
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Mathieu Coureuil,
Institut National de la Santé et de la
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A potential new pathway
for heparin treatment of
sepsis-induced lung injury:
inhibition of pulmonary
endothelial cell pyroptosis by
blocking hMGB1-LPS-induced
caspase-11 activation

Rui Yang and Xiaojuan Zhang*

Department of Critical Care Medicine, the First Hospital of China Medical University,
Shenyang, China
Sepsis is a significant cause of mortality in critically ill patients. Acute lung injury

(ALI) is a leading cause of death in these patients. Endothelial cells exposed to

the bacterial endotoxin lipopolysaccharide (LPS) can progress into pyroptosis, a

programmed lysis of cell death triggered by inflammatory caspases. It is

characterized by lytic cell death induced by the binding of intracellular LPS to

caspases 4/5 in human cells and caspase-11 in mouse cells. In mice,caspase-

11-dependent pyroptosis plays an important role in endotoxemia. HMGB1

released into the plasma binds to LPS and is internalized into lysosomes in

endothelial cells via the advanced glycation end product receptor. In the acidic

lysosomal environment, HMGB1 permeates the phospholipid bilayer, which is

followed by the leakage of LPS into the cytoplasm and the activation of

caspase-11. Heparin is an anticoagulant widely applied in the treatment of

thrombotic disease. Previous studies have found that heparin could block

caspase-11-dependent inflammatory reactions, decrease sepsis-related

mortality, and reduce ALI, independent of its anticoagulant activity. Heparin

or modified heparin with no anticoagulant property could inhibit the alarmin

HMGB1-LPS interactions, minimize LPS entry into the cytoplasm, and thus

blocking caspase-11 activation. Heparin has been studied in septic ALI, but the

regulatory mechanism of pulmonary endothelial cell pyroptosis is still unclear.

In this paper, we discuss the potential novel role of heparin in the treatment of

septic ALI from the unique mechanism of pulmonary endothelial

cell pyroptosis.
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Introduction

Sepsis is a significant cause of mortality. Acute lung injury

(ALI) is a leading cause of death in critically ill patients with

sepsis. Acute respiratory distress syndrome (ARDS) is the most

serious form of ALI (Ashbaugh et al., 1967; Matthay et al., 2019).

Its in-hospital mortality rate is approximately 35% to 46%

(Bellani et al., 2016; Sauer et al., 2021; Peukert et al., 2021).

During sepsis, infiltration of inflammatory cells in the lung can

lead to irreversible damage, which finally develops into ALI or

even ARDS (Kumar and Chhibber, 2011). Both direct lung

epithelial injury and indirect endothelial cell injury can cause

sepsis-related ALI/ARDS (Englert et al., 2019; Huppert et al.,

2019). Pro-inflammatory cytokines can activate the pulmonary

endothelial cells with subsequent increased expressions of e-

selectin or endothelium-endothelial adhesion molecule-1

(ELam-1), or leucocyte adhesion molecule-2 (lecMA-2), which

further induces neutrophil infiltration. This, together with the

extensive endothelial cell death and disintegration of endothelial

adhesion junctions, can contribute to pulmonary endothelial

barrier disruption and the development of ALI (Mehta and

Malik, 2006; Gong et al., 2015; Matthay et al., 2019).

Recent studies suggested that the caspase-11 signaling pathway

participates in the pathogenesis of sepsis (Kayagaki et al., 2011;

Kayagaki et al., 2015; Cheng et al., 2017; Deng et al., 2018). Caspase-

11 can be found in various cell types, including pulmonary

endothelial cells and macrophages (Cheng et al., 2017; Deng

et al., 2018). Caspase-11 activated by the intracellular endotoxin

lipopolysaccharide (LPS) cleaves Gasdermin D (GSDMD) into

polypeptides to form a nanopore on the cytoplasmic membrane

(Kayagaki et al., 2015; He et al., 2015; Shi et al., 2015; Ding et al.,

2016). This process not only results in a lysis form of programmed

cell death named pyroptosis but also activates living cells to secret

interleukin (IL)-1 (He et al., 2015; Ding et al., 2016; Zanoni et al.,

2016; Evavold et al., 2018). ECs demonstrated lytic cell death,

activation of Gsdmd, and release of the proinflammatory cytokine

IL-1b, processes that are dependent on caspase-4/5 in human ECs

and caspase-11 in mouse Ecs (Cheng et al., 2017).

