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Pleurotus citrinopileatus, a golden oyster mushroom, is popular in Asia and has
pharmacological functions. However, the effects of polysaccharide-peptides extracted
from Pleurotus citrinopileatus and underlying mechanism on digestive systme have not yet
been clarified. Here, we determined the composition of two polysaccharide-peptides (PSI
and PSII) from P. citrinopileatus and investigated the protective effects of on
hepatoprotective and gut microbiota. The results showed that PSI and PSII were made
up of similar monosaccharide moieties, except for the varying ratios. Furthermore, PSI and
PSII showed that they have the hepatoprotective effects and significantly increased the
viabilities and cellular total superoxide dismutase activities increased significantly in
HepG2 cells. Intracellular triglyceride content and extracellular alanine aminotransferase
and aspartate transaminase contents markedly decreased following treatment with 40
and 50 mg/mL PSI and PSII, respectively. Moreover, PSI and PSII activated the
adiponectin pathway and reduced lipid accumulation in liver cells. PSI and PSII elevated
short-chain fatty acid concentrations, especially butyric and acetic acids. 16S rRNA gene
sequencing analysis showed that PSI promoted the relative abundances of Bifidobacteria,
Lactobacillus, Faecalibacterium, as well as Prevotella generas in the gut. PSII markedly
suppressed the relative abundances of Escherichia-Shigella and Bacteroides generas. We
speculate that the PSI and PSII play a role through liver-gut axis system. Polysaccharide-
peptides metabolize by gut microbiota to produce short-chain fatty acids (SCFAs) and in
turn influence liver functions.

Keywords: polysaccharide-peptide, Pleurotus citrinopileatus, hepatoprotection, gut microbiota, liver-gut axis
INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is highly associated with chronic liver injury. In many
countries, high-fat diets have increased the prevalence of NAFLD and lead to serious public health
problems. NAFLD represents a spectrum of metabolic states that range from simple steatosis to
non-alcoholic steatohepatitis, cirrhosis, hepatoma and fibrosis (Marchesini et al., 2001; Farrell and
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Larter, 2006). As a disorder, NAFLD is characterized by
hypertriglyceridemia and abnormal hepatic fat accumulations,
which are linked to obesity and insulin resistance (Svegliati-
Baroni et al., 2006; Utzschneider and Kahn, 2006). Diet, exercise
and antioxidants are currently the most effective treatments
for NAFLD.

As a functional food, edible mushrooms of Pleurotus spp. are a
potential natural source for drug candidates. Polysaccharides and
polysaccharide-peptide complexes from Pleurotus spp. have anti-
obesity (Sheng et al., 2019), antioxidant (Wu and Chen, 2017),
antibacterial (Li and Shah, 2014), and antitumor effects (Ren et al.,
2015) and have been shown to exhibit immunomodulatory
activities, inducing macrophages to produce interleukins, nitric
oxide, interferon-g, and tumor necrosis factor (Cui et al., 2015).
Moreover, polysaccharides from Pleurotus have been shown to
have heptoprotective effects, including antihyperlipidemic
activities. Indeed, these polysaccharides have preventive effects
on high-fat diet-induced hyperlipidemia in mice, indicating
potential beneficial effects on liver function (Zhang et al., 2017).
Intracellular mycelial polysaccharides from Pleurotus geesteranus
exhibit hepatoprotective effects against alcohol-induced acute
alcoholic liver diseases, suggesting potential curative effects in
alcoholic hepatitis (Song et al., 2018). However, the
heptaoprotective effects of polysaccharide-peptides from P.
citrinopileatus have not been fully evaluated.

The hepatointestinal system mediated nutrient digestion and
absorption. NAFLD is associated with gut dysbiosis and changes
in its metabolic functions (Boursier et al., 2016). Polysaccharide-
peptides could be digest by gut microbiota to produce short-
chain fatty acids (SCFAs) and in turn affect the liver functions.
The study of the gut-liver axis can help us to understand the basic
biology of NAFLD and identify the mechanisms between gut
microbiota and liver damage (Tripathi et al., 2018).

In this study, we evaluated the hepatoprotective effects of two
polysaccharide-peptides (PSI and PSII) extracted from P.
citrinopileatus in a hepatoma cell model (HepG2 cells) of
NAFLD. Furthermore, to assess the impacts of PSI and PSII on
human gut microbiota, 16S rRNA sequencing techniques were
used to explore the effects of PSI and PSII on gut microbiota by
adult fermentation models in vitro, which is an effective tool for
evaluating the impact of prebiotics on gut microbiota. Our
findings elucidated on the use of PSI and PSII in improving
human gut microbiota and develop new protective agents for the
treatment of fatty liver and gut disease.
MATERIALS AND METHODS

