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portable and sensitive
electrochemical alpha-
fetoprotein immunoassay
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Liver cancer is one of the most common global health problems that features a

high mortality rate. Alpha-fetoprotein (AFP) is a potential liver cancer biomarker

for the diagnosis of liver cancer. The quantitative detection of AFP at an ultratrace

level has important medical significance. Using the reaction of the antibody–

antigen pair in an immunosensor enables the sensitive and selective AFP assay.

Finding a strategy in signal generation and amplification is challenging to

fabricate new sensitive electrochemical immunosensors for AFP detection.

This study demonstrates the construction of a simple, reliable, and label-free

immunosensor for the detection of AFP on a smart phone. Exfoliated two-

dimensional (2D) molybdenum diselenide (MoSe2) and 2D tungsten diselenide

(WSe2) were employed to modify the disposable screen-printed carbon

electrode (SPCE) to use as the electrochemical platform, which is affixed to a

small potentiostat connected to a smart phone. The modified electrode offers

antibody immobilization and allows detection of AFP via an immunocomplex

forming a sandwich-like configuration with the AFP-corresponding aptamer. A

heterojunction 2D MoSe2/2D WSe2 composite improves the SPCE’s reactivity

and provides a large surface area and good adsorption capacity for the

immobilizing antibodies. The signal generation for the immunosensor is from

the electrochemical response of methylene blue (MB) intercalating into the

aptamer bound on the electrode. The response for the proposed sandwich-like

immunosensor is proportional to the AFP concentration (1.0–50,000 pg ml-1).
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The biosensor has potential for the development of a simple and robust point-

of-care diagnostic platform for the clinical diagnosis of liver cancer, achieving a

low limit of detection (0.85 pg ml-1), high sensitivity, high selectivity, good

stability, and excellent reproducibility.
KEYWORDS
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Introduction
Alpha-fetoprotein (AFP) is a tumor marker that is often

used in the diagnosis and treatment of primary liver cancer

(Zhang et al., 2007). AFP is an oncofetal glycoprotein with a

molecular weight of 70,000 Da (Jiang et al., 2016). The AFP level

in healthy human serum is less than 25 ng ml-1, but it rises

dramatically in individuals with liver cancer (Jiang et al., 2010;

Liu et al., 2011; Su et al., 2011). In general, enzyme-linked

immunosorbent assay (ELISA) (Darwish et al., 2013),

radioimmunoassay (Shafik et al., 2014), chemiluminescence

immunoassay (Fu et al. , 2006), and electrochemical

immunoassay (Yuan et al, 2017) can be employed to detect

such biomarkers. The first three standard immunoassays, on the

other hand, have several disadvantages. They require expensive

instrumentation and skilled operators (Wang et al., 2014).

Moreover, they need costly specialized consumables, including

sample well plates, chips, and reagent kits, and hence this has

limited their use for clinical point-of-care (POC) applications in

circumstances with minimal resources (Cristea et al., 2015).

Electrochemical immunosensors have overcome these

drawbacks, the measurements of which are based on specific

antigen–antibody interactions (Wang et al., 2017; Putnin et al.,

2018; Pei et al., 2019; Upan et al., 2020; Zhao et al., 2020). In

addition, they can be operated with simplicity, high selectivity,

high sensitivity, and good stability (Pei et al., 2019; Zhao et al.,

2019). During the detection of target analytes, the

immunocomplex generally forms on the sensing surface via

molecular recognition by primary antibody and then signal

amplification is performed by the formation of a sandwich

immunocomplex with another detection or secondary

antibody tagged with enzymes (Zhong et al., 2015; Shen et al.,

2020), metals (Wei et al., 2016; Liu et al., 2017; Wang

et al., 2018), nanoparticle nanotags (Wei et al., 2016; Putnin

et al., 2019; Zhao et al., 2020; Xiao et al., 2021), and redox probes

(Gao et al., 2014; Rong et al., 2021). The preparation of labeled

antibodies requires many steps and costly chemicals; moreover,
02
tagging with biomolecules would cause instability in the

detection because they are environmentally sensitive. Instead

of the use of labeling particles, the redox probe/aptamer complex

is exploited for signal amplification (Taleat et al., 2014) because

the aptamer has high specificity for and high affinity with the

target analyte (Huang et al., 2008; Wang et al., 2008). In recent

years, aptamers, small synthetic single-strand deoxyribonucleic

acid (DNA) or ribonucleic acid (RNA) molecules, have been

found to be recognition elements on the sensing surface (Han

et al., 2010; Mazloum et al., 2019), which can be developed as an

aptasensor (Han et al., 2010; Mazloum et al., 2019; Upan et al.,

2021). They offer superior thermal and chemical stability, great

repeatability, and outstanding stability (Wang et al., 2008;

Farzadfard et al., 2020). Furthermore, they have shown ease of

manufacture, good controllability, facile large-scale synthesis,

and adaptability (Taleat et al., 2014). For signal amplification

using an aptamer, it forms a sandwich-like structure after

binding to the target analyte and then the redox species can

selectively intercalate into its DNA or RNA structure, thus giving

a current response that can be monitored regarding the target

concentration (Taleat et al., 2014). The electrochemical

indicator, namely, methylene blue (MB), has been utilized to

investigate protein–aptamer interactions. At an electrode

surface, MB is electrochemically converted to leucomethylene

blue (LB) by absorbing two electrons. As a result, this indication

has been employed to identify protein–aptamer interactions

(Wang et al., 2010; Yan et al., 2011). In addition, a DNA

aptamer contains a lot of G bases that can absorb MB. MB can

particularly attach to G bases of the ss-DNA aptamer. To

circumvent the use of costly labeling, MB reacts directly with

the aptamer or DNA (Li et al., 2007; Lin et al., 2007), forming an

electrochemically detectable MB/aptamer complex.

