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How Mycobacterium
tuberculosis drug resistance
has shaped anti-tubercular
drug discovery
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Center for Global Infectious Disease Research, Seattle Children’s Research Institute,
Seattle, WA, United States
Drug resistance is an increasing problem for the treatment of tuberculosis. The

prevalence of clinical isolates with pre-existing resistance needs to be

considered in any drug discovery program. Non-specific mechanisms of

resistance such as increased efflux or decreased permeability need to be

considered both in developing individual drug candidates and when

designing novel regimens. We review a number of different approaches to

develop new analogs and drug combinations or improve efficacy of existing

drugs that may overcome or delay the appearance of clinical resistance. We

also discuss the need to fully characterize mechanisms of resistance and cross-

resistance to existing drugs to ensure that novel drugs will be clinically effective.

KEYWORDS

Mycobacterium tuberculosis, antibiotic resistance, drug discovery, antibiotic
tolerance, antibacterial
Introduction

Tuberculosis (TB) remains a major global health problem causing ~1.5 million deaths

in 2020 (World Health Organization, 2021). Treatment of TB is complicated owing to the

unique capacity of the causative bacterium (Mycobacterium tuberculosis), to survive

within the human body. Although the bacilli are unable to replicate in acidic or hypoxic

environments, such as found in the granuloma, M. tuberculosis can persist in these

environments for lengthy periods. Latent TB infection (LTBI), in which the bacilli remain

in the body without clinical symptoms poses a unique problem for the diagnosis and

treatment of TB. In addition, drug resistance is a major problem which can result from

both inherent and acquired resistance mechanisms. Thus TB control programs require

both new drugs to overcome existing resistance. and rapid detection tests for

drug resistance.

Although treatment of TB became possible with the discovery of streptomycin, there are

few antibiotics available for modern use. The major frontline drugs for drug-susceptible TB,
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isoniazid and rifampicin have been supplemented with the recent

addition of the new agents active against drug resistant TB, such as

bedaquiline (a diarylquinolone), delaminid and pretomanid

(nitroimidazoles) and repurposing of linezolid (an

oxazolidinone), but the pipeline is still inadequate (Libardo et al.,

2018; Oh et al., 2021). As for other antibiotics, resistance to

streptomycin was observed very soon after its clinical use. Early

clinical trials demonstrated the utility of combination regimens

(Fox, 1979; Mitchison, 1985; Grosset, 1989) with the additional

advantage that resistance to multiple agents is harder to acquire.

However, given the length of time the frontline agents have been in

use, a rise in drug resistance has been seen for rifampicin and

isoniazid both singly and in combination (multi-drug resistance or

MDR). Extensively drug resistant (XDR) strains are resistant to

rifampicin, isoniazid and a fluoroquinolone.

Drug resistance in TB is largely mediated by chromosomal

mutations, as there are no reports of horizontal gene transfer.

However, there are multiple routes by which the bacilli can

become resistant, not all of which involve mutation of the drug

target. Mutations in the target which reduce or alleviate drug-

binding do occur, as does mutation in the promoter leading to

increased target expression. Drug inactivation, such as with the

beta lactamases that degrade the beta lactams or modifying

enzymes such as acetyl/methyl transferases are another

resistance mechanism reported in M. tuberculosis (Zaunbrecher

et al., 2009; Kurz and Bonomo, 2012). Other mechanisms which

do not involve chromosomal mutation have been noted in vitro

such as mistranslation of proteins leading to phenotypic resistance

to rifampicin (Javid et al., 2014). In addition, changes in drug

uptake or efflux are non-specific processes which can affect

sensitivity to multiple drugs from the same or different chemical

classes. M. tuberculosis has a lipid-rich outer cell wall which

imparts intrinsic resistance by acting as a permeability barrier, and

changes in cell wall composition can affect drug uptake (Jarlier

and Nikaido, 1994). M. tuberculosis also has a variety of efflux

systems which, if up-regulated, can lead to resistance (Rodrigues

et al., 2017). For pro-drugs, such as isoniazid, occurrence of

mutation in the activating enzymes can lead to drug resistance

(Zhang et al., 1992; Zhang and Yew, 2009; Seifert et al., 2015).