Materials and Regents
P. citrinopileatus fruiting bodies preserved at the Plant Protection
Institute of Beijing Academy of Agricultural and Forestry Sciences
(Beijing, China) were sun-dried and crushed to obtain fine powder.
Standard monosaccharides (D-xylose, D-glucose, D-galacturonic
acid, D-mannose, D-glucuronic acid, L-rhamnose, D-fructose, D-
arabinose and D-galactose), oleic acid, DEAE-cellulose, 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
well as palmitate were purchased from Sigma-Aldrich (USA).
Superdex-200 column was acquired from the General Electric
Company (GE, USA), and HepG2 cells were bought from the
American Type Tissue Culture Collection (Manassas, VA, USA).
Fetal bovine serum (FBS), Dulbecco’s modified Eagle’s minimum
essential medium (DMEM), phosphate-buffered saline (PBS),
penicillin, trypsin solution, and streptomycin were purchased
from Invitrogen (USA). Protein, triglyceride (TG), alanine
transaminase (ALT), aspartate transaminase (AST), and
superoxide dismutase (SOD) assay kits were obtained from
Nanjing Jiancheng Bioengineering Institute (Nanjing, Jiangsu
Province, China). The rest of the chemicals as well as solvents
were of analytical reagent grades and were obtained from Peking
Chemical Co. (Beijing, China).

Extraction and Purification of
Polysaccharide-Peptides
The sun-dried fruiting bodies of P. citrinopileatus were placed in
a high-speed universal crusher and repeatedly crushed four times
for 20 s each. The crude polysaccharide-peptides were extracted
thrice using the hot water method with a solid/liquid ratio of
1:50, at 90°C, and a 3 h extraction time. The obtained aqueous
extracts were combined and concentrated using a rotary
evaporator, and proteins in the concentrated solutions were
removed by Sevag reagent (n-butanol and chloroform, 1:4 v:v
ratio). Precipitation of the deproteinized solution was achieved
by the addition of 100% ethanol (1:4 v:v ratio) at 25°C overnight,
after which the polysaccharide-peptide extracts were acquired by
centrifugation. Then, the polysaccharide-peptide extracts were
dissolved in distilled water and applied to a DEAE-cellulose
column (1 cm × 30 cm) that had been equilibrated with a 10 mM
phosphate buffered solution (pH 7.0). Sequential elution of the
column was done using 0, 0.2, and 1 M NaCl solution at a 1.5
mL/min flow rate. The adsorbed peak D2 and unadsorbed peak
D1, with high carbohydrate levels as assessed by the phenol-
sulfuric acid assay were collected. After being concentrated, to
obtain bioactive PSI and PSII, the D1 and D2 fractions were
applied to a Superdex-200 column equilibrated with ultrapure
water using an AKTA Purifier (GE Healthcare).

Analysis of PSI and PSII Monosaccharide
Compositions, Fourier-Transform Infrared
(FT-IR) Spectra, and Molecular Weights
Monosaccharide contents of PSI and PSII were analyzed by gas
chromatography-mass spectrometry (GC-MS) (Yu et al., 2015).
The IR spectras of PSI as well as PSII were evaluated by FT-IR (iS5
FTIR Spectrometer; Nicolet, USA) at 4000 to 400 cm−1. Molecular
weights and homogeneity of PSI/PSII were determined by high-
performance gel permeation chromatography (GPC) on TSK
GMPWXL columns. Freeze-dried polysaccharide-peptides were
analyzed by the Science Spectrum R&DCenter (Shandong, China).

Analysis of N-Terminal and Inner Amino
Acid Sequences of PSI and PSII
Polysaccharide-peptide bands excised from sodium dodecyl
sulfate-polyacrylamide (SDS-PAGE) gels were transferred to
May 2022 | Volume 12 | Article 892049
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polyvinylidenedifluoride membranes followed by Coomassie
brilliant blue R-250 staining. Stained bands were analyzed by
the automated Edman degradation assay (Wang et al., 2018).
Polysaccharide bands on SDS-PAGE gels was obtained and
subjected to partial amino acid sequence analysis at Tsinghua
University (Beijing, China). Using known sequences, sequence
homology was searched in the BLAST/NCBI database.

Analysis of the Cytotoxicity of
Polysaccharides in Hepatocytes
Culture of HepG2 (hepatoma) cells was done in DMEM with
10% (v/v) FBS, 100 IU/mL penicillin and 100 mg/L streptomycin.
Incubation at 37°C was done in a 5% (v/v) CO2 humid
environment. Then, cells were seeded onto 96-well plates at 8
× 103 cells/well followed by incubation for 12 h before the
addition of PSI and PSII at 100, 200, 500, 800, or 1000 mg/mL
concentrations. Incubation was then carried out for 72 more
hours. Cytotoxicity was determined by MTT assays. Viability of
PBS-treated control cells was set at 100%.

Preparation of Double Factor-Induced
Hepatocyte Injury
Free fatty acids (FFAs) and ethanol can induce hepatocyte injury.
Palmitic and oleic acids were mixed (1:2, respectively) and used as
FFAs (Garcia et al., 2011). For the hepatocyte injury model, HepG2
cell seeding in 96-well plates was done at a density of 8 × 103 cells/
well and subsequently incubated for 12 h after which FFAs and
ethanol were added. Then, incubation was done for an additional
24 h, and MTT assays conducted to assess cell viabilities. PBS was
used to replace FFAs and ethanol as the control.