Two-dimensional (2D) transition metal dichalcogenides

(TMDs) play many important roles in many fields involving

photovoltaics (Wang et al., 2018; Das et al., 2019), sensors

(Rohaizad et al., 2017; Jiang et al., 2020; Yaiwong et al., 2021;

Pothipor et al., 2022), catalysts (Harvey et al., 2015; Sakthivel

et al., 2018), and energy storage devices (Bissett et al., 2016; Liu
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et al., 2016). They can be simply exfoliated by using organic

solvents (Backes et al., 2017; Synnatschke et al., 2019). They

possess atomically layered structures, large surface areas, and

outstanding electrochemical characteristics (Jing et al., 2014;

Rohaizad et al., 2017). In their uses in electrochemical sensors,

2D materials can not only improve electrode reactivity but also

load chemicals and biochemicals at high contents because of

unique electrochemical properties and massive electroactive

surface areas (Yaiwong et al., 2021; Pothipor et al., 2022).

They are getting a lot of interest as both electrode modifiers

(Rohaizad et al., 2017; Yaiwong et al., 2021) and tagging

materials (Hong et al., 2020) for immunosensors. They also

present fast heterogeneous electron-transfer rates (Rohaizad

et al., 2017). Recently, electrochemical detection utilizing a 2D

MoS2 and graphene oxide (GO)-modified electrode has been

carried out with good sensitivity, high selectivity, and high

stability (Yaiwong et al., 2021). It was found that a single 2D

WX2 offers better analytical performance than that of a single 2D

MoX2 when they are incorporated into electrochemical glucose

biosensors (Rohaizad et al., 2017). Nevertheless, the sensing

applications employing the combination of each material or

their heterojunctions are still in the infancy stage. Since some

reports show a synergistic effect, which is observed with GO/2D

material mixtures, many interests focus on the construction of

sensors from such materials (Yaiwong et al., 2021; Pothipor

et al., 2022). There is no report about the use of 2D inorganic

compound heterojunction such as from 2D molybdenum

diselenide (MoSe2) and 2D tungsten diselenide (WSe2) in

developing an electrochemical sensor, especially a biosensor.

The two components are expected to synergistically contribute

to good device performance. To demonstrate the full

functionality of the electrochemical immunosensing system,

miniaturization and convenient integration into small-size

sensors are needed for the practical POC fields (Wang et al.,

2015; Zhang et al., 2016). The design of the portable and

lightweight electrochemical detection system is challenging.

Furthermore, a printed electrode often allows the construction

of portable and disposable sensor devices (Upan et al., 2020;

Phetsang et al., 2021; Pothipor et al, 2022). For example, a small

electrochemical cell can be made by printing three different

printed electrodes on a single platform. Generally, the cell is

inserted into a small portable potentiostat or affixed to a smart

phone (Ainla et al., 2018; Anshori et al., 2022). The printed

electrode such as a screen-printed electrode (SPE) can be widely

functionalized and modified with various kinds of materials,

electrode modifiers, and sensing elements such as active

molecules, enzymes, antibodies, recepters, and aptamers. It has

the simplicity of use for fabrication of a variety of

electrochemical sensors and biosensors.

In this work, a portable immunosensor with the sandwich-

like configuration has been constructed for the detection of AFP

for the first time. AFP is chosen as the model target analyte.
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Instead of the use of labeling particles, the strategy employs an

MB/aptamer complex for signal generation and amplification.

The sensor performs the sandwich-like immunoassay on a

carbon working area of the commercial three-electrode system

SPE, modified with 2D MoSe2/2D WSe2 heterojunction. The

combination of each component offers high analytical

performances in detecting AFP in human serum. The

immunoassay is carried out on a small potentiostat attached to

a smart phone (Android). A 2D MoSe2/2D WSe2 composite

improves the SPE’s electrochemical reactivity and is a kind of

excellent 2D nanomaterial with a high surface capacity and

favorable biocompatibility. The captured anti-AFP antibody is

sufficiently immobilized on the 2D MoSe2/2D WSe2 surface.

After the AFP target protein is bound on the immunosensing

surface, the subsequent additional intercalation of MB is caused

by the aptamer coverage on the immunocomplex. With the

presence of the aptamer, the MB uptake on the immunosensor is

extremely increased as seen in its higher oxidation peak current

response observed by differential pulse voltammetric

measurements. As a result, the electrochemical response is

linearly proportional to a wide range of AFP concentrations

and offers good detection ability with a low limit of detection

(LOD). Other analytical parameters such as specificity,

reproducibility, and stability are studied. This developed

immunosensor could be applied to screening and monitoring

of AFP associated with liver cancer.
Experiment

Chemicals and materials

MoSe2 (325 mesh, 99.9%) and N-methyl-2-pyrrolidone

(≥99.0%) were purchased from Sigma-Aldrich (USA). WSe2
(99.8%) was purchased from Alfa Aesar (Lancashire, UK).

