Check for updates

OPEN ACCESS

EDITED BY Jia-Jia Chen, Jiangsu Vocational College of Agriculture and Forestry, China

REVIEWED BY Yu-Guang Fan, Hainan Medical University, China Nian-Kai Zeng, Hainan Medical University, China Yulian Wei, Institute of Applied Ecology (CAS), China

*CORRESPONDENCE Bao-Kai Cui Cuibaokai@bjfu.edu.cn

SPECIALTY SECTION This article was submitted to Fungal Pathogenesis, a section of the journal Frontiers in Cellular and Infection Microbiology

RECEIVED 05 December 2022 ACCEPTED 28 December 2022 PUBLISHED 23 January 2023

CITATION

Liu S, Sun Y-F, Ji X, Song C-G, Xu T-M and Cui B-K (2023) Molecular phylogeny and taxonomy of the remarkable genus *Leptoporus* (Polyporales, Basidiomycota) with description of a new species from Southwest China. *Front. Cell. Infect. Microbiol.* 12:1116035.

doi: 10.3389/fcimb.2022.1116035

COPYRIGHT

© 2023 Liu, Sun, Ji, Song, Xu and Cui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Molecular phylogeny and taxonomy of the remarkable genus *Leptoporus* (Polyporales, Basidiomycota) with description of a new species from Southwest China

Shun Liu, Yi-Fei Sun, Xing Ji, Chang-Ge Song, Tai-Min Xu and Bao-Kai Cui*

Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China

Leptoporus is a rare and remarkable genus, mainly occurring in coniferous forests in the Northern Hemisphere. Recent phylogenetic studies showed that *Leptoporus* belongs to Irpicaceae in the phlebioid clade. It is worth noting that most species in the phlebioid clade can cause white-rot decay, except for the *Leptoporus* species, which can cause a brown-rot decay. In this study, we performed phylogenetic and taxonomic studies of *Leptoporus* and related genera. Molecular phylogenetic analyses were conducted based on sequences from multiple loci including the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the largest subunit of RNA polymerase II gene (*RPB1*), the second largest subunit of RNA polymerase II gene (*RPB2*), and the translation elongation factor 1- α gene (*TEF1*). Combined with morphological characteristics, a new species, *Leptoporus submollis* sp. nov., is discovered and illustrated from Southwest China.

KEYWORDS

brown-rot fungi, Irpicaceae, macro-fungi, multi-gene phylogeny, taxonomy

Introduction

Irpicaceae Spirin & Zmitr. was proposed by Spirin (2003) with *Irpex* Fr. as type genus. The great majority of the species in Irpicaceae, even in the phlebioid clade, can cause a white rot, except for *Leptoporus mollis* (Pers.) Quél., which causes a brown rot (Gilbertson and Ryvarden, 1986; Chen et al., 2021). This makes *Leptoporus* a remarkable genus, which has attracted many mycologists' attention.

Leptoporus Quél. was established by Quél (1886), with *L. mollis* as type species, which was described as causing a brown rot on dead conifers and mainly distributed in the Northern Hemisphere (North America, Europe, and Asia) (Gilbertson and Ryvarden, 1986; Ryvarden and Gilbertson, 1993; Núñez and Ryvarden, 2001; Yu et al., 2004; Volobuev, 2019). In North

10.3389/fcimb.2022.1116035

America, L. mollis has been reported in boreal coniferous forests (Gilbertson and Ryvarden, 1986). In Europe, this species was considered as a rare species and needs to be protected (Ryvarden and Gilbertson, 1993; Volobuev, 2019). In Asia, this species has been reported from China and Japan and was also considered as a rare species (Núñez and Ryvarden, 2001; Yu et al., 2004). Previously, Leptoporus was placed in Polyporaceae Fr. ex Corda (Yu et al., 2004; Kirk et al., 2008). Subsequently, some phylogenetic studies showed that Leptoporus was embedded in the phlebioid clade (Binder et al., 2005; Lindner and Banik, 2008; Binder et al., 2013). In recent years, Leptoporus has been proven to belong to Irpicaceae and was closely related to Ceriporia Donk (Justo et al., 2017; Chen et al., 2021). Currently, although the databases Index Fungorum (http://www. indexfungorum.org/) and MycoBank (https://www.mycobank.org/) still record some Leptoporus species, only one species, L. mollis, is accepted in recent studies (Lindner and Banik, 2008; He et al., 2019; Chen et al., 2020; Chen et al., 2021).

During investigations on the diversity of polypores in the Hengduan Mountains of Southwest China, one undescribed species of *Leptoporus* was discovered. To confirm the affinity of the undescribed species corresponding to *Leptoporus*, phylogenetic analyses of Irpicaceae were carried out based on the combined sequences datasets of ITS+nLSU and ITS+nLSU+*RPB1*+*RPB2*+*TEF1*.

Materials and methods

Morphological studies

The examined specimens were mostly deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University, China (BJFC), and some specimens were deposited at the Institute of Applied Ecology, Chinese Academy of Sciences, China (IFP). Macromorphological descriptions were based on the field notes and measurements of herbarium specimens. Special color terms followed Petersen (1996). Micromorphological data were obtained from the dried specimens and observed under a light microscope following Ji et al. (2022) and Sun et al. (2022). Sections were studied at a magnification up to ×1,000 using a Nikon Eclipse 80i microscope and phase-contrast illumination (Nikon, Tokyo, Japan). Drawings were made with the aid of a drawing tube. Microscopic features, measurements, and drawings were made from slide preparations stained with Cotton Blue and Melzer's reagent. Spores were measured from sections cut from the tubes. To present variations in the size of basidiospores, 5% of measurements were excluded from each end of the range and extreme values are given in parentheses.