Protective Effects of PSI and PSII on
Hepatocytes
To determine the protective effects of the polysaccharide-
peptides, injured HepG2 cells (as described above) were treated
for 48 h using varying PSI and PSII concentrations. Cell
viabilities were then measured by MTT assays. Injured HepG2
cells were used as the negative control, and PBS without FFAs or
ethanol was used as the positive control.

Optimal concentrations ofPSI andPSIIwere used to analyze the
mechanisms of action. Seeding of HepG2 cells was done in 6-well
plates at 3 × 104 cells/well, the injury model was induced, and cells
were treated for 48 h using PSI and PSII. The cells as well as culture
mediumwere thenobtained to evaluate theprotective and repairing
abilities. The ALT as well as AST activities in the culture medium
were measured using colorimetric assay kits. Quantification of
cellular TG contents and SOD activities were done using
commercial assay kits according to the manufacturers’ protocols.
ALT, AST, and SOD results were expressed as U/mg protein. Oil-
red O staining was done for histological analyses of cellular lipids.

Gene Expression
Expressions of lipid metabolism-associated genes in the
adiponectin pathway were assessed by quantitative real-time
reverse transcription polymerase chain reaction (qRT-PCR).
The TRIzol reagent (Invitrogen) was used for total RNA
extraction from each sample. Reverse transcription of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
extracted RNA was done in the presence of oligo (dT) using
EasyScript First-Strand cDNA Synthesis SuperMix (Transgen,
China), as instructed by the manufacturer. qRT-PCR was
conducted according to the Maxima SYBR Green/ROX qRT-
PCR Master Mix (Fermentas, USA) protocol using an ABI 7500
(Applied Biosystems, USA). In these experiments, GAPDH
(glyceraldehyde 3-phosphate dehydrogenase) was used as the
endogenous control. Gene-specific primer sets for mouse
AdipoR2 (anti-adiponectin receptor 2), AMPK (AMP-activated
protein kinase), CPTl (carnitine palmitoyltransferase 1), ACOX-
1 (acyl-CoA Oxidase 1), PPARa (peroxisome proliferator–
activated receptor a) were referred to previous studies (Spruiell
et al., 2015; Han et al., 2019; Li et al., 2021). qRT-PCR conditions
were: predenaturation for 5 min at 95°C and 40 cycles of 95°C for
30 s and for 1 min at 60°C. Relative expressions were calculated
via the DDCt method. Experiments were conducted in triplicates.

In Vitro Batch Culture Fermentation
Preparation of the in vitro fermentation medium was done in 10
mL vials with 5 mL of anaerobic YCFA medium. YCFA medium
consisted of (per 100 ml): 1 g casitone, 0.25 g yeast extract, 0.4 g
NaHCO3, 0.1 g cysteine, 0.045 g K2 HPO4, 0.045 g KH2 PO4,
0.09 g NaCl, 0.009 g MgSO%.7H2 O, 0.009 g CaCl2, 0.1 mg
resazurin, 1 mg haemin, 1 µg biotin, 1 µg cobalamin, 3 µg p-
aminobenzoic acid, 5 µg folic acid and 15 µg pyridoxamine.
Medium preparation was done in two different concentration
gradients of PSI and PSII (40 µg/mL, 200 µg/mL) respectively, as
the sole carbon source. Six healthy human volunteers (aged 22 -
42 years) from Hangzhou were enrolled in this study. They were
fed on a normal Chinese diet, had no digestive ailments and had
not been administered with any medications, including
antibiotics, for >3 months before sample collections. Prior to
inclusion in the study, volunteers were required to sign written
informed consents. The Ethics Committee of Hangzhou center
for diesease control and prevention (No. 202047) approved this
study. The collection of fresh fecal samples was done in the
morning. Then, preparation of fecal dilutions (10%) was done
using the anaerobic phosphate buffer (PBS).

Suspension of 0.8 g Fresh fecal samples in 10 mL 0.1 mol/L
anaerobic phosphate-buffered saline at pH 7.0 in an automatic
fecal homogenizer was performed to obtain 10% (w/v) slurries.
Then, 5 ml of the fecal suspensions were respectively inoculated
into PSI and PSII medium as well as YCFA basal medium
(control group). Batch fermentation was conducted via the
inoculation of 1% fecal slurry into each vial followed by 24 h
of incubation at 37°C.

SCFAs Quantification
Crotonic acid (0.6464g)was added into 2.5% (W:V)metaphosphoric
acid solution (100 ml) to prepare the crotonic acid metaphosphoric
acid solution. Then, 0.5 mL of the fermentation broth was added to
0.1 mL of the crotonic acid metaphosphoric acid followed by
acidification at -20°C for more than 24 h prior to gas
chromatography (GC) assay. Centrifugation of the fermentation
broth was done for 3 min at 12, 000 rpm. Subsequently, SCFAs
were detected in the supernatant via GC (GC, Shi-madzu, GC-2010
Plus, Japan).GCassaysweredoneusing aDB-FFAPcolumn(Agilent
May 2022 | Volume 12 | Article 892049
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Technologies, USA) and a H2 flame ionization detector. Acetic,
propionic, isobutyric, butyric, pentanoic, isopentanoic and caproic
acids were obtained from Sigma.

16S rRNA Gene Sequencing
Bacterial 16S rRNA gene V3–V4 hypervariable regions were
amplified using 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and
806R (5’-GGACTACHVGGG TWTCTAAT-3’) primers. The
sequencing was performed on an Illumina MiSeq 2500 platform,
and analyzed OEbiotech Co. Ltd. (Shanghai, China) for microbial
diversity analysis. Representatively, one sequence was obtained from
every Operational taxonomic unit (OTU), which were clustered at a
similarity of 97% using Mothur software system. Taxonomic
annotation of the OTUs was done using the RDP Classifier
against SILVA database v. 128, at a 0.7 confidence threshold.
Communal structure was analyzed at the phylum level and genus
level based on the taxonomic information. LEfSe evaluations of the
various groups were conducted and thresholds on the logarithmic
score of linear discriminant analysis (LDA) set at 2.0. Deposition of
the 16S sequencing data in the NCBI Sequence Read Archive (SRA)
database was done under the accession number PRJNA751711.

Statistical Analyses
Data are expressed as means ± SD of 3 replicates, and one-way
ANOVA was used for statistical analyses by SPSS software.
p ≤0.05 denoted statistical significance.
RESULTS

Extraction and Purification of
Polysaccharide-Peptides
The crude polysaccharide-peptides were acquired by water
extraction and alcohol precipitation from P. citrinopileatus
fruiting bodies. Following removal of free proteins, purification of
the crude polysaccharide-peptides was done in a DEAE-cellulose
column. Three fractions eluted by phosphate buffer (10 mM, pH
7.0), phosphate buffer (10 mM, pH 7.0) with NaCl (0.2 M), and
phosphate buffer (10 mM, pH 7.0) with 1 M NaCl were obtained
(Figure 1A). D1 and D2, which had high polysaccharide content
detected by the phenol-sulfuric acid assay, were then obtained,
concentrated, dialyzed, and subjected to additional purification.
The results showed that both D1 as well as D2 generated a single
peak each (PSI and PSII, respectively; Figures 1B, C).

Molecular Weight and Infrared
Spectroscopy Analysis of PSI and PSII
The average molecular weight (Mw), number average molecular
weight (Mn), and polydispersity (Mw/Mn) of PSI and PSII were
evaluated by GPC. The Mw of PSI was 1.216 × 106 Da, while its
Mw/Mn value was 1.06. The Mw of PSII was 1.608 × 104 Da,
while its Mw/Mn value was 1.478 (Table 1).

Infrared absorption spectroscopy results are shown in Figure 2.
PSI andPSII formedabroadpeak about 3400 cm-1, representing the
stretching vibration absorption peak of hydroxyl groups (Wang
et al., 2017), andanabsorptionpeaknear 2929 cm-1, representingC-
H (Dou et al., 2015), a characteristic peak of sugar. The peak near
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
1640 cm-1 indicated that both polysaccharides hadC=Obonds (Liu
et al., 2018), and the peaknear 1017 cm-1maybe related to vibration
of the ester carboxyl group (Lefsih et al., 2017). The absorption at
1411 cm-1 (Figure 2A) and 1418 cm-1 (Figure 2B) from O-H
deformation indicated uronic acids presence. Regions at about 1078
cm-1 and 1047 cm-1 were representative of a galactan skeleton. Both
A

B

C

FIGURE 1 | Purification of polysaccharide-peptides from P. citrinopileatus.
(A) The crude polysaccharide-peptides were separated by chromatography
on DEAE-cellulose columns. (B) D1 was further subjected to Sephadex 200
column chromatography. (C) D2 was further separated by Sephadex 200
column chromatography.
May 2022 | Volume 12 | Article 892049
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PSI andPSII exhibited typical polysaccharide absorptionpeakswith
characteristic groups of sugars, but with differences in chemical
structure. ThepeaksofPSI at 1353-1 cmand1259cm-1 indicated the
presence of an S=O bond, corresponding to an ester sulfate group.
PSI had a specific band in the region of 1200–1000 cm-1, related to
ring vibrations overlapping with stretching vibrations of the (C–
OH) side groups as well as (C–O–C) glycosidic band vibrations.

Monosaccharide Component Analysis
PSI andPSII were subjected to acid hydrolysis and analyzed byGC-
MS after hydrolysis and silylation. PSI was made up of arabinose,
mannose, glucose, and galactose at a molar ratio of 1:6.2:6.3:67.2
(Figure 3A). PSII was a heteropolysaccharide made up of xylose,
glucose, and galactose at a molar ratio of 1:83.9:4.2 (Figure 3B).