Phosphate-buffered saline (PBS) tablets (pH 7.4), dopamine

hydrochloride (DA; 99.5%), immunoglobulin G (IgG) from

human serum (4.8 mg ml-1, ≥95%), interleukin-6 (IL-6; lot:

0409AFC16, ≥98%), and myoglobin (Mb) from human heart

(≥95%) were bought from Sigma-Aldrich (Singapore). Anti-

human AFP antibody and AFP were purchased from Fitzgerald

(USA). Potassium ferrocyanide {K4[Fe(CN)6]} was ordered from

Scharlau (Spain), while potassium ferricyanide {K3[Fe(CN)6]} was

purchased from Merck (Germany). L(+)-ascorbic acid (AA;

99.7%) was bought from Merck (Germany). Glucose (Glu; 99%)

was bought from Fluka (Switzerland). IL-15 (lot: 2381730, ≥98%)

was bought from Millipore (Burlington, MA, USA). Uric acid

(UA; 98.5%) andMB (>97.0) were purchased from Sigma-Aldrich

(St. Louis, MO, USA). Mucin1 protein (MUC1; lot: LC08JA2304)

was purchased from Sino Biological Inc. (China). Aptamer 5′-
GTGACGCTCCTAACGCTGACTCAGG-TGCAGTTCTCGA

CTCGGTCTT-3′ was bought from Sigma-Aldrich (Singapore).
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Apparatus and Methods

The electrochemical measurements involving differential

pulse voltammetry (DPV), cyclic voltammetry (CV), and

electrochemical impedance spectroscopy (EIS) were performed

using EmStat3, Sensit/Smart, and PalmSens4 potentiostats

(PalmSens, Netherlands). For the measurements in a 5-ml

electrochemical cell, a platinum (Pt) wire counter electrode, a

silver/silver chloride (Ag/AgCl, 3M NaCl) reference electrode,

and a homemade working screen-printed carbon electrode

(SPCE) were used. The homemade SPCEs as electrode support

were employed for material characterization and optimization of

sensor fabrication parameter. Pt and Ag/AgCl electrodes were

obtained from Nilaco Co. Ltd. (Tokyo, Japan) and Bioanalytical

Systems, Inc. (IN, USA), respectively. For the construction of the

new proposed sensor, ItalSens three-electrode SPEs were

employed and purchased from PalmSens, Netherlands.

Micrographs of the surface morphologies for the modified

electrodes were recorded on a JEOL scanning electron

microscope (SEM; JSM-IT300, Tokyo, Japan) equipped with a

JEOL energy-dispersive X-ray spectrometer (EDX; JSM-

IT300LV, Japan). The morphologies of 2D materials were

investigated using a JEOL transmission electron microscope

(TEM; JEM-2010, Japan). For measuring the DPV current

response of the immunosensor, an ItalSens SPE affixed to the

Sensit/Smart small potentiostat device, on which a drop of

electrolyte was coated, was operated on a Redmi (Xiaomi)

smart phone Scheme 1.
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Preparation of 2D MoSe2 and 2D
WSe2 powders

Bulk MoSe2 and WSe2 powders (1.0 g) were separately

crushed in a mortar for 20 min. Then, 600 ml of N-methyl-2-

pyrrolidine was poured into the powder, and the mixture was

ground for 40 min. The resultant mixture was stored at an

ambient temperature for 48 h. The MoSe2 and WSe2 solutions

were then sonicated for 1.5 h before being dried in an oven at 60°

C overnight to achieve 2D MoSe2 and 2D WSe2 powders.
Fabrication of the sandwich-like
immunosensor on a MoSe2/WSe2-
modified SPE

To begin with the dispersion of 2D nanomaterials, 3.0 mg

mixture of 2D MoSe2 (75%) and 2D WSe2 (25%) powders in

1.0 ml of deionized water was bath-sonicated for 90 min. Before

modification with the 2D materials, the working SPCE of the

commercial SPE was treated in a plasma chamber (Putnin et al.,

2018; Upan et al., 2020; Upan et al., 2021; Yaiwong et al., 2021;

Pothipor et al., 2022). Then, 2.5 µl of 2D MoSe2/2D WSe2
composite dispersion was dropped onto a plasma-cleaned

SPCE, and the modified SPE was dried at room temperature.

In the following modifications, each incubation was done in a

humidity chamber at room temperature. The modified electrode

was incubated with 5.0 µl of anti-AFP (50 µg ml-1) in 0.010 M
SCHEME 1

Fabrication and AFP detection process of the electrochemical immunosensor.
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PBS buffer for 40 min, washed with the PBS buffer several times