In the text, the following abbreviations were used: IKI, Melzer's reagent; IKI–, neither amyloid nor dextrinoid; KOH, 5% potassium hydroxide; CB, Cotton Blue; CB–, acyanophilous; L, mean spore length (arithmetic average of all spores); W, mean spore width (arithmetic average of all spores); Q, variation in the L/W ratios between the specimens studied; n (a/b), number of spores (a) measured from given number (b) of specimens.

Molecular studies and phylogenetic analysis

A cetyl trimethylammonium bromide (CTAB) rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd., Beijing, China) was used to extract total genomic DNA from dried specimens, and the polymerase chain reaction (PCR) was performed according to the manufacturer's instructions with some modifications as described by Cui et al. (2019) and Shen et al. (2019). The internal transcribed spacer (ITS) regions were amplified with primer pairs ITS5 and ITS4 (White et al., 1990). The large subunit of nuclear ribosomal RNA gene (nLSU) regions were amplified with primer pairs LR0R and LR7 (http://www.biology.duke.edu/fungi/mycolab/primers.htm). *RPB1* was amplified with primer pairs RPB1-Af and RPB1-Cr (Matheny et al., 2002). *RPB2* was amplified with primer pairs fRPB2-f5F and bRPB2-7.1R (Matheny, 2005). Part of *TEF1* was amplified with primer pairs EF1-983F and EF1-1567R (Rehner, 2001).

The PCR cycling schedule for ITS and *TEF1* included an initial denaturation at 95°C for 3 min, followed by 35 cycles at 94°C for 40 s, 54°C for ITS, 55°C for *TEF1* for 45 s, 72°C for 1 min, and a final extension at 72°C for 10 min. The PCR cycling schedule for nLSU included an initial denaturation at 94°C for 1 min, followed by 35 cycles at 94°C for 30 s, 51°C for 1 min, 72°C for 1.5 min, and a final extension at 72°C for 10 min. The PCR cycling schedule for *RPB1* and *RPB2* included an initial denaturation at 94°C for 2 min, followed by 10 cycles at 94°C for 40 s, 60°C for 40 s, and 72°C for 2 min, then followed by 37 cycles at 94°C for 45 s, 55°C–57°C for 1.5 min, 72°C for 2 min, and a final extension of 72°C for 10 min. The PCR products were purified and sequenced at Beijing Genomics Institute (BGI), China, with the same primers. All newly generated sequences were deposited at GenBank (Table 1).

Additional sequences were downloaded from GenBank (Table 1). All sequences of ITS, nLSU, *RPB1*, *RPB2*, and *TEF1* were respectively aligned in MAFFT 7 (Katoh and Standley, 2013; http://mafft.cbrc.jp/ alignment/server/) and manually adjusted in BioEdit (Hall, 1999). Alignments were spliced in Mesquite (Maddison and Maddison, 2017). The missing sequences and ambiguous nucleotides were both coded as "N."

Most parsimonious phylogenies were inferred from the combined 2-gene dataset (ITS+nLSU) and 5-gene dataset (ITS +nLSU+RPB1+RPB2+TEF1), and their congruences were evaluated with the incongruence length difference (ILD) test (Farris et al., 1994) implemented in PAUP* 4.0b10 (Swofford, 2002) under heuristic search and 1,000 homogeneity replicates. Phylogenetic analyses followed Sun et al. (2020). In phylogenetic reconstruction, the sequences of Phanerochaete albida Sheng H. Wu and P. alnea (Fr.) P. Karst. obtained from GenBank were used as outgroups to root trees following Liu et al. (2022c). Maximum parsimony (MP) analysis was applied to the combined multiple gene datasets, and the tree construction procedure was performed in PAUP* version 4.0b10. All characters were equally weighted, and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed, and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1,000 replicates (Felsenstein, 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each most parsimonious tree (MPT) generated. RAxmL v.7.2.8 was used to construct a maximum likelihood (ML) tree with a GTR +G+I model of site substitution including estimation of gamma-

GenBank accessions Sample Species Locality References RPB2 nLSU RPB1 TEF1 Byssomerulius corium FCUG 2701 Russia MZ636931 GQ470630 MZ748415 OK136068 MZ913668 Wu et al., 2010; Chen et al., 2021 Byssomerulius corium Wu 1207-55 China MZ636932 MZ637096 Chen et al., 2021 Floudas and Hibbett, 2015 Byssomerulius corium FP-102382 USA KP135007 KP135230 KP134802 KP134921 Ceriporia Dai 11327 China JX623953 JX644045 Jia et al., 2014 bubalinomarginata Ceriporia Dai 12499 China IX623954 IX644044 Iia et al. 2014 _ _ bubalinomarginata Ceriporia viridans Spirin 5909 Finland KX236481 KX236481 Spirin et al., 2016 _ Miettinen Ceriporia viridans Netherlands KX752600 KX752600 Miettinen et al., 2016 1170 Crystallicutis cf. serpens Wu 1608-130 China MZ636946 MZ637108 Chen et al., 2021 _ _ _ Crystallicutis cf. serpens Wu 1608-81 China MZ636947 MZ637109 MZ748435 OK136094 MZ913699 Chen et al., 2021 Crystallicutis serpens HHB-15692 USA KP135031 KP135200 KP134785 KP134914 Floudas and Hibbett, 2015 Justo et al., 2017; Chen et al., Cytidiella albida GB-1833 Spain KY948748 KY948889 KY948960 OK136069 MZ913675 2021 MZ637110 MZ748429 OK136070 Chen et al. 2021 Cytidiella albomarginata Wei 18-474 China MZ636948 MZ913678 MZ637111 Cytidiella albomarginata Wu 0108-86 China MZ636949 MZ748430 OK136071 MZ913677 Chen et al., 2021 Cytidiella albomellea FP-102339 USA MZ636950 MZ637112 MZ748431 Chen et al., 2021 _ Justo et al., 2017; Chen et al., Cytidiella nitidula T-407 USA KY948747 MZ637113 KY948961 OK136072 MZ913676 2021 Floudas and Hibbett, 2015; Chen Efibula gracilis FD-455 USA KP135027 MZ637116 KP134804 OK136077 MZ913679 et al., 2021 Efibula intertexta Wu 1707-93 China MZ636953 MZ637117 MZ748416 OK136085 Chen et al., 2021 Efibula intertexta Wu 1707-96 China MZ636954 MZ637118 MZ748417 OK136086 Chen et al., 2021 _ Efibula matsuensis W11 1011-18 China MZ636956 MZ637119 MZ748418 OK136078 MZ913680 Chen et al. 2021 MZ637129 MZ748419 OK136079 MZ913681 Chen et al. 2021 Efibula tropica Wei 18-149 China MZ636967 China Chen 3596 MZ636966 MZ637128 Efibula tropica Chen et al., 2021 (Taiwan) Efibula yunnanensis Wu 880515-1 China MZ636977 GQ470672 MZ748420 OK136080 MZ913682 Wu et al., 2010; Chen et al., 2021 Gloeoporus orientalis Wei 16-485 China MZ636980 MZ637141 MZ748443 OK136095 MZ913709 Chen et al., 2021 L-15726 USA KP135214 Floudas and Hibbett, 2015 Gloeoporus pannocinctus KP135060 KP134867 KP134973 _ MZ913683 Irpex flavus Wu 0705-1 China MZ636988 MZ637149 MZ748432 OK136087 Chen et al., 2021 Irpex flavus W11 0705-2 China MZ636989 MZ637150 Chen et al. 2021 _ _ _ KUC South Irpex hydnoides KJ668510 KJ668362 Jang et al., 2016 20121109-01 Korea MZ637151 WHC 1372 MZ636990 Chen et al., 2021 Irpex laceratus China _ _ _ Irpex lacteus DO 421 Sweden IX109852 IX109852 _ IX109882 Binder et al., 2013 FD-9 USA KP135026 KP135224 Floudas and Hibbett, 2015 Irpex lacteus KP134806 _ _ FP-55521-T KP135024 USA KP135202 KP134805 KP134915 Floudas and Hibbett, 2015 ,Irpex latemarginatus _ Dai 7165 China KY131834 KY131893 Wu et al., 2017 Irpex latemarginatus _ _ _ Wu 1608-14 China MZ636991 MZ637152 MZ748434 MZ913685 Chen et al., 2021 Irpex lenis _

TABLE 1 A list of species, specimens, and GenBank accession number of sequences used for phylogenetic analyses in this study.

(Continued)

TABLE 1 Continued

Species	Sample no.	Locality	GenBank accessions					- (
			ITS	nLSU	RPB1	RPB2	TEF1	References
Irpex rosettiformis	Meijer 3729	Brazil	JN649346	JN649346	_	JX109875	JX109904	Sjökvist et al., 2012; Binder et al., 2013
Irpex sp.	Wu 910807- 35	China	MZ636994	GQ470627	MZ748433	OK136088	MZ913684	Wu et al., 2010; Chen et al., 2021
Leptoporus mollis	LE BIN 3849	Russia	MG735341		_	_	_	Psurtseva, 2010
Leptoporus mollis	Dai 21062	Belarus	MW377302	MW377381	_	MW337062	MW337129	Present study
Leptoporus mollis	JV 12117	USA	MW377303		—	—	—	Present study
Leptoporus mollis	RLG-7163	USA	KY948794	MZ637155	KY948956	OK136101	MZ913693	Justo et al., 2017; Chen et al., 2021
Leptoporus submollis	Cui 17584	China	MW377305	MW377383	MW337195	MW337064	MW337131	Present study
Leptoporus submollis	Cui 17514	China	MW377304	MW377382	MW337194	MW337063	MW337130	Present study
Leptoporus submollis	Cui 18379	China	ON468433	ON468245	ON468447	ON468449	ON468451	Present study
Leptoporus submollis	Dai 20182	China	ON468434	ON468246	ON468448	ON468450	ON468452	Present study
Meruliopsis albostramineus	HHB 10729	USA	KP135051	KP135229	KP134787	_	_	Floudas and Hibbett, 2015
Meruliopsis crassitunicata	CHWC 1506- 46	China	LC427010	LC427034	_	_	_	Chen et al., 2020
Meruliopsis leptocystidiata	Wu 1708-43	China	LC427013	LC427033	LC427070	_	_	Chen et al., 2020
Meruliopsis parvispora	Wu 1209-58	China	LC427017	LC427039	LC427065	_	_	Chen et al., 2020
Meruliopsis taxicola	GC 1704-60	China	LC427028	LC427050	LC427063	_	_	Chen et al., 2020
Phanerochaete albida	GC 1407-14	China	MZ422788	MZ637179	MZ748384	OK136013	MZ913704	Chen et al., 2021
Phanerochaete alnea	FP-151125	USA	KP135177	MZ637181	MZ748385	OK136014	MZ913641	Floudas and Hibbett, 2015; Chen et al., 2021
Phanerochaetella angustocystidiata	Wu 9606-39	China	MZ637020	GQ470638	MZ748422	OK136082	MZ913687	Wu et al., 2010; Chen et al., 2021
Phanerochaetella angustocystidiata	Wu 1109-56	China	MZ637019	MZ637227	MZ748421	OK136081	MZ913686	Chen et al., 2021
Phanerochaetella exilis	HHB-6988	USA	KP135001	KP135236	KP134799	KP134918	_	Floudas and Hibbett, 2015
Phanerochaetella formosana	Chen 479	China	MZ637023	GQ470650	MZ748424	OK136084	MZ913718	Wu et al., 2010; Chen et al., 2021
Phanerochaetella leptoderma	Chen 1362	China	MZ637025	GQ470646	MZ748423	OK136083	MZ913689	Wu et al., 2010; Chen et al., 2021
Phanerochaetella sp.	HHB-11463	USA	KP134994	KP135235	KP134797	KP134892	_	Floudas and Hibbett, 2015
Phanerochaetella sp.	HHB-18104	New Zealand	KP135003	KP135254	KP134798	KP134917	_	Floudas and Hibbett, 2015
Phanerochaetella xerophila	HHB-8509	USA	KP134996	KP135259	KP134800	KP134919	MZ913688	Floudas and Hibbett, 2015; Chen et al., 2021
Raduliporus aneirinus	HHB-15629	USA	KP135023	KP135207	KP134795	_	-	Floudas and Hibbett, 2015
Raduliporus aneirinus	Wu 0409-199	China	MZ637068	MZ637267	_	OK136096	MZ913712	Chen et al., 2021
Resiniporus pseudogilvescens	Wu 9508-54	China	MZ637069	MZ637269	_	_	_	Chen et al., 2021
Resiniporus pseudogilvescens	Wu 1209-46	China	KY688203	MZ637268	MZ748436	OK136097	MZ913713	Chen et al., 2018; Chen et al., 2021

(Continued)

Species	Sample no.	Locality	GenBank accessions					Defense
			ITS	nLSU	RPB1	RPB2	TEF1	References
Resiniporus resinascens	BRNM 710169	Czech Republic	FJ496675	FJ496698	_	_	_	Tomšovský et al., 2010
Trametopsis aborigena	Robledo 1236	Argentina	KY655336	KY655338	_	_	_	Gómez-Montoya et al., 2017
Trametopsis aborigena	Robledo 1238	Argentina	KY655337	KY655339	_	_	_	Gómez-Montoya et al., 2017
Trametopsis brasiliensis	Meijer 3637	Brazil	JN710510	JN710510	_	_	_	Miettinena et al., 2012
Trametopsis cervina	Cui 18017	China	ON041041	ON041057	—	ON099414	ON083780	Liu et al., 2022c
Trametopsis cervina	Dai 21820	China	ON041044	ON041060	ON099407	ON099416	ON083783	Liu et al., 2022c
Trametopsis cervina	TJV-93-216T	USA	JN165020	JN164796	JN164839	JN164877	JN164882	Justo and Hibbett, 2011
Trametopsis montana	Cui 18363	China	ON041038	ON041054	ON099403	ON099411	ON083777	Liu et al., 2022c
Trametopsis montana	Cui 18383	China	ON041039	ON041055	ON099404	ON099412	ON083778	Liu et al., 2022c
Trametopsis tasmanica	Cui 16606	Australia	ON041048	ON041064	ON099409	ON099419	ON083787	Liu et al., 2022c
Trametopsis tasmanica	Cui 16607	Australia	ON041049	ON041065	ON099410	ON099420	ON083788	Liu et al., 2022c

TABLE 1 Continued

Newly generated sequences for this study are shown in bold.

distributed rate heterogeneity and a proportion of invariant sites (Stamatakis, 2006). The branch support was evaluated with a bootstrapping method of 1,000 replicates (Hillis and Bull, 1993).

MrModeltest 2.3 (Posada and Crandall, 1998; Nylander, 2004) was used to determine the best-fit evolution model for the combined multigene dataset for Bayesian inference (BI). BI was calculated with MrBayes 3.1.2 with a general time-reversible (GTR) model of DNA substitution and a gamma distribution rate variation across sites (Ronquist and Huelsenbeck, 2003). Four Markov chains were run for two runs from random starting trees for 2.5 million generations (ITS +nLSU) and for 4 million generations (ITS+nLSU+RPB1+RPB2 +TEF1), and trees were sampled every 100 generations. The first one-fourth generations were discarded as burn-in. A majority rule consensus tree of all remaining trees was calculated. Branches that received BT support for MP, ML, and Bayesian posterior probabilities (BPP) greater than or equal to 75% (MP and ML) and 0.95 (BPP) were considered as significantly supported. Trees were viewed in FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). Sequence alignment was deposited at TreeBase (submission ID: 29921; http://www. treebase.org).

Results

Phylogeny

The combined 2-gene (ITS+nLSU) sequences dataset had an aligned length of 1,556 characters, including gaps (655 characters for ITS, 901 characters for nLSU), of which 998 characters were constant, 78 were variable and parsimony-uninformative, and 480 were parsimony-informative. MP analysis yielded 14 equally parsimonious trees (TL = 2,272, CI = 0.386, RI = 0.760, RC = 0.294, HI = 0.614). The best model for the concatenate sequence dataset estimated and applied in the BI was GTR+I+G with equal frequency of nucleotides. ML

analysis resulted in a similar topology as MP and Bayesian analyses, and only the ML topology is shown in Figure 1.

The combined 5-gene (ITS+nLSU+*RPB1*+*RPB2*+*TEF1*) sequences dataset had an aligned length of 4,234 characters,

FIGURE 1

Maximum likelihood tree illustrating the phylogeny of Irpicaceae based on the combined sequence dataset of ITS+nLSU. Branches are labeled with maximum likelihood bootstrap higher than 50%, parsimony bootstrap proportions higher than 50%, and Bayesian posterior probabilities more than 0.90, respectively. Bold names = New species. including gaps (655 characters for ITS, 901 characters for nLSU, 1,192 characters for *RPB1*, 1,019 characters for *RPB2*, 467 characters for *TEF1*), of which 2,327 characters were constant, 207 were variable and parsimony-uninformative, and 1,700 were parsimony-informative. MP analysis yielded 33 equally parsimonious trees (TL = 10,223, CI = 0.332, RI = 0.665, RC = 0.221, HI = 0.668). The best model for the concatenate sequence dataset estimated and applied in the BI was GTR+I+G with equal frequency of nucleotides. ML analysis resulted in a similar topology as MP and Bayesian analyses, and only the ML topology is shown in Figure 2.

The combined datasets of ITS+nLSU and ITS+nLSU+*RPB1* +*RPB2*+*TEF1* contained sequences obtained from 74 fungal samples representing 45 taxa within the phlebioid clade (Figures 1, 2). The phylogenetic trees (Figures 1, 2) generated by MP, ML, and Bayesian analyses show that the new species *Leptoporus submollis* grouped with *L. mollis* with strong support (100% MP, 100% ML, 1.00 BPP; Figures 1, 2) within Irpicaceae.

Taxonomy

Leptoporus Quél., Enchiridion Fungorum in Europa media et praesertim in Gallia Vigentium: 175, 1886.

Type species: *L. mollis* (Pers.) Quél. MycoBank: MB 17951

FIGURE 2

Maximum likelihood tree illustrating the phylogeny of Irpicaceae based on the combined sequence dataset of ITS+nLSU+*RPB1*+*RPB2*+*TEF1*. Branches are labeled with maximum likelihood bootstrap higher than 50%, parsimony bootstrap proportions higher than 50%, and Bayesian posterior probabilities more than 0.90, respectively. Bold names = New species. Basidiomata annual, effused-reflexed to pileate or resupinate, soft corky to corky or fragile. Pileal surface pale vinaceous to milky coffee, azonate, glabrous to tomentose. Pore surface flesh pink to snuff brown; pores circular to angular. Context pinkish buff to buff, corky. Tubes concolorous with pore surface, corky. Hyphal system monomitic; generative hyphae simple-septate, IKI-, CB-. Cystidia absent, cystidioles present. Basidiospores allantoid, cylindrical to oblong-ellipsoid, hyaline, thin-walled, smooth, IKI-, CB-. Causing a brown rot.

Specimen examined: *L. mollis*. BELARUS. Brestskaya Voblasts, Belavezhskaya Pushcha National Park, on stump of *Picea* sp., 19 October 2019, *Dai 21062* (BJFC 032721). CHINA. Heilongjiang, Yichun, Fenglin Nature Reserve, on fallen trunk of *Picea* sp., 5 August 2000, *Penttilä 13266* (IFP 014914). FINLAND. Koillissmaa, Oulanka National Park, on rotten wood of *Picea* sp., 17 September 1997, *Dai 2674* (IFP 014915).

Leptoporus submollis B.K. Cui & Shun Liu, sp. nov. (Figures 3, 4) MycoBank: MB 840366

Diagnosis. L. submollis is characterized by its pale vinaceous to pale reddish pileal surface when fresh, becoming grayish brown to milky coffee upon drying, flesh pink to brownish vinaceous pore surface when fresh, becoming isabelline to snuff brown when dry, circular to angular pores (4–6 per mm) and cylindrical to oblong-ellipsoid basidiospores (4–4.8 μ m × 1.8–2.3 μ m).

Type. CHINA. Sichuan Province, Yanyuan County, on stump of *Pinus yunnanensis*, elevation 3,100 m, 15 August 2019, *Cui 17514* (holotype, BJFC 034373).

Etymology. "*submollis*" (Lat.) refers to the new species is similar to *L. mollis* in morphology.

FIGURE 3 Basidiocarps of *Leptoporus submollis* (*Cui* 17514) (scale bar = 1.5 cm). Photo by Bao-Kai Cui.

Microscopic structures of *Leptoporus submollis* (drawn from the holotype). (A) Basidiospores. (B) Basidia and basidioles. (C) Cystidioles. (D) Hyphae from trama. (E) Hyphae from context. Scale bar: $A = 5 \mu m$; $B - E = 10 \mu m$. Drawings by Shun Liu.

Fruiting body. Basidiomata annual, effused-reflexed to pileate, solitary, soft corky, without odor or taste when fresh, corky and light in weight when dry. Pileus semicircular or irregular, projecting up to 2.5 cm, 5 cm wide, and 2 cm thick at base. Pileal surface pale vinaceous to pale reddish when fresh, becoming grayish brown to milky coffee upon drying, glabrous. Pore surface flesh pink to brownish vinaceous when fresh, becoming isabelline to snuff brown when dry; sterile margin narrow to almost lacking; pores circular to angular, 4–6 per mm; dissepiments slightly thick to thick, entire to lacerate. Context pinkish buff to buff, corky, up to 10 mm thick. Tubes concolorous with pore surface, corky, up to 6 mm long.

Hyphal structure. Hyphal system monomitic; generative hyphae simple-septate, IKI-, CB-; tissues unchanged in KOH.

Context. Generative hyphae hyaline, thin- to slightly thick-walled, occasionally branched, interwoven, 3.5– $8.5 \ \mu m$ in diameter.

Tubes. Generative hyphae hyaline, thin- to slightly thick-walled, occasionally branched, 2–5 μ m in diameter. Cystidia absent; fusoid cystidioles present, hyaline, thin-walled, 11–17 μ m × 2–4 μ m. Basidia clavate, bearing four sterigmata and a basal simple-septum, 12–20 μ m × 3–5 μ m; basidioles dominant, in shape similar to basidia, but smaller.

Spores. Basidiospores cylindrical to oblong-ellipsoid, hyaline, thin-walled, smooth, occasionally with 1–3 small oily inclusions, IKI–, CB–, 4–4.8 μ m × 1.8–2.3 μ m, L = 4.46 μ m, W = 2.06 μ m, Q = 2.02–2.13 (n = 90/3).

Type of rot. Brown rot.

Additional specimens examined. CHINA. Sichuan Province, Muli County, on stump of *Pinus yunnanensis*, elevation 3,050 m, 16 August 2019, *Cui 17584* (paratype, BJFC 034443). Xizang Autonomous Region (Tibet), Linzhi, on living gymnosperm tree, elevation 3,100 m, 18 July 2019, *Dai 20182* (paratype, BJFC 031853); Mangkang County, on stump of *Abies* sp., elevation 3,900 m, 8 September 2020, *Cui 18379* (paratype, BJFC 035238).

Discussion

Decay mode is one of the most stable characteristics in Polyporales and has been used as the basis for distinguishing genera (Gilbertson and Ryvarden, 1986; Ryvarden, 1991). Among the Polyporales, nearly all of the brown-rot fungi species are clustered in the antrodia clade, which have been widely studied in recent years (Ortiz-Santana et al., 2013; Han et al., 2014; Shen et al., 2014; Song et al., 2014; Han et al., 2015; Han and Cui, 2015; Shen et al., 2015; Chen et al., 2015; Han et al., 2016; Chen and Cui, 2016; Song and Cui, 2017; Song et al., 2018; Shen et al., 2019; Liu et al., 2021a; Liu et al., 2021a; Liu et al., 2022a; Liu et al., 2022b; Liu et al., 2022d). In the phlebioid clade, most species can produce white-rot decay, with one notable exception, *L. mollis*, which can produce brown-rot decay (Binder et al., 2013; Chen et al., 2021). This result suggests that brown-rot fungi may have evolved more than once in Polyporales (Floudas and Hibbett, 2015).

In the present study, the phylogenetic analyses of Irpicaceae are inferred from the combined datasets of ITS+nLSU sequences (Figure 1) and ITS+nLSU+*RPB1*+*RPB2*+*TEF1* sequences (Figure 2). The results show that the genera of *Ceriporia* and *Leptoporus* grouped together and formed a highly supported lineage (Figures 1, 2). Morphologically, *Ceriporia* spp. differs by possessing resupinate basidiomata, absence of cystidioles, and causing a white decay of wood (Chen et al., 2020; Chen et al., 2022). Therefore, *Ceriporia* and *Leptoporus* are treated as independent genera in Irpicaceae (Chen et al., 2020; Chen et al., 2021).

In our current phylogenetic analyses, L. mollis and L. submollis grouped together and formed a well-supported lineage (Figures 1, 2). Morphologically, L. mollis may be confused with L. submollis by possessing annual growth habit, soft to corky basidiomata when fresh, and monomitic hyphal system with simple-septate generative hyphae, while L. mollis differs in having larger pores (2-4 per mm), narrower contextual generative hyphae (3-4 µm), and larger basidiospores (4.7–6 μ m × 1.6–2.1 μ m; Yu et al., 2004). Geographically, L. mollis has been reported in Asia, Europe, and North America (Gilbertson and Ryvarden, 1986; Ryvarden and Gilbertson, 1993; Núñez and Ryvarden, 2001; Yu et al., 2004). Yu et al. (2004) reported Leptoporus in China for the first time, which is distributed in Heilongjiang Province of China. In their study, the morphological characteristics of the studied specimens fit well with L. mollis. Therefore, there are two species of Leptoporus in China, viz., L. mollis is distributed in Northeast China, while L. submollis is distributed in Southwest China. In terms of ecological habits, Leptoporus species mainly grow on fallen trunk or stump of various coniferous trees (especially on Abies sp., Picea sp., and Pinus sp.) in the alpine plateau and cold temperate zone and cause a brown decay of wood.

Nomenclature

BI, Bayesian inference; BJFC, Herbarium of the Institute of Microbiology, Beijing Forestry University; BGI, Beijing Genomics Institute; BPP, Bayesian posterior probabilities; BT, bootstrap; CB,

Cotton Blue; CB-, acyanophilous; GTR+I+G, general time reversible +proportion invariant+gamma; IFP, Herbarium of the Institute of Applied Ecology, Chinese Academy of Sciences; IKI, Melzer's reagent; IKI-, neither amyloid nor dextrinoid; ILD, incongruence length difference test; ITS, internal transcribed spacer; KOH, 5% potassium hydroxide; L, mean spore length (arithmetic average of all spores); ML, maximum likelihood; MP, maximum parsimony; MPT, most parsimonious tree; n (a/b), number of spores (a) measured from given number (b) of specimens; nLSU, large subunit of nuclear ribosomal RNA; Q, variation in the L/W ratios between the specimens studied; RPB1, DNA-directed RNA polymerase II subunit 1; RPB2, DNAdirected RNA polymerase II subunit 2; TL, tree length; W, mean spore width (arithmetic average of all spores); CI, consistency index; RI, retention index; RC, rescaled consistency index; TBR, tree-bisectionreconnection HI, homoplasy index; TEF1, translation elongation factor 1-α.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

Author contributions

B-KC designed the research. B-KC, SL, Y-FS, XJ, C-GS and T-MX prepared the samples. SL, C-GS and T-MX conducted the molecular experiments and analyzed the data. SL, Y-FS and B-KC drafted the manuscript. All authors contributed to the article and approved the submitted version.

Funding

The research is supported by the National Natural Science Foundation of China (Nos. 32270010, U2003211, 31870008), the Scientific and Technological Tackling Plan for the Key Fields of Xinjiang Production and Construction Corps (No. 2021AB004) and Beijing Forestry University Outstanding Young Talent Cultivation Project (No. 2019JQ03016).

Acknowledgments

We express our gratitude to Ms. Yan Wang (China) is grateful for help during field collections and molecular studies. Drs. Yu-Cheng Dai (China), Jun-Zhi Qiu (China), Xiao-Lan He (China), Hai-Xia Ma (China), Yuan-Yuan Chen (China), Shi-Liang Liu (China) and Long-Fei Fan (China) for assistance during field collections.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

References

Binder, M., Hibbett, D. S., Larsson, K. H., Larsson, E., Langer, E., and Langer, G. (2005). The phylogenetic distribution of resupinate forms across the major clades of mushroomforming fungi (Homobasidiomycetes). *Syst. Biodivers.* 3, 113–157. doi: 10.1017/ S1477200005001623

Binder, M., Justo, A., Riley, R., Salamov, A., López-Giráldez, F., Sjökvist, E., et al. (2013). Phylogenetic and phylogenomic overview of the polyporales. *Mycologia* 105, 1350–1373. doi: 10.3852/13-003

Chen, C. C., Chen, C. Y., Lim, Y. W., and Wu, S. H. (2020). Phylogeny and taxonomy of *Ceriporia* and other related taxa and description of three new species. *Mycologia* 112, 64–82. doi: 10.1080/00275514.2019.1664097

Chen, C. C., Chen, C. Y., and Wu, S. H. (2021). Species diversity, taxonomy and multi –gene phylogeny of phlebioid clade (Phanerochaetaceae, irpicaceae, meruliaceae) of polyporales. *Fungal Divers*. 6, 337–442. doi: 10.1007/s13225-021-00490-w

Chen, C. C., Wu, S. H., and Chen, C.Y. (2018). Four species of polyporoid fungi newly recorded from Taiwan. *Mycotaxon* 133 (1), 45–54. doi: 10.5248/133.45

Chen, Y. Y., and Cui, B. K. (2016). Phylogenetic analysis and taxonomy of the Antrodia heteromorpha complex in China. Mycoscience 57, 1–10. doi: 10.1016/j.myc.2015.07.003

Chen, Y. Y., Li, H. J., and Cui, B. K. (2015). Molecular phylogeny and taxonomy of *Fibroporia* (Basidiomycota) in China. *Phytotaxa* 203, 47-54. doi: 10.11646/ phytotaxa.203.1.4

Chen, J. J., Wang, Y. R., Wang, C. G., and Dai, Y. C. (2022). Two new species of *Ceriporia* (Irpicaceae, basidiomycota) from the Asia pacific area. *Mycol. Prog.* 21, 39–48. doi: 10.1007/s11557-021-01731-7

Chen, Y. Y., Wu, F., Wang, M., and Cui, B. K. (2017). Species diversity and molecular systematics of *Fibroporia* (Polyporales, basidiomycota) and its related genera. *Mycol. Prog.* 16, 521–533. doi: 10.1007/s11557-017-1285-1

Cui, B. K., Li, H. J., Ji, X., Zhou, J. L., Song, J., Si, J., et al. (2019). Species diversity, taxonomy and phylogeny of polyporaceae (Basidiomycota) in China. *Fungal Divers.* 97, 137–392. doi: 10.1007/s13225-019-00427-4

Farris, J. S., Källersjö, M., Kluge, A. G., Kluge, A. G., and Bult, C. (1994). Testing significance of incongruence. *Cladistics* 10, 315-319. doi: 10.1111/j.1096-0031.1994.tb00181.x

Felsenstein, J. (1985). Confidence intervals on phylogenies: An approach using the bootstrap. *Evolution* 39, 783-791. doi: 10.2307/2408678

Floudas, D., and Hibbett, D. S. (2015). Revisiting the taxonomy of *Phanerochaete* (Polyporales, basidiomycota) using a four gene dataset and extensive ITS sampling. *Fungal Biol.* 119, 679–719. doi: 10.1016/j.funbio.2015.04.003

Gilbertson, R. L., and Ryvarden, L. (1986). North American polypores 1 (Oslo: Fungiflora: Abortiporus - Lindtneria), 1–433.

Gómez-Montoya, N., Drechsler-Santos, E. R., Ferreira-Lopes, V., Tomšovský, M., Urcelay, C., and Roble-do, G. L. (2017). New insights on Trametopsis Tomšovský (Polyporales Gäum.) based on phylogenetic evidences and morphological analyses of neotropical species. *Phytotaxa* 311 (2), 155–166. doi: 10.11646/phytotaxa.311.2.3

Hall, T. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. *Nucleic Acids Symp. Ser.* 41, 95–98. doi: 10.1021/bk-1999-0734.ch008

Han, M. L., Chen, Y. Y., Shen, L. L., Song, J., Vlasák, J., Dai, Y. C., et al. (2016). Taxonomy and phylogeny of the brown-rot fungi: *Fomitopsis* and its related genera. *Fungal Divers*, 80, 343–373. doi: 10.1007/s13225-016-0364-y

Han, M. L., and Cui, B. K. (2015). Morphological characters and molecular data reveal a new species of *Fomitopsis* (Polyporales) from southern China. *Mycoscience* 56, 168–176. doi: 10.1016/j.myc.2014.05.004

Han, M. L., Song, J., and Cui, B. K. (2014). Morphology and molecular phylogeny for two new species of *Fomitopsis* (Basidiomycota) from south China. *Mycol. Prog.* 13, 905– 914. doi: 10.1007/s11557-014-0976-0

Han, M. L., Vlasák, J., and Cui, B. K. (2015). *Daedalea americana* sp. nov. (Polyporales, basidiomycota) evidenced by morphological characters and phylogenetic analysis. *Phytotaxa* 204, 277–286. doi: 10.11646/phytotaxa.204.4.4

He, M. Q., Zhao, R. L., Hyde, K. D., Begerow, D., Kemler, M., Yurkov, A., et al. (2019). Notes, outline and divergence times of Basidiomycota. *Fungal Divers* 99, 105–367. doi: 10.1007/s13225-019-00435-4

Hillis, D. M., and Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. *Syst. Biodivers.* 42, 182–192. doi: 10.1093/ sysbio/42.2.182

organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Ji, X., Zhou, J. L., Song, C. G., Xu, T. M., Wu, D. M., and Cui, B. K. (2022). Taxonomy, phylogeny and divergence times of *Polyporus* (Basidiomycota) and related genera. *Mycosphere* 13, 1–52. doi: 10.5943/mycosphere/13/1/1

Jang, Y., Jang, S., Lee, J., Lee, H., Lim, Y.W., Kim, C., et al. (2016). Diversity of woodinhabiting polyporoid and corticioid fungi in Odaesan National Park, Korea. *Mycobiology* 44 (4), 217–236. doi: 10.5941/MYCO.2016.44.4.217

Jia, B. S., Zhou, L.W., Cui, B. K., Rivoire, B., and Dai, Y. C. (2014). Taxonomy and phylogeny of *Ceriporia* (Polyporales, Basidiomycota) with an emphasis of Chinese collections. *Mycol. Prog.* 13 (1), 81–93. doi: 10.1007/s11557-013-0895-5

Justo, A., and Hibbett, D.S. (2011). Phylogenetic classification of *Trametes* (Basidiomycota, Polyporales) based on a five-marker dataset. *Taxon* 60 (6), 1567–1583. doi: 10.1002/tax.606003

Justo, A., Miettinen, O., Floudas, D., Ortiz-Santana, B., Sjökvist, E., Lindner, D., et al. (2017). A revised family-level classification of the polyporales (Basidiomycota). *Fungal Biol.* 121, 798–824. doi: 10.1016/j.funbio.2017.05.010

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780. doi: 10.1093/molbev/mst010

Kirk, P. M., Cannon, P. F., Minter, D. W., and Stalpers, J. A. (2008). Dictionary of the fungi. 10th Edn (Oxon: CAB International Wallingford, UK).

Lindner, D. L., and Banik, M. T. (2008). