncN bla IMP-4-carrying plasmids were described in

Enterobacterales, including one study showing the isolation of

Klebsiella pneumoniae carrying an IncN-type plasmid

with blaKPC-2 from dogs (Sellera et al., 2021). Wang and

colleagues have already reported that an IncN ST7 plasmid

carrying blaIMP-4 is disseminated in a variety of enterobacterial

species originating from patients with epidemiological links in

remote areas of China (Wang et al., 2017). The plasmids
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carrying the blaIMP-4 gene of YQ13422hy and YQ13530hy are

entirely identical. Besides, it’s worth noting that we collected

these two bacteria from different patients in the same ward at

different times in the same hospital. In addition, based on the

INTEGRALL database, blaIMP-4 is located on a class 1 integron

In823, which is rare in E. hormaechei, with the array of

gene cassettes 5′CS-blaIMP-4. It has become a consensus that

the proliferation of integrons has exacerbated the prevalence
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of drug-resistant genes, especially class 1 integrons (Souque

et al., 2021). The 3′CS of most class I integrons include three

open reading frames (ORFs): sulfa resistance gene (sul1),

quaternary ammonium compound and ethidium bromide

tolerance gene (qacED1) and an ORF of unknown function.

However, unlike the classical class 1 integron, the 3’CS of the

class 1 integron of YQ13422-IMP-4, sul1 and qacED1 was

not found.
A

B

FIGURE 2

Genomic analyses of plasmid pYQ13422-IMP-4 (A) and pYQ13422-SFO-1 (B). The comparative plasmid circular map of pYQ13422-IMP-4 and
pYQ13422-SFO-1, generated using BLAST Ring Image Generator (BRIG), shows the genes and their locations.
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Meanwhile, we confirmed the presence of a transposon

TnAS3 carrying the blaSFO-1 gene, which belongs to the

transposon family Tn3. Studies on the Tn3 family of

transposons have been relatively extensive. Previous studies

indicate that the most characteristic resolvases of the Tn3

transposon family are members of the serine recombinase (S

recombinase) family, but rarely are members of the tyrosine

recombinase (Y recombinase) family (Nicolas et al., 2015). The

plasmid YQ13422hy-SFO-1 carries tyrosine recombinase xerC.

Meanwhile, through our study on the structure of the YQ13422-

IMP-4 plasmid and comparative analysis with other plasmids,

we found that the blaIMP-4 genes all contain a group II intron

reverse transcriptase/maturase downstream, and speculated that

this gene might be associated with the transfer and spread of

blaIMP-4. Compared with plasmids pIMP-GZ1517 (KT982618)

and pIMP-GZ1517 (KU051709), pYQ13422-IMP-4 and pZHH-

3 (CP059714) have no insert sequence IS26, which suggests that

IntI1 can transfer blaIMP-4 independently and IS26 may not be

the critical gene for blaIMP-4 gene transfer. In pIMP-GZ1517

(KT982618) and pIMP-GZ1517 (KU051709), the IntI1 gene was

interrupted by an IS26 element, but blaIMP-4 could still be

transferred. We believed that the truncated IntI1 was out of its

function, and the transfer was achieved by IS26. We also found

that p128379-IMP does not have the integrase IntI1, but

contains IS26. We discovered the entire complete conjugative

modules on the plasmids pYQ13422-IMP-4, pYQ13422-SFO-1

and pYQ13530-SFO-1.

The studies on blaIMP-4 in E. hormaechei are rare worldwide,

with significant differences between countries. A prospective

cohort study (Roberts et al., 2020a) in Australia showed that the

primary ST type of ECC carrying blaIMP-4 was ST90, and the

plasmid carrying blaIMP-4 was IncHI2-type. Currently, blaIMP-4

is Australia’s most common resistance gene (Sidjabat et al.,

2015), and our phylogenetic analysis based on published data

from NCBI confirmed this. Another study (Roberts et al., 2020b)

also supported a similar view. Furthermore, we found that all the

integrons of E. hormaechei carrying blaIMP-4 in the published

studies rarely contain In823. This further indicates that the

context of the blaIMP-4 gene may be different in China.