to remove free antibody, and dried at room temperature. To

generate a nonspecific adsorption-free electrode surface, the

anti-AFP/MoSe2/WSe2-modified SPE was incubated with 5.0

µl of 1.0% w/w bovine serum albumin (BSA) for 40 min and

washed with PBS several times. After that, the prepared

electrodes were incubated with 5.0 µl of AFP solutions at

different concentrations (1–50,000 pg ml-1) for 40 min and

again washed with PBS several times. The electrode surface

was rinsed with 0.010 M PBS buffer many times after incubation

with 2.0 µl of 10 µM aptamer solution for 40 min. To measure

the analytical current responses, 5.0 µl of 10 mM MB solution

was dropped onto the resultant SPE for 30 min. Excess MB was

removed by repeatedly washing the electrode with 0.010 M PBS

buffer three times. The electrochemical signals in PBS buffer (pH

7.4) were recorded using DPV with a step potential of 10 mV, a

modulation amplitude of 50 mV, a modulation period of 10 ms,

a scan rate of 50 mV s-1, and potential scan ranges from -0.50 to

0.10 V (for homemade SPCE) and from -0.80 to 0.20 V (for

commercial SPE) at room temperature. The fabrication steps are

shown in Scheme 1. For all electrochemical experiments, data for

each condition were obtained with five replicates.
Results and discussion

Morphological characteristics

SEM observation was used to evaluate the morphologies of

bare SPCE and 2DMoSe2-, 2DWSe2-, and 2DMoSe2/2DWSe2-

modified SPCEs. Figure 1 shows an SEM image of SPCE. It

contains the small and large conductive graphite particles; the

small particles cover the big particles. After the SPCE was

modified with 2D MoSe2 and 2D WSe2, the surface was partly

coated with platelet-like particles as illustrated in Figures 1B and

C, respectively. The larger particles were observed with the 2D

WSe2-modified SPCE. The existence of both 2D MoSe2 and 2D

WSe2 crystallites with straight-cut edges and disordered

arrangement is on the 2D MoSe2/2D WSe2-modified SPCE as

depicted in Figure 1 (Sajedi-Moghaddam et al., 2019). Figure 1

depicts the EDX spectrum of 2D MoSe2/2D WSe2-modified

SPCE’s surface, indicating the presence of Mo, W, and Se

elements. The sheet structures of the 2D materials are

confirmed using TEM images as presented in Figure S1.
Electrochemical characterization

In the development of the immunosensor using novel

nanomaterials, electrode kinetics is crucial. The electrode with

fast kinetics is especially attractive for use as an electrochemical

transducer. Its corresponding sensors offer good detection

efficiency. In general, the electrode is improved by coating
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with electroactive compounds of interest in order to achieve

such property. In this study, the bare SPCE and SPCEs covered

with single and bicomponent 2D materials, namely, 2D MoSe2,

2D WSe2, and 2D MoSe2/2DWSe2 composites with the ratios of

75:25, 50:50, and 25:75, were then electrochemically

characterized using CV and EIS in 0.010 M PBS containing

5.0 mM K3[Fe(CN)6]/K4[Fe(CN)6]. The rate of heterogeneous

electron transfer (k0) is inversely related to the peak-to-peak

separation (DEp) and charge-transfer resistance (Rct) of the

electrochemical reaction at the working electrode. Cyclic

voltammograms obtained for 2D MoSe2-, 2D WSe2-, and 2D

MoSe2/2D WSe2 composite-modified SPCEs are shown in

Figure 2. The improved current response of [Fe(CN)6]
3-/4-

reaction is found at modified SPCEs. The lower DEp values

observed are 0.31, 0.30, 0.29, 0.30, and 0.30 V for SPCEs

modified with 2D MoSe2, 2D WSe2, and 2D MoSe2/2D WSe2
samples with the ratios of 75:25, 50:50, and 25:75, respectively, as

compared to that of naked SPCE (0.38 V). This suggests that

modification with all 2D materials can mediate the electron

transfer (Tan et al., 2016; Rojas et al., 2020). Although the DEp
values for the modified SPCEs are insignificantly different, the

SPCE based on 2D MoSe2/2D WSe2 with the ratio of 75:25

shows the best current response (ca. 117 mA, 3-fold

improvement). Additionally, an experiment using an EIS was

also conducted to determine the resistances of the modified

electrodes. The EIS spectra are presented as Nyquist plots. A

spectrum represents semicircular and linear components, which

are related to the kinetic and mass transfer controls at high and

low frequencies, respectively (Petsawi et al., 2019; Chanarsa

et al., 2020; Pothipor et al., 2022). Small semicircles mean low

Rct. Figure 2 shows Nyquist plots of bare SPCE and MoSe2-,

WSe2-, and MoSe2/WSe2-modified SPCEs in contact with 5.0

mM K3[Fe(CN)6]/K4[Fe(CN)6] in 0.010 M PBS. It is found that

after coating with the 2D materials and their mixtures on SPCE,

the semicircle decreases, indicating a faster electron-transfer

process. The Rct value of the bare SPCE is 3,266 W, while Rct
values of the electrodes modified with 2D MoSe2, 2D WSe2, and

2D MoSe2/2D WSe2 (75:25, 50:50, 25:75) composites are 906,

1,397, 727, 868, and 1,392 W, respectively. All modified

electrodes reveal lower resistances as compared to that of bare

SPCE (Cunningham et al., 2015). This agrees well with the CV

result. As seen in this figure, 2D WSe2 offers lower resistance

than that of bare SPCE, but it presents higher resistance than

that of 2D MoSe2. Interestingly, at the optimal composition

(75:25 for 2D MoSe2:2D WSe2), both materials synergistically

work with the best electron-transfer process, implying the best

electrode kinetics. This composition also gives the highest

current response in the CV measurement. It is plausible that

the 2D MoSe2/2D WSe2 (75:25) composite on the modified

SPCE would produce a favorable surface with good electrical

conductivity/electrochemical reactivity and a large surface area.

Among all of the modified electrodes, it displays the lowest Rct
value that would in turn govern the charge mobility on the
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sensing surface, thus resulting in high sensitivity in sensors.