Activations of caspase-11 and GSDMD are facilitated by

high mobility group box 1 (HMGB1). HMGB1 is a 25 kD

nuclear protein found in all cell types and is highly conserved

in mammals. The intracellular functions of HMGB1 include

gene transcription and chromatin repair regulation (Müller

et al., 2001; Lotze and Tracey, 2005; Davalos et al., 2013).

Extracellular HMGB1 carries the characteristic alarm protein

functions to activate innate immunity, and HMGB1 can be

actively or passively released after cell death during

endotoxemia or sepsis. During an infection, LPS triggers

hepatocytes to release HMGB1 into the circulation (Deng

et al., 2018). The plasma HMGB1 attaches to extracellular LPS

to form advanced glycation end products (RAGE) in the

cytoplasm, which induces lysosome rupture by receptor-

mediated internalization of LPS. HMGB1 then causes
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lysosomal rupture and ultimately activates cleavage of caspase-

11 and GSDMD (Deng et al., 2018). Animal studies have shown

that either deficiency in caspase-11, loss of GSDMD, neutralizing

extracellular HMGB1, or deletion of HMGB1 in hepatocytes can

improve survival in experimental septic models (Cheng et al.,

2017; Deng et al., 2018).

Heparin was discovered in 1916 and is traditionally used as

an anticoagulant in the treatment of thrombotic diseases, such as

various venous thromboembolism (Hirsh and Levine, 1992; Li

and Ma, 2017). Heparin can bind to the lysine residues in

antithrombin and induce irreversible conformational changes

in arginine reaction sites (Rezaie et al., 2004; Yang et al., 2004),

which leads to a more than 100-fold increase in antithrombin

activity (Chuang et al., 2001; Rezaie et al., 2004). In addition to

its anticoagulant function, heparin was found to have other

properties, such as protease modulation and anti-complement

and anti-inflammatory activities (Davidson et al., 2002;

Hoppensteadt et al., 2008). Heparin therapy has been shown

to improve the prognosis of sepsis and alleviate lung injury by

inhibiting caspase-11 signaling (Cornet et al., 2007; Li et al.,

2011; Liu et al., 2014; Wang et al., 2014; Zarychanski et al., 2015;

Fan et al., 2016; Li and Ma, 2017; Liu et al., 2019; Tang et al.,

2021). This article proposes a mechanism for how heparin

alleviates sepsis-induced ALI from the perspective of

pulmonary endothelial cell pyroptosis.
Endothelial pyroptosis
underlies LPS-induced ALI

The pathophysiology of lung injury mainly includes

inflammation disorder and increased permeability of the lung

endothelium and epithelium. In ARDS, the endothelium

permeability is increased allowing movement of fluid and

protein through the pulmonary vascular endothelium, leading

to interstitial edema. Increased permeability of neutrophils and

red blood cells (causing them to accumulate in the alveolar

space) is a hallmark of ARDS (Matthay et al., 2019; Lindsey et al.,

2019; Gerber et al., 2020). Cardiac outflow goes directly into the

lungs and the pulmonary tissues. As a result, pulmonary

endothelial cells are constantly the subject of injury from

circulating pathogens and bacterial endotoxins such as LPS.

This is essential for the development of ALI (Maniatis and

Orfanos, 2008). Pulmonary vascular permeability and

leukocyte recruitment are maintained by an intact endothelial

barrier (Mehta and Malik, 2006; Nourshargh and Alon, 2014).

Thus, disruption of the endothelial barrier can lead to pre-

clotting pathway activation, pro-inflammatory cytokine release

(such as IL-1b), neutrophil influx, and tissue edema (Mehta and

Malik, 2006). During inflammation, there is an adaptive increase

in endothelial permeability increase to allow white blood cell

chemotaxis into the lung to overcome the infection. Severe

uncontrolled infection can have massive inflammatory
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reactions and endothelial barrier destruction, which eventually

leads to death in patients with septic ALI. Recent evidence

suggests that endothelial injury might be related to pyroptosis

of endothelial cells (Cheng et al., 2017).

Pyroptosis, apoptosis, and necrosis are different types of

programmed cell death. Each type of programmed cell death is

regulated by a unique individual set of host proteins that mediate

multiple biological outcomes (Vanden Berghe et al., 2014;

Blander, 2014; Chan et al., 2015; Wallach et al., 2016; Man and

Kanneganti, 2016; Vande Walle and Lamkanfi, 2016; Weinlich

et al., 2017). Caspase activation participates in both apoptosis and

pyroptosis. Apoptosis starts with initiator caspases-2, -8, -9, and

-10 and ends with executioner caspases-3, -6, and -7 (Fink and

Cookson, 2005). Different from apoptosis, pyroptosis is an

inflammatory caspase-induced form of necrosis and

inflammatory programmed cell death (Vande Walle and

Lamkanfi, 2016). Pyroptosis is also distinct from another

necrotic and inflammatory form of programmed cell death

called necroptosis, because the execution of pyroptosis requires

inflammatory caspases (Vercammen et al., 1998; Holler et al.,

2000; Weinlich et al., 2017). The role of inflammatory caspases-4/

5/11 in the cytoplasmic LPS signal transduction pathway and

pyroptosis has been studied mostly in dendritic cells and

macrophages (Miao et al., 2011; Kayagaki et al., 2013; Aachoui

et al., 2013; Kayagaki et al., 2015; Shi et al., 2015; Zanoni et al.,

2016). Furthermore,endothelial cells could have highly sensitive

and complex intracellular LPS induction mechanisms that could

lead to caspase-4/5/11-dependent endothelial lysis (Shi et al., 2014;

Shi et al., 2015). Characteristic presentations include plasma

membrane rupture and LDH release, maturation, release of Il-

1b, and cleavage of perforin GSDMD by constriction effects

(Kayagaki et al., 2015; Shi et al., 2015; Ding et al., 2016; Liu

et al., 2016), which causes extensive pulmonary endothelial death

and damages the endothelial barrier to induce ALI.
Mechanism of endothelial
cell pyroptosis

Caspase-11 mediates pyroptosis

In Gram-negative bacterial infections, bacterial lysis leads to

septic cascades that release large amounts of endotoxin (LPS) into

the circulation (Baumgartner et al., 1985). The typical mechanism

by which mammalian host cells detect LPS is achieved by Toll-like

receptor 4 (TLR4) on the cell surface (Medzhitov et al., 1997;

Poltorak et al., 1998). However, recent studies in macrophages

suggested that another LPS-mediated intracellular pathway might

play a role in the development of septic shock, namely triggering

pyroptosis (Kayagaki et al., 2013; Hagar et al., 2013). The
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endotoxin LPS could damage the cell membrane and bind to

caspase-4/5/11 to activate macrophage pyroptosis, leading to

rapid cell lysis (Kayagaki et al., 2013; Hagar et al., 2013;

Kayagaki et al., 2015; Jorgensen and Miao, 2015).

Caspase-11 is an intracellular LPS receptor that mediates

pyroptosis. Sepsis-related mortality induced by endotoxemia is

largely due to caspase-11 activation (Wang et al., 1998; Kayagaki

et al., 2011; Kayagaki et al., 2013; Hagar et al., 2013; Kayagaki

et al., 2015), which can cleave GSDMD to unleash active

membrane pore-forming peptides. The latter can cause cell

pyroptosis and release the leukotriene-like LTB4 via

cyclooxygenase-1 and Alarmins, including IL-1a (Hagar et al.,

2013). Studies have shown improved survival in endotoxemia

mice with Gasdmd deletion or cyclooxyg (Kayagaki et al., 2013;

Hagar et al., 2013; Kayagaki et al., 2015; Jorgensen and Miao,

2015)enase-1 (COX-1) inhibition (Hagar et al., 2013; Kayagaki

et al., 2015). Caspase-11-mediated pyroptosis could trigger the

local immune defense and disrupt intracellular niches by

promoting vascular permeability and releasing chemokines

(Kayagaki et al., 2011; Kayagaki et al., 2013; Aachoui et al.,

2013; Hagar et al., 2013; Shi et al., 2014).