N-Terminal and Internal Amino Acid
Sequences
N-terminal amino acid sequences of PSI and PSII were
DLEQVVEGDW and KLSEGWERPP, respectively (Supplemental
FigureS1). Evaluationof internal amino acid sequences revealed that
the two peptide sequences of PSI, ITQSVLNIDR as well as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
VFQTNPNAFFR, were comparable to that of fruiting body lectin
from P. cornucopiae . Moreover , the PSI sequences
IQDKEGIPPDQQR, ISGLIYEETR, and KNGEILGGSWMVGAK
were similar to those of ubiquitin, histone 4, and nucleoporin nup40
of Lentinula edodes (Supplemental Table S1). And three peptide
sequences SSEREDLWQSTHVGHDEFSK, DGSLTGTYHSNV
GEVPPTYHLSGR, and EDLWQSTHVGHDEFSK of PSII showed
considerable homology with tamavidin-1 from P. cornucopiae
(Supplemental Table S2). SYELPDGQVITIGNER and
VAPEEHPVLLTEAPLNPK of PSII showed high similarity with
actin-1 fromHypsizygus marmoreus.

Cytotoxicity of PSI and PSII in HepG2 Cells
As shown in Table 2, cell viability was maintained at a high level
(more than 90%) for all concentrations of PSI and PSII. Thus,
PSI and PSII were not cytotoxic towards HepG2 cells and could
be used as potential hepatoprotective drugs.

Protective Roles of PSI and PSII In Vitro
Induction of HepG2 cell injury models reduced cell viability to
approximately 55–60%. MTT assays showed that all
A

B

FIGURE 2 | Fourier transform infrared (FT-IR) spectra of P. citrinopileatus polysaccharide-peptides. (A) PSI, (B) PSII.
TABLE 1 | The average molecular weight (Mw), number average molecular weight (Mn), molecular weights, Z-average molecular weight (Mz) and the molecular weight
of the highest peak (Mp) of PSI and PSII, as determined by GPC.

Molecular weight (Da) PSI PSII

Mn 1.147 × 106 1.088 × 104

Mw 1.216 × 106 1.608 × 104

Mz 1.231 × 106 2.135 × 104

Mp 4.308 × 105 1.601 × 104
May 2022 | Volume 12 | Ar
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concentrations of PSI and PSII (30–80 mg/mL) increased the
survival rates of injured cells. Compared with the model group,
PSI and PSII increased cell viability up to 345.69% at 40 mg/mL
and 96.15% at 50 mg/mL, respectively (Figure 4). The healing
effects of PSI were better than those of PSII, and the survival rates
of injured cells in the PSI and PSII treatment groups were both
higher relative to the control group.

Protective Mechanisms of PSI and PSII on
the Liver Cellular Index
Excessive alcohol and fat intake can disrupt TG metabolism in
hepatocytes (Wang et al., 2015). When synthesis rate exceeds
anabolism rate, TGs accumulate in the liver, representing the
main pathogenic factor of fatty liver disease (Yin et al., 2017).
Accordingly, we evaluated the effects of PSI and PSII on
intracellular TG content, total SOD activity, and extracellular
AST and ALT levels. Intracellular TGs were significantly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
decreased by PSI and PSII treatment relative to model group
(P < 0.05; Figure 5), suggesting that PSI and PSII blocked cellular
lipid accumulation. These findings were verified by Oil-red O
staining (Figure 6).

Moreover, PSI and PSII enhanced SOD activities in the cells by
66.35% and 21.71% (Table 3), respectively, indicating that the
polysaccharide-peptides could increase the antioxidant activity of
the cells. Extracellular ALT andAST levels could serve as indicators
of liver cell status, with high values indicating liver damage (Kew,
2000).Additionally, PSI andPSII significantly reduced extracellular
ALT and AST activities (P < 0.05; Table 3), indicating that PSI and
PSII could block extracellular transaminase release, maintain cell
integrity, and protect the liver.

Therapeutic Mechanisms of PSI and PSII
We then analyzed changes in the adipogenic pathway in
response to PSI and PSII by qRT-PCR (Figure 7). Notably,
TABLE 2 | The cytotoxicity of PSI and PSII in HepG2 cells.

Concentration (mg/mL) Control Cell viability (%)

100 200 500 800 1000

PSI 100 94.37 ± 3.62 100.40 ± 11.66 107.85 ± 5.28 108.71 ± 2.86 107.18 ± 7.24
PSII 95.18 ± 5.93 95.68 ± 2.87 106.05 ± 2.05 95.52 ± 4.25 94.93 ± 6.38
M
ay 2022 | Volume 12 |
Data are presented as means ± SD (n = 3).
A

B

FIGURE 3 | GC-MS chromatograms of P. citrinopileatus polysaccharide-peptides. (A) PSI, (B) PSII.
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expression levels of genes encoding AdipoR2, AMP-activated
protein kinase (AMPK), peroxisome proliferator-activated
receptor a (PPARa), carnitine palmitoyltransferase 1 (CPTI),
and peroxisomal acyl-coenzyme A oxidase 1 (ACOX1) were
markedly suppressed in the model group. Additionally, levels of
TG in the model group were significantly increased. In contrast,
treatment with PSI and PSII reduced hepatic lipogenesis by
increasing AdipoR2, AMPK, CPTl, PPARa, and ACOX1
expression in adipocytes to stimulate adiponectin secretion as
well as activate the FFA metabolic pathway, thereby promoting
triglyceride metabolism and reducing lipid accumulation.

Effects of PSI and PSII on SCFAs
Production
Productions of SCFAs were achieved via fermentation of PSI and
PSII in human fecal samples (Figure 8). Relative to the control
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
group, propionate, acetate and butyrate concentrations were
significantly higher in the PSI group. However, isobutyric acid
and isopentanoic acid concentrations in the PSII group were low
relative to the control group.
Effect of PSI and PSII on the Bacterial
Community
Based on 16S rRNA sequencing, Bacteroidetes, Proteobacteria,
Firmicutes, Fusobacteriota and Actinobacteria were found to be
the abundant phyla in test samples (Figure 9A). After 24 h of
fermentation with PSI and PSII, the increases in abundances of
Bacteroidota and Fusobacteriota for PSI and Bacteroidota and
Actinobacteria and for PSII, respectively were significant.
However, Proteobacteria enrichment in PSI and PSII groups
were markedly suppressed relative to the control group.
FIGURE 4 | Hepatoprotective effects of PSI and PSII in vitro. ##P < 0.01 relative to the control group, **P < 0.01 vs the model group, *P < 0.05 compared to the
model group.
FIGURE 5 | Effects of PSI and PSII on intracellular TG contents. ##P < 0.01 relative to the control group, *P < 0.05 vs the model group.
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The relative abundances of Bacteroides, Fusobacterium,
Faecalibacterium, Catenibacterium, Blautia at the genus level
were markedly higher in the PSI groups relative to the control
group, and the abundance of Escherichia-Shigella, Sutterella and
Flavonifractor were markedly low in the PSI group relative to the
control (Figure 9B). In the PSII groups, the abundance of
Prevotella, Sutterella, Bifidobacterium, Lactococcus, Lactobacillus,
Holdemanella, Catenibacterium andBlautiawere significantly high
at genus levels, and the relative abundance of Escherichia-Shigella,
Faecalibacterium, Lachnospiraceae_UCG 004, Lachnoclostridium
and Flavonifractor was significantly lower relative to the
control group.

Identification of bacterial taxa with significant differences in
abundance between polysaccharide-peptides groups and the control
groups was done by the linear discriminant analysis (LDA) effect size
(LEfSe) method. Wilcoxon rank-sum test revealed that PSI enhanced
the proliferation of Bacteroides, Erysipelatoclostridiaceae, Hungatella,
Carnobacterium, Acidaminococcaceae and Phascolarctobacterium,
while Proteobacteria, Enterobacteriaceae, Oscillospiraceae,
Desulfovibrionaceae, Lachnoclostridium, Flavonifractor, Odoribacter
and Coriobacteriaceae were markedly enriched in PSII group
(Figure 10A). These results showed that PSI and PSII can regulate
gut microbiota and promote probiotic proliferation.

Correlation Between Gut Microbiota and
Metabolites Factors
Previous experiments showed that PSI had better effects on SCFAs
production. Therefore, we studied the correlation between the
production of SCFAs metabolites and the gut microbiota
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
community of PSI. Acetic acid and propionic acid content were
positively associated with the abundance Bacteroidota (Figure 10B).
However, their contents were negatively associated with
Proteobacteria abundance. Butyric acid levels negatively correlated
with Campilobacterota abundance.
DISCUSSION

NAFLD, a prevalent chronic liver disease, can cause several other
diseases (Cohen et al., 2011). Some research groups have confirmed
the protective effects of a polysaccharide-enriched fraction from
Pleurotus sp. in a model of liver injury. Polysaccharides from P.
geesteranus show antioxidant and hepatoprotective effects for
preventing alcoholic liver diseases (Song et al., 2018). Moreover,
mycelia zinc polysaccharides fromP. djamor preventCCl4-induced
acute liver damage, and alleviate liver as well as kidney injury in
streptozocin-induced diabetic mice (Zhang et al., 2015).

The clinical diagnosis of NAFLD is based on elevation of
serum ALT as well as AST, biochemical biomarkers of liver
injury (Song et al., 2014; Liang et al., 2015). Herein, we
investigated the antihyperlipidemic and hepatoprotective effects
of PSI and PSII in a hepatocyte injury model. The results showed
that PSI and PSII significantly reversed elevations in ALT/AST
levels and increased cellular SOD activity and cell viability in
HepG2 cells. SOD is a key player regulating cellular defense
against reactive oxygen species. Moreover, PSI and PSII
treatment markedly reduced TG contents, supporting the
therapeutic effects of PSI and PSII in fatty liver.
FIGURE 6 | Microscopic view of Oil-red O staining in HepG2 cells. (A) Control, (B) model, (C) PSI, (D) PSII.
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Some groups reported the immune-promoting effects of
polysaccharide-peptide and polysaccharide-protein complex
obtained from mushrooms (Wang et al., 1996; Maruyama and
Ikekawa, 2005). Li et al. isolated a polysaccharide-peptide complex
from Pleurotus abalonus and found that it exhibited anti-
proliferative, hypoglycaemic and antioxidant activities
(Li et al., 2012). In this study, the IQDKEGIPPDQQR and
KNGEILGGSWMVGAK sequences of PSI were similar to those
of ubiquitin and nup40. nup40 has mitotic spindle checkpoint
functions and inhibits cell cycle progression by binding to
components of the ubiquitin-conjugating system (Chen et al.,
2004).Thismayexplain theeffects ofPSIonpromotingcell viability.

FFAs stimulate hepatic TG synthesis and cause hepatic
lipotoxicity as well as inflammation, thereby promoting NAFLD
pathogenesis. Disruption of hepatocyte FFA metabolism and de
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
novo FFA synthesis are involved in establishment of NAFLD. In
hepatocytes, PPAR-a is a central regulator of TG and fatty acid
metabolism (Aoyama et al., 1998; Kamijo et al., 2007) Additionally,
ACOX1catalyzesfirst aswell as rate-limiting enzyme in fatty acidb-
oxidation pathway of very-long-chain fatty acids in peroxisomes,
which can be activated by PPARa to stimulate hepatic fatty acid
oxidation (Fan et al., 1998). Gene expression assays revealed that
PSI and PSII up-regulated PPARa and ACOX1 as well as the
downstream target gene CPT1, which is involved in peroxisomal
as well asmitochondrial oxidation of fatty acids (Pathil et al., 2015).
Thus, PSI and PSII stimulated FFA oxidation, which resulted in
burning of excess energy in the liver.

Adiponectin, which is secreted by adipocytes, promotes the
oxidation of fatty acids and modulates lipid metabolism by
mediating the expressions of hepatic genes critical for lipid
TABLE 3 | Protective effects of PSI and PSII on cellular indexes.

Control group Model group PSI PSII

T-SOD (U/mg) 12.67 ± 0.54* 7.37 ± 1.09 12.26 ± 0.94* 8.97 ± 0.37*
ALT (U/mg) 19983 ± 580* 27871 ± 71 22086 ± 96* 24825 ± 367*
AST (U/mg) 4846 ± 16* 13880 ± 43 8953 ± 93* 11662 ± 180*
May 2022 | Volume 12 | A
Data are presented as means ± SD (n = 3). *P < 0.05 compared with the model group
FIGURE 7 | qRT-PCR assessment of PSI and PSII on gene expressions in adiponectin pathways. Data are presented as means ± SD (n = 3). ##P < 0.01 relative to
the control group, **P < 0.01 vs the model group.
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FIGURE 8 | Short-chain fatty acids (SCFAs) levels in fermentation broth after 24 h of fermentation. (G1) 40 µg/mL PSI, (G2) 200 µg/mL PSI, (H1) 40 ug/mL PSII, (H2)
200 ug/mL PSII. *P < 0.05, **P < 0.01 or ***P < 0.001 relative to control group.
A B

FIGURE 9 | Effects of PSI and PSII on the gut microbiota. (A) Bacterial phyla abundance; (B) Microbial communities on the genus level after various treatments. The
ordinate denotes the species name, color gradient denotes species proportions, while the right side of the figure represents the value represented by the color gradient.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org May 2022 | Volume 12 | Article 89204910

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Huang et al. Interaction Between Ploysaccharide-Peptides and Microbiota
metabolism (Liu et al., 2012). The AMPK pathway can also be
activated adiponectin. AdipoR2 is an adiponectin receptor that
regulates lipid metabolism, fatty-acid oxidation, and
adiponectin-induced biological functions (Kadowaki and
Yamauchi, 2005; Ghadge et al., 2018) Therefore, adiponectin
and AdipoR2 are potential therapeutic targets to combat
NAFLD. In this study, we found that that PSI and PSII
increased AMPK and AdipoR2 mRNA expression, implying
that PSI and PSII activated adiponectin-related pathways and
accelerated lipid metabolism.