Therefore, for fabrication of the sandwich-like immunosensor,

the 2D MoSe2/2D WSe2 (75:25)-modified SPCE is a

good candidate.
Study of the fabrication steps

The related differential pulse voltammogram (DPV) was

recorded using MB as a redox probe in order to monitor each
Frontiers in Cellular and Infection Microbiology 06
preparation stage of the immunosensor. Figure 3 depicts the

DPVs of electrodes at each construction step, and the

corresponding currents are shown in Figure 3. Considering the

redox response of MB at a potential of 0.27 V, all electrodes have

different adsorption abilities for MB. The small oxidation peak

current (black line) is caused by the 2D MoSe2/2D WSe2-

modified SPCE’s adsorption ability of electroactive MB after it

was incubated with the anti-AFP solution. The red line shows

the MB current response of the anti-AFP/2D MoSe2/2D WSe2-

modified SPCE electrode after coating with BSA and then MB.
A B

D

E

C

FIGURE 1

SEM photographs of (A) naked SPCE and SPCEs modified with 2D MoSe2 (B), 2D WSe2 (C), and 2D MoSe2/2D WSe2 (D). (E) EDX spectrum of 2D
MoSe2/2D WSe2 composite-modified SPCE.
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The peak current increases because of its higher adsorption

capacity for MB. The blue line shows that an insignificant

current change is observed when the anti-AFP/MoSe2/WSe2-

modified SPCE was sequentially incubated with solutions

without AFP, and aptamer and MB, indicating the absence of

AFP and aptamer on the electrode surface. Without AFP, the

aptamer could not bind to the electrode surface and its

nonspecific adsorption could not occur. This suggests the

character of the anti-AFP antibody. After AFP (50 ng ml-1)

was immobilized on the sensing electrode surface without the

addition of aptamer, no significant change in the peak current of

MB (pink line) is found. Interestingly, the anti-AFP/2D MoSe2/

2D WSe2-modified SPCE electrode incubated with solutions of

BSA, AFP, aptamer, and MB, respectively, significantly

improved the current (green line), resulting from MB’s
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selective intercalation in the aptamer structure. This indicates

high affinity of the aptamer for MB. According to the high

current response of MB caused by the occurrence of the

aptamer’s binding to the captured target AFP, the current

intensity would be related to the amount of target AFP on the

sensing surface. Therefore, the proposed sandwich-like

immunosensor can be used to detect AFP at trace levels.
Optimization of fabrication conditions

Additionally, to choose good 2D materials for device

fabrication, the analytical response of the developed

immunosensor after capturing AFP (50 ng ml-1) is employed.

As shown in Figure 4, the DPV peak current responses of
A B

FIGURE 3

(A) DPV responses of the modified electrodes in contact with 0.010 M PBS (pH 7.4) after each fabrication step of the sandwich-like
immunosensor and (B) corresponding peak currents of the modified electrodes.
A B

FIGURE 2

(A) Cyclic voltammograms and (B) EIS spectra of bare and modified SPCEs in contact with 0.010 M PBS containing 5.0 mM K3[Fe(CN)6]/K4[Fe(CN)6].
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immunosensors based on 2D MoSe2-, 2D WSe2-, and 2D

MoSe2/2D WSe2 (75:25, 50:50, and 25:75% w/w)-modified

SPCEs and bare SPCE were studied. The immunosensor’s

construction parameters are anti-AFP, AFP, and MB

concentrations of 50 µg ml-1, 50 ng ml-1, and 10 mM,

respectively, and anti-AFP, AFP, aptamer (10 µM), and MB

incubation times of 40, 40, 40, and 30 min, respectively. The

DPVs of all biosensors were obtained in contact with 0.010 M

PBS (pH 7.4). When the responses of the immunosensors made

from the bare SPCE and single material (2D MoSe2 and 2D

WSe2)- and 2D MoSe2/2D WSe2 (75:25, 50:50, and 25:75% w/

w) composite-modified SPCEs are compared (Figure 4), the

result shows that modification with the 2D MoSe2/2D WSe2
(75:25% w/w) composite gives the greatest DPV peak current

after MB infiltration into the aptamer chain. Without AFP, the

DPV peak currents of all immunosensors under the same

preparation order are exhibited in Figure 4. All sensors reveal

the significantly lower peak currents of MB compared to the

sensors containing AFP (ca. 3.3 times for the current

increment). The low response intensities of the aptamer-free

immunosensors were due to no AFP increase using bare SPCE,
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single material (2DWSe2 and 2DMoSe2)-modified SPCEs, and

2D MoSe2/2D WSe2 (75:25, 50:50, and 25:75% w/w)

composite-modified SPCEs. Due to the immunosensor

without AFP capture, the aptamer cannot bind to the anti-

AFP, and according to MB responses, the result implies an

insignificant nonspecific adsorption of aptamer on the

electrode surface. Consequently, Figure 4 shows the

comparison of current responses from immunosensors based

on different materials after detection of AFP in 50 ng ml-1 AFP

and blank solutions. Observable responses are lower for all

blank measurements (no AFP), which agree with those in

Figures 3A and B. It is found that the sensor using 2D

MoSe2/2D WSe2 composite-modified SPCE (75:25% w/w)

shows the highest peak currents for both cases. The

corresponding current differences of the immunosensors with

and without AFP are found as a function of the composition of

electrode modifiers as shown in Figure 4. These differences are

caused by different kinds of modified electrodes at the same

AFP and aptamer concentrations. They are expected to be

proportional to the AFP concentration when used as sensing

signals. The highest current difference is obtained for the
A B

DC

FIGURE 4

DPV responses of the sandwich-like immunosensors with different ratios of 2D MoSe2/2D WSe2 in contact with 0.010 M PBS (pH 7.4); (A) with
and (B) without AFP after incubation with MB. (C) Corresponding current responses of panels (A, B, D) analytical responses or current
differences of panel (C).
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immunosensor based on 2D MoSe2/2D WSe2 (75:25% w/w).