Caspase-11-dependent lysis of GSDMD and subsequent

release of active membrane pore-forming peptides results in

cell swelling, lysis, and death (Shi et al., 2015; Jorgensen and

Miao, 2015; Broz, 2015; de Gassart and Martinon, 2015; Ding

et al., 2016; Liu et al., 2016; Sborgi et al., 2016; Aglietti et al., 2016;

Yuan et al., 2016). Microvesicles containing LPS could be shed

from the gram-negative bacteria and fuse with the host cellular

membrane to release LPS intracellularly and activate

inflammatory cysteine signaling and cell pyroptosis (Vanaja

et al., 2016; Man et al., 2016). In mice, endothelial cell

pyroptosis is characterized by the caspase-11-dependent cell

lysis, GSDMD activation, and release of pro-inflammatory

cytokine IL-1b. LPS enters the endothelial cytoplasm through

the bacterial microvesicles or destructed inner cortical

membrane, subsequently activating caspase-4/5/11 to trigger

cell pyroptosis through GSDMD lysis. Extensive endothelial

cell lysis results in massive destruction of the pulmonary

endothelial barrier (Cheng et al., 2017). Pro-inflammatory

cytokine release, leukocyte influx, and pulmonary edema

emerge as characteristic signs of ALI (Aird, 2003; Andonegui

et al., 2003; Matthay et al., 2019) (Figure 1). Interestingly,

although endothelial cells could also undergo pyroptosis

without activated caspase-11 expression, this required long-

term exposure to LPS (Cheng et al., 2017).

Extracellular LPS could trigger pyroptosis of endothelial cells

and immune cells only after LPS binds to intracellular caspase-

11 (Kayagaki et al., 2013; Aachoui et al., 2013; Hagar et al., 2013;

Cheng et al., 2017). Activation of extracellular LPS enhances the

expression of caspase-11 in mouse endothelial cells and similarly
frontiersin.org
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enhances the expression of caspase-4 and -5 in human

endothelial cells, which has been shown to increase the

binding of intracellular LPS to these inflammatory caspases

(Cheng et al., 2017).
HMGB1 activates caspase - 11

HMGB1 is named due to its high electrophoretic mobility in

an agarose and polyacrylamide gel (Klune et al., 2008). It is a

highly conserved and unanimously expressed nuclear protein that

participates in the nucleosome structure maintenance and the

regulation process of DNA replication, recombination,

transcription, and repair (Travers, 2003). HMGB1 is released

extracellularly after cell activation, injury, stress, or death and

functions as a transporter to promote inflammation (Andersson

et al., 2018; Qu et al., 2019). In 1999, it was first reported that

HMGB1 could act as a proinflammatory cytokine to stimulate

macrophages, which were activated by LPS in sepsis (Wang et al.,

1999). Subsequently, it has been reported that HMGB1 could be

actively secreted by natural killer cells, monocytes, platelets,

endothelial cells, and dendritic cells, and passively released from

the nuclei of damaged/necrotic cells during infection. Studies have

shown that, after LPS stimulation, HMGB1 was secreted into the

extracellular space where it bound to its receptors, including

TLR2, TLR4, and RAGE, to induce the expressions of cytokines,

adhesion molecules, and chemokines, which further exacerbated

the inflammation and injury (Wolfson et al., 2011; Qu et al., 2019).

Deletion of the HMGB1 gene or neutralizing circulation of

HMGB1 has been shown to have a protective effect against fatal

endotoxemia and sepsis (Wang et al., 1999; Wang et al., 2004; Qin
Frontiers in Cellular and Infection Microbiology 04
et al., 2006; Rittirsch et al., 2008; Lamkanfi et al., 2010; Andersson

and Tracey, 2011).

During the signal cascade in sepsis, HMGB1 utilizes a variety

of membrane receptors. Its bindings to RAGE and TLR4 occur at

its residues 150-183 and 89-108, respectively (Huttunen et al.,

2002; Yang et al., 2010). Bioactivity of HMGB1 depends on the

redox state of its three cysteine residues (Kazama et al., 2008; Lu

et al., 2012). The disulfide isoforms could activate cytokine

production and TLR4, while the fully reduced isoforms could

not (Lu et al., 2012).

Recent studies have shown that LPS relies on HMGB1 and

RAGE to assist cell transportation. These molecules could

facilitate LPS leakage into the cytoplasm with subsequent

activation of the key receptor caspase-11 (Deng et al., 2018).

In sepsis, the circulating pathogen-associated molecular patterns

(PAMPs), including LPS, can trigger hepatocytes to release

HMGB1 into the bloodstream. Extracellular LPS can physically

bind to HMGB1, and the HMGB1-LPS complex can be

internalized into lysosomes within endothelial cells and

macrophages via RAGE, disrupting lysosome stability via

HMGB1 (Deng et al., 2018). HMGB1 has a unique ability to

act as a detergent in the lysosomal membranes owing to the

acidic conditions of the lysosomal environment (Xu et al., 2014;

Deng et al., 2018; Yuan et al., 2020). Thus, partner molecules

transported by HMGB1 will avoid the expected degradation in

the lysosome and instead leak into the cytoplasm, reaching

homologous cytoplasmic receptors and potentiating the pro-

inflammatory response. HMGB1 then penetrates directly into

the phospholipid bilayer of the lysosome. Using the liposome

leakage test and whole-cell patch clamp analysis, it was found

that the phospholipid bilayer penetrating ability of HMGB1 was
FIGURE 1

Extracellular LPS enters the endothelial cytoplasm through the cell membrane, and then triggers caspase-11-dependent endothelial cell
pyroptosis and damages the pulmonary endothelial barrier, resulting in pulmonary edema, proinflammatory cytokine release, fluid and protein
leakage, and massive influx of leukocytes.
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enhanced under acidic conditions, demonstrating the pH-

dependent ability of HMGB1 to induce lysosomal rupture in

organelles. In addition, it also explained the reason why HMGB1

does not cause cytoplasm or nuclear membrane damages under

normal physiological conditions (Deng et al., 2018). These effects

of HMGB1 in the lysosome result in the leakage of LPS into the

cytoplasm and activation of caspase-11 and pulmonary

endothelial cell pyroptosis (Figure 2).

Both myeloid and endothelial cells can express RAGE and

caspase-11 (Hofmann et al., 1999; Liliensiek et al., 2004).

Endothelial caspase-11 participates in pyroptosis induced by

endotoxemia (Cheng et al., 2017). Reduced HMGB1 release from

hepatocytes, RAGE deficiency, and extracellular HMGB1

neutralization might prevent caspase-11-dependent pyroptosis

during endotoxemia and bacterial sepsis (Deng et al., 2018).

Interestingly, another study reported that HMGB1 alone could

activate ASC-dependent pyroptosis, which was independent of the

caspase-11 pathway (Yuan et al., 2020). HMGB1 could also damage

the lysosomes and activate the NLRP3 inflammasome

independently from the caspase-11 pathway in the macrophages

with TLR agonist primers. This response could be the result of

HMGB1 oxidation that is followed by the intramolecular bond

formation between cysteine 23 and cysteine 45, which causes TLR4-

MD2-mediated HMGB1 mobilization to function as a trigger for

NLRP3 inflammasome activation (Hornung et al., 2008; Yang et al.,

2015; Frank et al., 2016). However, in other studies, HMGB1 alone
Frontiers in Cellular and Infection Microbiology 05
could not induce pyroptosis. The different redox states of the

recombinant HMGB1 protein in these studies might explain the

different experimental results (Deng et al., 2018).