Given the variety of resistance mechanisms and the possibility of

resistance to multiple drugs, an evaluation of the resistance

mechanisms for new drugs is an important component of the

drug discovery process, alongside the standard considerations of

pre-existing resistance and resistance frequency.

The need for lengthy treatments (>6 months for drug sensitive

TB) with multiple agents poses issues with adherence that can lead

to the selection of resistant subpopulations during treatment. There

is an urgent need to develop agents with new mechanisms that are

not affected by pre-existing resistance, but also to shorten the

duration of TB treatment to restrict the emergence of resistance.

Thus, drug discovery for TB has been strongly shaped by the

prevalence of existing resistance mechanisms, as well as the rate of

resistance appearing in the clinic.
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Drug discovery for TB has adopted several approaches

which attempt to develop new agents to address the issue of

pre-existing resistance and to the appearance of new resistance

mechanisms. Several approaches have been used including: (i)

Generating analogs which overcome resistance by binding to the

target in a different fashion; (ii) Restoring sensitivity to

antibiotics using booster or adjunct molecules; (iii) Using

combinations to generate new regimens to minimize the

appearance of resistance. We will review recent successes in

these approaches and address some of the additional factors that

should be considered when developing new agents (Table 1).
Development of analogs of
existing drugs

The standard drug regimen for TB has a high success rate for

cure when used with drug sensitive strains. Thus, there has been

a lot of emphasis on developing new analogs of these successful

antibiotics, but which can overcome pre-existing resistance.
New RNA polymerase inhibitors

The DNA-dependent RNA polymerase is the target of the

frontline drug rifampicin. The majority of clinical resistance

results from mutation in a hotspot of 81bp in the coding region

of the target RpoB (Telenti et al., 1993; Mboowa et al., 2014; Zaw,

2018). Mutations in clinical isolates which result in changes in the

hydrogen bonding and van der Waals interaction between RpoB

and rifampicin are associated with clinical resistance (Li et al.,

2021). Knowledge of the binding mechanism can be used to

design novel derivatives which retain binding or to find molecules

that bind to different sites on the RNA polymerase. Other

members of the rifamycin class such as rifampin, rifapentine

and rifabutin have the same pharmacophore which can result in

cross-resistance (Alfarisi et al., 2017; Tiberi et al., 2017; Farhat

et al., 2019). For example, H526C mutations lead to resistance to

both rifampicin and rifabutin (Cavusoglu et al., 2004). Molecules

with alternative binding sites/modes are of interest, for example

fidaxomicin has in vitro activity againstM. tuberculosis and a class

of N-aroyl-N-aryl-phenyl-alaninamides were identified that bind

to RNA polymerase and inhibit M. tuberculosis without cross-

resistance (Lin et al., 2017; Kirsch et al., 2022). Development of

these alternative RNA polymerase inhibitors could supplant

rifampicin in a regimen and overcome clinical resistance.
New InhA inhibitors

Isoniazid is one of the earliest anti-tubercular drugs and

works via inhibition of InhA, a component of FAS-II (fatty acid
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synthase) involved in synthesis of mycolic acids, key cell wall

components. Isoniazid is a prodrug which is activated

intracellularly by the KatG catalase-peroxidase (Zhang et al.,

1992). The activated molecule forms an adduct with NAD(H) at

the active site of the enzyme (Banerjee et al., 1994; Rawat et al.,

2003). There are multiple routes to isoniazid resistance: (i)

mutations in KatG (most commonly S315T) which reduce its

enzymatic activity leading to lack of activation of isoniazid; (ii)

mutations in the target InhA which lead to lack of binding

(Tseng et al., 2015); and (iii) mutations in the promoter region

which lead to increased expression of InhA (Seifert et al., 2015).