SCFAs, major by-products of microbial metabolism in the liver,
play important roles in maintaining large intestine functions and
colon epithelial cells. Many prebiotics can increase the content of
SCFAs (Liu et al., 2020; Zhao et al., 2021), which could promote the
human health via an indirect effects. SCFAs can mediated the gut
microbiota modulation of host physiological as well as pathological
processes (Koh et al., 2016). This study showed that PSI
fermentation markedly elevated acetic, propionic, and butyric
acids concentrations. Acetic acid, butyric acid and propionic acid
are important mediators of fermented dietary fibers onmetabolism
(den Besten et al., 2013). Butyrate and propionate could suppress
lipolysis as well as de novo lipogenesis, thereby protecting against
obesity development (Lin et al., 2012; Heimann et al., 2015). Acetic
acid can reduce appetite and intestinal inflammation, and inhibits
human fat decomposition (Duseja and Chawla, 2014; Gangarapu
et al., 2014). It indicates that PSI enhances the proliferation of
bacteria that produce acetic acid, butyric acid and propionic acid.
We speculate that the PSI andPSII play a role through liver-gut axis
system. Intestinal allows microbial metabolites and microbial-
associated molecular patterns to translocate to the liver (Tripathi
et al., 2018; Ciaula et al., 2020). Polysaccharide-peptides were
metabolized by gut microbiota to produce SCFAs and in turn
influence liver functions. The study of the gut-liver axis can help us
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
to understand the basic biology of NAFLD and identify the
mechanisms between gut microbiota and liver damage, which
offers an opportunity for interventions during liver disease.

Themicrobiota is required to maintain hepatic homeostasis. The
changes in the gutmicrobiota have disclosed the interaction with the
pathogenesis of NAFLD. The severity of NAFLD is associated with
dysbiosis of the intestinal (Marra and Svegliati-Baroni, 2018). On
account of gut microbiota is linked to NAFLD, we evaluated the
effects of PSI and PSII on human intestinal microflora structure.
Analysis of bacterial community composition showed that PSI and
PSII promoted the proliferation of probiotics and inhibit the harmful
bacteria, such as Escherichia-Shigella. There was a markedly elevated
abundance of Phascolarctobacterium, Bacteroides, Fusobacterium,
Faecalibacterium, Catenibacterium, Blautia at the genus level in the
PSI groups. Phascolarctobacterium is a SCFAs producer, including
acetic acid and propionic acid (Wu et al., 2017). Accumulated
evidences showed that Phascolarctobacterium faecium has
beneficial effects on the NAFLD rat model (Panasevich et al., 2016).
Fusobacteriota metabolized carbohydrates into butyrate which has
benefits to the host (Zhang et al., 2021). In thePSII groups, therewere
markedly higher abundances of Bifidobacterium, Lactococcus,
Lactobacillus, Desulfovibrionaceae, Lachnospiraceae, Odoribacter,
Coriobacteriaceae and Blautia at the genus level. Bifidobacterium
and Lactobacillus are well-known probiotics. Blautia is also a
potential probiotic (Liu et al., 2021). Coriobacteriaceae can
metabolize cholesterol-derived metabolites (McGavigan et al.,
2017). The family of Lachnospiraceae produces short-chain fatty
acids, and previous study corroborated Lachnospiraceae in
attenuating colitis and obesity (Guo et al., 2020). Odoribacter
splanchnicus induced Th17 cell activated and protected mice from
colitis and colorectal cancer (Xing et al., 2021). Evidence suggests that
PSI and PSII can be used as potential prebiotics to regulate
gut microbiota.
A B

FIGURE 10 | Diagram of the linear discriminant (LDA) score and correlation analysis. (A) LDA score between the control and polysaccharide-peptieds groups (PSI,
PSII), with a 2.0 score threshold. Diagram of the linear discriminant analysis (LDA) score between the control and polysaccharide-peptides groups (PSI, PSII), with a
2.0 score threshold. (B) Correlations between gut microbiota and metabolites SCFA factor fermented by PSI. The X axis represents SCFA species while the Y axis
denotes the species. Color depth denotes R value size, while the legend denotes color intervals for various R values. *P < 0.05, **P < 0.01, ***P < 0.001.
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CONCLUSION

In this study, we purified and characterized PSI and PSII from
P. citrinopileatus. These compounds exhibited hepatoprotective
effects in injured HepG2 cells by increasing the survival rates of
injured cells, reducing the accumulation of intracellular TGs,
elevating the intracellular activity of SOD, decreasing
extracellular transaminase release, and maintaining cell
integrity. These results suggested that PSI and PSII exert
potent antioxidant and hepatoprotective activities by regulating
the expression of hepatic genes. On the other hand, PSI and PSII
supplementation to an in vitro fermentation model affected
human gut microbiota richness as well as diversity. PSII
enhanced the abundance of Oscillospiraceae, Lachnospiraceae,
Lachnoclostridium , Flavonifractor , Desulfobacterota ,
Desulfovibrionaceae , Coriobacteriaceae , Rikenellaceae,
Odoribacter. PSI and PSII decrease the abundance of
Escherichia-Shigella genera. Moreover, PSI enhanced the
metabolism of acetic, propionic, as well as butyric acids in
bacteria, which resulted in elevated concentrations of SCFAs.
These SCFAs exert an indirect effect on intestinal microbiota and
liver functions. PSI and PSII might play a role through liver-gut
axis system. These findings provided important insights into the
potential applications of PSI and PSII in ameliorating symptoms
of liver disease and gut microbiota modulation.
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