Heparin prevents pyroptosis of EC

Previous studies have found that heparin could attenuate the

caspase-11-dependent inflammatory reactions and reduce mortality

from sepsis in mice. Both heparin administration and caspase-11

deletion have been shown to reduce lung injury in mice (Tang et al.,

2021). Most ligands bind to heparin/heparan sulfate through

electrostatic interactions of the positively charged arginine and

lysine residues in the ligand with the negatively charged uronic

acids and sulfate groups in heparin (Xu et al., 2011). HMGB1 has

many basic residues: eight arginine and 43 lysine residues, which

altogether account for 24% of HMGB1 amino acids. Among them,

six basic residues are important for heparan sulfate binding (Xu

et al., 2011). Arg97, Lys87, Lys88, Lys90, and Lys96 residues are

within the latter part of the long ring segment that connects A- and

B-boxes. As a separate residue on the last spiral of the B-box, Lys150

also participates in heparin-ligand binding (Xu et al., 2011).

Heparin can bind to HMGB1 with a high affinity and induce

spatial conformational changes in the latter (Ling et al., 2011). These

conformational changes in HMGB1 might lower its binding affinity

to its receptors. In addition, some studies demonstrated that

HMGB1 alone would not cause inflammatory reactions. Purified
FIGURE 2

Extracellular HMGB1 and LPS form complexes. These complexes bind to the RAGE expressed by pulmonary endothelial cells, which is followed
by the internalization of the HMGB1-LPS complex into lysosomes. Under acidic conditions, HMGB1 acts as a detergent to destroy the lysosome
membrane, allowing LPS to enter the cytoplasm and activate caspase-11. Subsequently, activated caspase-11 mediates GSDMD lysis to form
pores on the cell membrane, ultimately leading to pulmonary endothelial cell pyroptosis. Heparin has a high affinity for HMGB1, which can
compete with the formation of HMGB1-LPS complexes and prevent pulmonary endothelial cell pyroptosis upstream of caspase-11 activation.
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rHMGB1 could only induce limited cytokine secretions

(Rouhiainen et al., 2007; Sha et al., 2008; Youn et al., 2008;

Hreggvidsdottir et al., 2009). HMGB1 binds with other mediators,

such as IL-1B, DNA, LPS, or nucleosomes, to form complexes

associated with inflammation (Sha et al., 2008). HMGB1 also has

the allosteric effects to change the conformation of cytokines or their

interactions with cytokine receptors (Bianchi, 2009). Tang et al.

found that heparin could bind to HMGB1 and block hMGB1-LPS

interactions (Tang et al., 2021). In a mouse model of sepsis, it was

found that heparin intervention could minimize IL-1a and IL-1b
release, as well as GSDMD distributions in the lungs after LPS

stimulation (Tang et al., 2021). Meanwhile, in a clinical study of 20

sepsis patients who received heparin and 21 sepsis patients who did

not, activation of caspase-4 (the human homologue of caspase-11)

was measured (Tang et al., 2021). Markers of caspase-4 activation,

including serum levels of IL-1a and IL-1b, were significantly lower
in patients who received the heparin treatment compared to those

who did not (Tang et al., 2021). RAGE has been shown to be highly

expressed in endothelial cells and binds to HMGB1 and other

ligands, such as AGEs, S100 proteins, and amyloid proteins, via its

two N-terminal IgG-like domains (Basta, 2008; Yan et al., 2010).

RAGE has also been reported to bind to heparin (Xu et al., 2011),

but this mechanism needs to be further investigated. In another

study, heparin sulfate, a chemically modified heparin, did not

demonstrate any anticoagulant properties, indicating that heparin

sulfate could dose-dependently block caspase-11 as a non-

anticoagulant heparin (NAH) (Tang et al., 2021). As such,

heparin may block caspase-11 by a mechanism independent of its

anticoagulant properties, by which it can inhibit pyroptosis of

pulmonary endothelial cells and ameliorate ALI during the

sepsis (Figure 2).
Conclusion and summary

In pulmonary endothelial cells, there is a highly sensitive and

complex intracellular LPS-sensing mechanism that leads to

caspase-4/5/11 dependent pyroptosis (Cheng et al., 2017),

which is characterized by plasma membrane rupture and LDH

release, IL-1b maturation and secretion, and division of

constriction-effector perforin GSDMD (Shi et al., 2014;

Kayagaki et al., 2015; Shi et al., 2015; Ding et al., 2016).

Pyroptosis is an effective method of eliminating the

intracellular bacterial niche and releasing inflammatory

mediators such as IL-1b, while retaining uninfected adjacent

cells (Aachoui et al., 2013; Hagar et al., 2013; Maltez et al., 2015;

Jorgensen et al., 2016). Therefore, the innate immune response

induced by caspases-1/4/5/11 is different from the typical

inflammasome activation pathway mediated through the cell

surface TLR4 (Kayagaki et al., 2011; Miao et al., 2011; Kayagaki

et al., 2013; Man and Kanneganti, 2016; Broz and Dixit, 2016).
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On the other hand, In the study of mouse sepsis model, caspase-

11 may also be immunopathologic (Napier et al., 2016). Caspase-

11 can be activated when LPS is delivered intracellularly into the

target cells, such as endothelial cells and macrophages, by

HMGB1 secreted by hepatocytes or microvesicles released by

bacteria (Vanaja et al., 2016; Deng et al., 2018). This leads to

immune cell death with subsequent endothelial barrier

disruptions (Vanaja et al., 2016; Cheng et al., 2017; Deng et al.,

2018). Endothelial cell-specific deletion of caspase-11 was shown

to ameliorate LPS-dependent pulmonary vascular endothelial

permeability and significantly improve survival in both

endotoxemia models and cecal ligation and puncture-induced

ALI models of multi-microbial sepsis (Cheng et al., 2017).

Activation of extracellular LPS enhances the expression of

caspase-11 in mouse endothelial cells and similarly enhances

the expression of caspase-4 and -5 in human endothelial cells

(Cheng et al., 2017).

Heparin treatment has been found to block caspase-11-

dependent inflammatory reactions and is an effective inhibitor

in the caspase-11 pathway during sepsis (Tang et al., 2021). In

animal models of fatal endotoxemia or severe sepsis, heparin

inhibited the LPS cytoplasmic transmission by blocking the

hMGB1-LPS interactions and decreasing the heparinase-

induced glycocalygeal degradation in macrophages, thereby

attenuating the overactivation of this harmful cascade (Tang

et al., 2021). In the mouse experiment,it was found that heparin

could block caspase-11 by a mechanism unrelated to its

anticoagulant activity, thereby inhibiting cell pyroptosis (Tang

et al., 2021). Meanwhile, in the clinical study, markers of

caspase-4 activation, including serum levels of IL-1a and IL-

1b, were significantly lower in patients who received the heparin

treatment compared to those who did not (Tang et al., 2021). A

study has also showed that nonanticoagulant heparin, purified

from clinical grade heparin, binds histones and prevents histone-

mediated cytotoxicity in vitro and reduces mortality from sterile

inflammation and sepsis in mouse models without increasing the

risk of bleeding (Wildhagen et al., 2014). As such this evidence

suggests that low dose heparin or modified heparin without

anticoagulant properties could be used to achieve a therapeutic

effect and reduce the risk of bleeding. This will mean that we find

a solution to the conflict between heparin treatment of sepsis

ALI and its side effects. This is the purpose of this

review.However, other studies show that heparin treatment

does not significantly reduce the 28-day mortality of septic

patients (Jaimes et al., 2009; Li and Ma, 2017). The

discrepancy between these studies might be due to the

difference in infected pathogens.Gram-positive sepsis causes

death through mechanisms distinct from that of Gram-

negative sepsis (Popescu et al., 2018).Thus,further research is

needed to better understand this potential role of heparin in

treatment of sepsis.
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