A combination of mutations in the promoter and InhA are often

seen clinically with highly resistant strains (Seifert et al., 2015).

In order to generate analogs which overcome resistance, the

development of direct InhA inhibitors which do not require

activation shows promise. Early work on triclosan and its

derivatives confirmed that it was possible to develop

alternative inhibitors for InhA (Armstrong et al., 2020;

Rodriguez et al., 2020; Chetty et al., 2021) and multiple

scaffolds, as well as a natural product, have been identified

which can inhibit InhA (Pan and Tonge, 2012). These newer

analogs generally do not require activation and bind directly to

InhA, thus they can overcome resistance due to KatG and InhA

mutation. A series of hydroxy-pyridones which do not require

activation are active against common isoniazid resistant clinical

strains (Manjunatha and Smith, 2015), as are several classes of

thiadiazoles which inhibit InhA directly (Šink et al., 2015;

Martıńez-Hoyos et al., 2016). In addition, diazaborines which

do not require activation or binding to NADH have been

developed (Xia et al., 2018) which are active against isoniazid

resistant clinical isolates. These also demonstrate good activity

against both replicating and non-replicating bacteria (Flint et al.,

2020) suggesting they might be able both to overcome pre-

existing resistance and shorten therapy by eliminating persistent

organisms. The natural product pyridomycin also targets InhA,

as a competitive binder for NADH and is active against most
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clinically-resistant isolates (Hartkoorn et al., 2012). In addition

to overcoming existing resistance new analogs which do not

require activation would have a lower frequency of resistance, so

drug resistance in the clinic would likely appear more slowly.

This has been demonstrated in animal models, where the

diazborine AN12855 had a lower frequency of resistance in

mice as compared to INH (Robertson 2019).
New gyrase inhibitors

Fluoroquinolones are broad-spectrum antibiotics with

bactericidal activity which target DNA gyrase and DNA

topoisomerase. In M. tuberculosis, DNA gyrase is the sole

target, since it lacks the topoisomerase (Nagaraja et al., 2017;

Aubry, 2004) Fluoroquinolones are attractive since they have

activity against replicating, non-replicating and intracellular M.

tuberculosis. Resistance to fluoroquinolones in M. tuberculosis is

due to mutations in DNA gyrase (Avalos et al., 2015); high level

resistance is generally conferred by mutation in the GyrA

subunit in the quinolone resistance determining region

covering codons 74-113 (Soudani et al., 2010; Singh et al.,

2015; Singh et al., 2021; Chaoui et al., 2018). A single

mutation can lead to resistance to the entire class of

fluoroquinolones, therefore novel agents with different binding

modes would be useful.

One approach to overcome resistance encoded by gyrA

mutations, has been to identify novel scaffolds that target gyrase

in vitro. Examples include the naphthyridone/aminopiperidines

(Gibson et al., 2019) and alkoxytriazoloquinolones (Carta et al.,

2019). The spiropyrimidinetrione series has activity against M.

tuberculosis strains with mutations in gyrase suggesting a

potential to overcome fluoroquinolone resistance (Basarab et al.,

2022). In addition, the possibility of targeting GyrB has been

addressed (Stokes e t a l . , 2020) ; for example , the

aminopyrazinamides and 2-amino-5-phenylthiophene-3-
TABLE 1 Examples of resistance mechanisms to current TB drugs and approaches to overcome resistance (references in text).

Drug Resistance mechanisms in TB Strategies

Rifampicin Mutation in rpoB hotspot region New rifamycins New inhibitor classes

Isoniazid Mutations in katG (lack of pro-drug activation) Mutations in
inhA and promoter region (loss of binding to target)

Analogs which do not require activation Direct inhA inhibitors

Fluoro-
quinolones

Mutations in gyrA/B (loss of binding to target) Novel scaffolds Gyrase ATPase inhibitors GyrB inhibitors

Ethionamide Mutations in ethA (lack of pro-drug activation) Increase activation of pro-drug (disruption of EthR-DNA binding) Alternative
mechanisms of prodrug activation (increased expression of MymA)

Beta-lactams Beta lactamase inactivation Beta- lactamase inhibitors
Beta- lactamase resistant analogs

Aminoglycosides Mutation in ribosomal RNA and protein (rrs, rspL) Inactivation
by eis acetyl transferase

Eis inhibitors

All Non-specific or intrinsic resistance e.g. increased efflux
Antibiotic tolerance

Targeting efflux pumps e.g. EfpA
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carboxamide (Shirude et al., 2013; Saxena et al., 2015) which target

GyrB have good potency in vitro.
Restoring/improving the activity of
existing agents

M. tuberculosis is intrinsically resistant (or can become

resistant) to several classes of antibiotics via expression of

drug-metabolizing enzymes. The bacilli also have efflux

systems which can minimize intracellular accumulation and

target engagement. Examples of efforts to overcome these

intrinsic resistance mechanisms are described below and may

lead to new strategies for prolonging the useful life of an

antibiotic and/or reducing the required dose.

Ethionamide (ETH) is a prodrug which is activated by M.

tuberculosis EthA to form an NAD-adduct which binds to InhA

and inhibits mycolic acid synthesis (similar to the mode of action

of isoniazid) (Vannelli et al., 2002). EthA, a flavin mono-

oxygenase, is negatively regulated by the transcriptional

regulator EthR. Inhibition of EthR leads to up-regulation of

EthA which increases the activity of ETH. Small molecule

inhibitors which disrupt EthR-DNA binding are able to

“boost” the activity of ETH significantly, leading to activity in

vivo at reduced doses (Willand et al., 2009) and could improve

the clinical utility of ETH.

Ethionamide efficacy can also be “boosted” by the N-acylated

4-phenylpiperidine series (Flipo et al., 2022). These molecules

interact with the VirS transcriptional regulator leading to the

increased expression of MymA, a monooxygenase which

activates ethionamide. This approach was successful in

overcoming ethionamide resistance due to EthA mutations in

vitro and in an animal model of infection.

M. tuberculosis is intrinsically resistant to beta lactams due

to the expression of beta lactamase, but this can be reversed by

the addition of beta lactamase inhibitors. For example,

meropenem is highly effective in vitro when combined with

clavulanate, as are the cephalosporins (Hugonnet et al., 2009;

Ramón-Garcı ́a et al., 2016). The clinical effectiveness of

meropenem is less clear, due to tolerability issues (De Jager

et al., 2022), but this has led to an increased effort to find new

beta lactams (Gold et al., 2022).

The M. tuberculosis acetyltransferase Eis can modify

aminoglycosides thereby inactivating them (Willby et al.,

2016). Increased expression of the enzyme leads to kanamycin

resistance (Zaunbrecher et al., 2009) whereas inactivation of Eis

restores kanamycin sensitivity. Several series of Eis inhibitors

have been identified Willby et al., 2016; Punetha et al., 2020;

(Punetha et al., 2021). Although kanamycin is unlikely to be used

clinically since it is not orally available, this approach does lend

proof of concept to the idea that targeting antibiotic modifying

enzymes can overcome intrinsic resistance.
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Drug efflux is a common mechanism of intrinsic resistance

in many bacterial species, and M. tuberculosis encodes many

efflux systems (Louw et al., 2009; Rodrigues et al., 2017).

Differences in the expression or activity of efflux pumps in

clinical isolates has been linked to resistance and over-

expression of several systems (mmr, mmpL7, Rv1285c, p55

and efpA) was noted in response to drug treatment (Machado

et al., 2017). Increased efflux is linked to antibiotic tolerance and

the development of drug resistance (Pasipanodya and Gumbo,

2011). Thus targeting efflux and/or specific efflux pumps has

been proposed as a way to improve efficacy of drugs and reduce

resistance, although inhibiting efflux non-specifically can have

issues with selectivity and/or toxicity (Rodrigues et al., 2020).