This result has good agreement with electrode property and

reactivity (see CV and EIS results). Therefore, the 2D MoSe2/

2D WSe2 (75:25% w/w) composite-modified SPCE is chosen as

the electrode platform for the immunosensor fabrication to

detect AFP throughout the device development.

To obtain the best sensitivity for the detection of the AFP

protein, procedure parameters of the immunosensor fabrication

were optimized such as concentrations of anti-AFP, aptamer,

and MB, reaction periods of anti-AFP (immobilization on the

electrode surface), aptamer (binding to captured AFP), and MB

(interaction with the DNA aptamer structure), and

immunoreaction time. Figure 5 invesigates the behaviors of

the graphs for the optimization. All show an increase in

current response and reach a plateau against each parameter.

Figure 5 exhibits the electrochemical responses of the selected

electrodes modified with various anti-AFP concentrations (25,

50, 75, 100, and 125 µg ml-1) for the detection of 50.0 ng ml-1

AFP using constant concentrations of aptamer (10 µM) and MB

(10 mM) and constant times of 40, 40, 40, and 30 min for the

incubation with anti-AFP, AFP, aptamer, and MB, respectively.
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After conducting all of the immunoassay processes, the DPV

peak current starts a constant at the concentration of 50 µg ml-1

anti-AFP, indicating that anti-AFP is saturated on the 2D

MoSe2/2D WSe2-modified SPCE. Thus, the anti-AFP

concentration of 50 µg ml-1 is employed in the next

experimental study. Furthermore, the impact of anti-AFP

reaction time for the anti-AFP immobilization onto the

modified SPCE on the immunosensor performance is

investigated over time ranges of 20–60 min, as illustrated in

Figure 5. The optimization of the immobilization time for anti-

AFP employs constant concentrations of anti-AFP (50 µg ml-1),

AFP (50 ng ml-1), aptamer (10 µM), and MB (10 mM) and

constant incubation times of 40, 40, and 30 min for binding AFP,

aptamer, and MB onto the electrode, respectively. The

immunosensor’s peak current increases, and no current

change is observed after incubation of 40 min, suggesting

complete reaction and saturation of the electrode surface with

antibodies. Thus, an incubation time of 40 min for anti-AFP

immobilization is selected for the next optimization. Figure 5

illustrates the effect of AFP incubation time on the DPV peak

current of the immunosensor in detecting 50 ng ml-1 AFP. After
A B

D E F

G

C

FIGURE 5

Optimization of the (A) anti-AFP concentration, (B) anti-AFP immobilization time, (C) incubation time for complete immunoreaction, (D)
aptamer concentration, (E) incubation time of aptamer binding, (F) MB concentration for the signal generation, and (G) incubation time of MB
intercalation into the sensing surface for the construction of the developed sandwich-like immunosensor.
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achieving the anti-AFP-saturated SPCE, the immunoassay is

performed by covering with the AFP solution at the same

aptamer and MB concentrations and the same incubation

times for the aptamer and MB loadings. Incubation periods

from 20 to 60 min for the complete immunoreaction are studied.

It is found that when the incubation time is increased, the peak

current intensity is steady from 40 min to higher values. As a

result, a 40-min incubation period is used as an optimal

interaction time for further study.

To find the best signal amplification, the response of the

immunosensor after MB uptake is evaluated. The concentration

of the aptamer as a parameter for signal generation is studied.

Various aptamer solutions (1, 5, 10, and 20 µM) were employed

in this study. Covering different amounts of aptamer, Figure 5

displays the current responses of the immunosensors

constructed under the condition above for detection of 50 ng

ml-1 AFP. The greatest peak current is observed when using the

aptamer concentration from 10 to 20 µM, suggesting a sufficient

amount of aptamer, and the aptamer is fully immobilized on the

electrode surface. After this point, there is an aptamer excess,

which would cause a costly device. For the immunoassay, a 10-

µM solution is chosen. The study of time for aptamer binding on

the biosensors is required to obtain a stable response due to a

complete aptamer/AFP reaction. The incubation time of the

aptamer solution on the immunosensor was then studied over

many periods of time (20–60 min). Under an optimized

fabrication parameter for detection of 50 ng ml-1 AFP, the

peak current reaches a maximum point at the incubation time

of 40 min and then it is constant, as shown in Figure 5, resulting

from the complete binding between the captured AFP and

aptamer. A 40-min incubation time is achieved as the minimal

time in the immobilization of the aptamer for intercalation of the

signaling MB molecules.

As presented in Figure 5, the MB concentration (1–30 mM)

for the production of the best electrochemical signal of MB

collected on the aptamer-bound immunosensor was also

determined. With the constant incubation time of MB solution

at 30 min, the developed sandwich-like immunosensor

fabricated from the same condition above shows that MB

concentrations from 10 mM offer the best response for

detection of 50 ng ml-1 AFP. In this study, the MB

concentration of 10 mM is chosen for signal generation.

Furthermore, to obtain the best signal generation, the

incubation period (10–50 min) for the redox probe (MB),

completely attached to the captured aptamer chain on the

target AFP, is studied. As displayed in Figure 5, under the

same fabrication process, the incubation time of 30 min is the

suitable time to fully complete the MB intercalation for the

proposed sensor in the assay of 50 ng ml-1 AFP. Again, to

achieve a great sensor, the optimized fabrication parameters are

anti-AFP concentration of 50 µg ml-1, aptamer concentration of

10 µM, and MB concentration of 10 mM, as well as incubation

times of 40, 40, and 30 min for the immobilization of anti-AFP,
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aptamer, and MB, respectively, and a 40-min AFP

incubation time.
Performance of the immunosensor
based on the 2D MoSe2/2D
WSe2 composite

DPV is used to measure the electrochemical responses of the

MB/aptamer/AFP/BSA/anti-AFP/2D MoSe2/2D WSe2-modified

SPCE after incubation with different AFP concentrations (1–

50,000 pg ml-1) in 0.0010 M PBS (pH 7.4), as shown in Figure 6.

An increase in the peak current of MB oxidation at a potential of

-0.35 V is found with increasing AFP concentrations. The current

has a linear relationship to the logarithmic AFP concentration.

Furthermore, Figure 6 shows the corresponding calibration curve

composed of two different concentration ranges (1–50 and 50–

50,000 pg ml-1). The linear regressions are I (mA) = 3.09logCAFP +

60.67 (R2 = 0.99) and I (mA) = 28.03logCAFP − 14.80 (R2 = 0.99),

respectively. An LOD of 0.78 pgml-1 for the detection of AFP in PBS

is obtained. In a 50-fold diluted human serum (Phetsang et al., 2021;

Yaiwong et al., 2021), the electrochemical immunosensor is

evaluated using DPVs for assays of various spiked AFP

concentrations (1-50,000 pg ml-1) as shown in Figure 6. The

response of MB/aptamer/AFP/BSA/anti-AFP/2D MoSe2/2D

WSe2-modified SPCE reveals a similar behavior as that in

Figure 6. Linear equations for the calibration curve in the diluted

serum (Figure 6) are I (mA) = 3.48logCAFP + 59.98 (R2 = 0.99) and I

(mA) = 27.13logCAFP − 1.56 (R2 = 0.996) for concentration ranges of

1–50 and 50–50,000 pg ml-1, respectively, with an LOD of

0.85 pg ml-1. Both calibration curves can be fully superimposed,

indicating no significant difference between the detections in PBS

and diluted serum. This also implies that the proposed biosensor has

high selectivity in the human serum matrix since it contains real

interferences (Pothipor et al., 2019). From this result, the

immunosensor can be used in the real-world clinical AFP assay.

The comparison of several electrochemical immunosensors for the

detection of AFP is shown in Table 1. It is noted that the developed

immunosensor has an acceptable low LOD and wide dynamic range

that is adequate for the detection of AFP in diagnosing liver cancer.

As compared to the first sensor, although its LOD is extremely lower,

our immunosensor presents less complexity for signal generation

and a wider dynamic range. Furthermore, Sensor 3 demonstrates the

tag consisting of polymer that the synthetic process is time-

consuming and has a higher LOD. LODs for Sensors 2 and 5 are

higher than that of our sensor, they also demonstrate complicated

electrochemical platforms, and Sensor 5 uses a complex tag. In

addition, Sensor 4 employs a simple tag and electrode. For the signal

amplification, Sensors 2 and 4 require the enzymes’ substrates while

Sensor 5 needs the catalyst’s substrate. The tags of Sensors 2 and 4

would be enviromentally sensitive because of the nature of the

enzymes. Therefore, the drawbacks of the five reported sensors limit

their applicability for the AFP assay.
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TABLE 1 Comparison of detection performance of the proposed biosensor with various AFP immunosensors.

Platform Tag Method Linear range (ng ml−1) LOD (ng ml−1) Ref.

Ab2/AuNPs/GCE Pd/APTES-M-CeO2-GO-Ab2 Amp 0.0001-50 3.3×10-6 (Wei et al., 2016)

Ab1/GO-MB-AuNPs/GCE AuC-HRP-Ab2 DPV 0. 005-20 1.5×10-3 (Shen et al., 2020)

Ab1/AuNPs-GO/GCE P(VT-co-HEMA)-g-GO/Ab2 SWV 0.025 - 50 1.8×10-2 (Zhao et al., 2020)

Ab1/3D AuE HRP/Ab2 Amp 0.005-50 3.0×10-3 (Zhong et al., 2015)

Ab1/rGO-TEPA-Thi-AuNPs/SPCE CMK-3@AuPtNPs-Ab2 Amp 0.005-100 2.2×10-3 (Xiao et al., 2021)

Ab1/2D MoSe2/2D WSe2/SPCE MB/aptamer DPV 0.001-0.050 0.050-50 8.5×10-4 This work
Frontiers in Cellular and Infection
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GCE, glassy carbon electrode; AuNP, gold nanoparticle; AFP, alpha-fetoprotein; Ab1 and Ab2, anti-AFP antibody; BSA, bovine serum albumin; GO, graphene oxide; M-CeO2, cerium oxide
mesoporous nanoparticles; APTES, 3-aminopropyltriethoxysilane; Pd, palladium; MB, methylene blue; HRP, horseradish peroxidase; AuC, gold cube; P(VT-co-HEMA), poly
(vinyltetrazole-co-hydroxyethyl methacrylate); 3D AuE, three-dimensional gold electrode; rGO, reduced graphene oxide; TEPA, tetraethylene pentamine; Thi, thionine; CMK-3,
mesoporous carbon; PtNP, platinum nanoparticle; SPCE, screen-printed carbon electrode; Amp, amperometry; DPV, differential pulse voltammetry; SWV, square-wave voltammetry.
A B