In China, few reports described the detection of blaIMP-4

gene in E. hormaechei (Chen et al., 2022). Kai Zhou et al. found a

strain of E. hormaechei of ST418 carrying blaNDM-1,mcr-9.1, and

blaIMP-4 (Zhou et al., 2017). According to its research, the

plasmid carrying blaIMP-4 was IncHI2-type, which is consistent

with the global trend. The blaSFO-1 gene is not routinely

monitored, but it could be an important weapon against

antibiotics. So, the coexistence of blaSFO-1 and other antibiotic

resistance genes should not be ignored. A previous study

reported the co-producing of SFO-1 and IMP-4 in Klebsiella

pneumoniae clinical isolate (Zhou et al., 2017). Moreover, in our

work, we not only found the co-producing of SFO-1 and IMP-4

in E. hormaechei, but also found they are located at two different

transferable plasmids. Antibiotic resistance may be increased by
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the presence of blaSFO-1. The research of AST results on IMP-

producing ECC (Hickey et al., 2021) also suggested that IMP

metalloenzymes production in ECC infections is serious, and

our work also validated the study. E. hormaechei carrying the

blaIMP-4 gene spread rapidly, with enhanced drug resistance and

changes in the genetic environment. Therefore, the coexistence

of blaSFO-1 and blaIMP-4 undoubtedly complicates the treatment

of E. hormaechei infections. The limitation of our work is that

only two samples were studied, and there were no more samples

to further elaborate on the prevalence of IncN-plasmid carrying

IMP-4 in E. hormaechei.
Conclusion

Our study found the co-production of IMP-4 and SFO-1 in

E. hormaechei. Besides, it revealed the IncN-type plasmid

carrying blaIMP-4 in E. hormaechei, which indicated the

potential horizontal transformation of ARGs. In conclusion,

our work supplemented the studies of E. hormaechei carrying

blaIMP-4 and blaSFO-1 in China, and also suggested that focusing

on E. hormaechei will be important in future studies.
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SUPPLEMENTARY FIGURE 1

Plasmid profiles of (E) hormaechei YQ13422hyh and YQ13530hy. (A)
Plasmid size determination by S1-PFGE, with Salmonella enterica

serotype Braenderup H9812 as the size marker. (B) Southern blotting
hybridization with an IMP-4-specific probe.
SUPPLEMENTARY FIGURE 2

The ANI analysis between YQ13422hy and YQ13530hy showed that there

is a high level of similarity between the two genomes.
SUPPLEMENTARY FIGURE 3

Genomic analyses of plasmid pYQ13422-IMP-4. The comparative plasmid

circular map of pYQ13422-IMP-4 generated using BLAST Ring Image
Generator (BRIG), shows the genes and their locations.
SUPPLEMENTARY FIGURE 4

YQ13422hy and YQ13530hy ‘s genomes contain a wealth of information.
SUPPLEMENTARY FIGURE 5

Genetic context of blaIMP-4 on pYQ13422-IMP-4 and blaSFO-1 on
pYQ13422-SFO-1. Genes are denoted by arrows. Genes, mobile elements,

and other features are colored based on their functional classification.
SUPPLEMENTARY FIGURE 6

The phylogenetic tree of 167 strains ECC based on the blaIMP resistance

genes, generated by kSNP3.0 plus E. hormaechei YQ13422hy (Biosample
SAMN28918927) and YQ13530hy (Biosample SAMN28919657). The

sources of strains are identified as clinical. We used different colors to
represent different meanings. The seven circles around the phylogenetic

tree indicate the species (inner circle), ST type, IMP-type, host, location,

year, and source (outer circle) of these strains. We marked YQ13422hy
and YQ13530hy in red.
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