Inhibitors of the EfpA efflux pump were recently identified

(Johnson et al., 2019). EfpA plays a role in antibiotic tolerance

in mycobacteria since its over-expression led to decreased uptake

of several antibiotics including moxifloxacin (Rai and Mehra,

2021). Thus inhibitors of this system might have a dual function,

since inhibition of EfpA inhibits growth, but could also prevent

induction of tolerance.
Using combinations to
reduce resistance

Combination regimens

The general consensus in anti-bacterial drug discovery is

that the appearance of resistance occurs within a decade of

widespread use for any new drug. If resistance can be delayed,

this prolongs the useful life of a new drug. Standard TB therapy

consists of a four drug regimen, partly because the drugs are

insufficient on their own, but also because the combination of

drugs can be very effective in delaying the appearance of

resistance. Since the majority of target-based resistance is due

to chromosomal mutations in M. tuberculosis, combining

drugs is an effective way to reduce the frequency of resistance

(since bacteria would need to be resistant to more than one

agent simultaneously at the outset). Thus the development of

new regimens, rather than individual drugs, is standard

practice for TB. However, there are still additional

considerations for generating the best regimens. In particular,

the resistance mechanism(s) for each drug in the regimen

needs to be different. Combining drugs which hit different

targets is not sufficient to prevent cross-resistance, due to the

possibility of non-specific resistance mechanisms. Recent

experience using monotherapy with bedaquiline has

demonstrated that low level clinical resistance can appear

quickly and that it can involve non-specific mechanisms,

such as increased drug efflux (see below). Therefore

considering the susceptibility of novel agents to common

resistance mechanisms is important.
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Dual targeting molecules

An alternative approach to developing individual agents for a

combination regimen is to develop agents that simultaneously

inhibit more than one target. This has been proposed both for

targets from the same family as well as for targets with different

active sites. For example, uridine derivatives that target multiple

Mur enzymes (involved in the same pathway of peptidoglycan

synthesis) have been identified (Kumari et al., 2022), as well as

“ionized non-classical antifolates” that target both dihydrofolate

reductase and thymidylate synthase (Hajian et al., 2019); the

thiophene carboxamide IMB-T130 which targets both tyrosyl-

tRNA synthetase and dehydroquinate synthase (Zhu et al., 2015;

Zhu et al., 2018); and SQ109 which targets both MmpL3 and

respiration (Kai et al., 2014; Li et al., 2014, 3). Although this

approach could be useful to reduce the frequency of resistance to a

single agent it may pose difficulties with respect to optimization

for multiple targets, dosing and pharmacokinetics due to variation

in the expression level, essentiality and vulnerability of the targets.
Overcoming drug tolerance and
eradicating persistent organisms

Antibiotic tolerance is assumed to be one of the major reasons

that TB therapy takes many months; the persistence of

genotypically sensitive, but phenotypically resistant bacilli may

be a consequence of the physiological state(s) induced by host-

induced stresses such as acidic pH, hypoxia or nutrient starvation

(Mandal et al., 2019). Antibiotic tolerance is a precursor to the

appearance of drug resistant bacilli since it allows for extended

periods of survival in fluctuating concentrations of antimicrobial

agents. Therefore, developing novel drugs that can shorten

therapy would be a major advance in preventing or delaying the

appearance of resistant isolates in the clinic. A number of groups

have conducted high throughput screens to identify agents which

target non-replicating organisms induced by different in vitro

stresses including hypoxia, low pH, nitric oxide, cholesterol and

nutrient starvation, as well as multi-stress models combining these

(reviewed in (Parish, 2020). Such screens have identified

numerous scaffolds for investigation. The most advanced

compound GSK286, which was identified in a macrophage

screen, targets cholesterol metabolism and is currently in a

Phase I clinical trial (GlaxoSmithKline, 2022; Nuermberger

et al., 2022).
The impact of broad resistance
mechanisms on early drug discovery

Bedaquiline, a member of class of diarylquinolines, inhibits

ATP generation by binding to the C subunit of F0-F1 of the ATP
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synthase. High level resistance results from mutations in AtpE

which reduce binding affinity. However, other mechanisms of

resistance are found including mutations in the transcriptional

repressor Rv0678 (efflux pump regulator) (Andries et al., 2014)

and pepQ (Hartkoorn et al., 2014; Almeida et al., 2016).

Mutations in Rv0678 lead to upregulation of the MmpL5/

MmpS5 efflux system and increased efflux of the drug. Since

this system also effluxes other drug classes, including azoles,

clofazimine and macozinone (Hartkoorn et al., 2014; Chen et al.,

2022; Guo et al., 2022), the appearance of these mutations in

clinical isolates will lead to cross-resistance to multiple

antimycobacterial classes. Similarly mutations in pepQ result

in resistance to other agents such as macozinone (Chen et al.,

2022; Guo et al., 2022), This underscores the need to determine

mechanisms of resistance for new agents for both low-level and

high-level resistance. In addition, since Rv0678 mutations occur

in clinical isolates (Andries et al., 2014), mutant strains with

these SNPs should form part of any clinical isolate panel used for

routine testing during drug discovery.
Determining mechanisms of
resistance during the
discovery phase

Phenotypic screening has been very successful in identifying

new scaffolds for development. The disadvantage of whole cell

screens is that the target is not known from the outset, so much

effort has been put into developing target identification and

validation methods. One of the most commonly-used methods is

to isolate resistant mutants and characterize the chromosomal

mutations. This can provide valuable information about

potential target(s) and insight into the mechanism(s) of

resistance. In these studies, the major focus has been on

determining the frequency of resistance and of identifying

mutations that lead to high level resistance.

Identification of the target and mutations that affect

inhibitor binding can be invaluable in designing new analogs.

However, there can be a disconnect between the mutations

found in vitro and those that arise in vivo during treatment.

For example, complete loss of KatG activity results in

attenuation of M. tuberculosis but is the most common

mechanism of isoniazid resistance isolated in vitro. In contrast,

mutations which reduce the activity of KatG are more often seen

in vivo (Vilchèze and Jacobs, 2014). Similarly the spectrum of

mutations seem for linezolid are different in vitro from in vivo

(Lee et al., 2012; McNeil et al., 2017). In clinical isolates of M.

tuberculosis, resistance-conferring mutations are often

accompanied by compensatory mutations that increase the

overall fitness of the pathogen by restoring the activity of the

drug target (Alame Emane et al., 2021). High level resistance can

result from multiple mutations in the drug target which may
frontiersin.org

https://doi.org/10.3389/fcimb.2022.974101
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Bhagwat et al. 10.3389/fcimb.2022.974101
affect binding and/or activity. As noted above, non-specific

resistance mechanisms can also lead to low level resistance.

Thus identifying mechanisms of resistance that arise using both

in vitro and in vivo using relevant infection models are

important to include in drug discovery efforts, as well as

testing against a large panel of isogenic strains and

clinical isolates.
Conclusion

Drug discovery for tuberculosis is notoriously difficult due

to the nature of the bacterium and the pathology of the

disease. The existence of resistance in clinical isolates and

the probability of resistance developing to new agents in the

clinic poses further restraints on drug development. Several

approaches to deal with the prevalence of clinically-resistant

isolates have been tried including the development of analogs

of existing frontline drugs and potentiation of the efficacy of

existing drugs. The development of novel combination

regimens aims to reduce the appearance of resistance. In

practical terms, during the development of novel anti-

microbials, a wide range of clinical isolates carrying known

resistance-associated mutations should form part of a

screening panel. Ideally, such a panel would also include

strains with decreased permeability and increased efflux. In

addition, a full characterization of mutations that lead to low

level and high-level resistance in vitro and in vivo should form

part of the characterization of any drug candidate.
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