C

FIGURE 6

DPV responses of the immunosensors after incubation with AFP in PBS (A) and 50-fold diluted human serum (B) at different concentrations and
(C) logarithmic calibration curves of the two matrix systems.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.916357
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chanarsa et al. 10.3389/fcimb.2022.916357
Selectivity, reproducibility, and stability
of the immunosensor

To test the immunosensor ’s specificity, possible

interferences including redox and non-redox molecules such

as AA, DA, Glu, UA, Mb, GM2 activator protein (GM2), IgG,

IL-6, IL-15, and MUC1 were used. There are two groups of

solutions; the first group involves a blank solution and AFP-free

solutions with the presence of individual AA, DA, Glu, UA, Mb,

GM2, IgG, IL-6, IL-15, MUC1, and their mixture (100 ng ml-1),

while the second group invloves an interference-free AFP

solution (1.0 ng ml-1) and 1.0 ng ml-1 AFP solutions

containing the individual and mixed interferences at the 100-

fold concentration. After the immunosensor was incubated with

the solutions, the current responses are obtained in Figure 7. The

result shows that the solutions containing 1.00 ng ml-1 AFP give

higher responses than those of the solutions with no AFP;

however, the currents are not significantly different among the

presence of the individual and mixture interferences, suggesting

high device selectivity. Moreover, the AFP-free solutions of

individual interferences and their mixture provide

insignificantly different current responses as compared to that

of blank solution, thus implying no occurence of nonspecific

adsorption. Therefore, at the extremely higher concentration,

the potential interferences and interference mixture could not
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affect the analytical signal, resulting in high selectivity and good

applicability of the proposed immunosensor. This agrees well

with the detection study above (superimposition of calibration

curves for the AFP detection in PBS and diluted human serum in

Figure 6) (Pothipor et al., 2019). Reproducibility is also a critical

parameter for the scale-up production of immunosensors and is

examined in order to ensure the reliability of this new

immunosensor. The AFP assays in 0.10 and 50.0 ng ml-1 AFP

solutions were tested, and each assay was carried out using eight

individual similarly prepared immunosensors. Figures 8A–C

illustrate their sensorgrams, and Figures 8B and D represent

the corresponding peak currents (ca. 66.35 and 121.40 µA),

respectively. It is noted that no significant difference is observed

in the current responses. The relative standard deviations

(RSDs) obtained for the eight individual constructed

immunosensors in detecting 0.10 and 50.0 ng ml-1 AFP are

0.70% and 0.43%, respectively. As a result, the immunosensor’s

prec is ion and reproducibi l i ty are acceptable . The

immunosensor’s stability was tested by measuring the current

response in the detection of 10 ng ml-1 AFP after storage from 1

to 42 days. When not in use, the immunosensor was kept at 4°C

in a moisture chamber. Six individual immunosensors at each

storage period were tested, and the result is shown in Figure 9.

After the 3-week storage, the immunosensor’s current response

is changed by ca. 4.2%. After 6 weeks, the current response
FIGURE 7

Interference study of the immunosensor incubated with different solutions: blank (PBS), individual and mixed interference solutions (100 ng ml-1), and 1
ng ml-1 AFP solutions without and with the presence of individual and mixed interferences (100 ng ml-1).
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FIGURE 9

Stability of the electrochemical immunosensor in the detection of AFP.
A B

DC

FIGURE 8

Reproducibility study of the immunosensor for the detection of 0.10 and 50.0 ng ml-1 AFP; (A, C) DPV sensorgrams and (B, D) corresponding
current responses.
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remains at 91.4% of its original current, indicating that the

immunosensor is sufficiently stable.
Application of the immunosensor

To assess the analytical reliability and application potential

of the proposed immunosensor, analyzing the AFP level in

human serum to find the recovery amount is studied. An AFP

standard solution was added into and diluted with a 50-fold

diluted human serum solution (Phetsang et al., 2021; Yaiwong

et al., 2021) to obtain four different final concentrations (1, 5,

10, and 25 ng ml-1). The detection of AFP in such solutions is

performed using the immunosensor. As listed in Table 2,

percentage recovery and %RSD values range from 95.39%

to 102.1% and 0.66% to 1.93%, respectively. The results

suggest acceptable applicability of the immunosensor in

clinical analysis.
Conclusions

This research work creates a new portable sandwich-like

electrochemical immunosensor based on a 2D nanomaterial

composite for the quantitative detection of AFP using a

signaling MB/aptamer complex. A 2D MoSe2/2D WSe2-

modified SPCE as an electrochemical sensing platform gives

good device performance in detection. The 2D MoSe2/2D WSe2
provides an improvement in electrode reactivity and kinetics.

The increment of current response correlates with the amount of

target AFP because of specific bindings of aptamer to the

captured AFP and MB. The suggested immunosensor has two

wide linear ranges (1–50 and 50–50,000 pg ml-1) with a low LOD

of 0.85 pg ml-1, high reproducibility, exceptional selectivity, and

acceptable stability. The strategy for fabrication of the developed

biosensor also offers good device sensitivity, shorter analytical
Frontiers in Cellular and Infection Microbiology 14
time, and cost-effectiveness for clinical analysis. The

immunosensor from this study is an alternative tool to detect

the AFP biomarker for clinical liver cancer diagnosis and

monitoring, and it can be further developed for the

electrochemical assays of other tumor indicators.
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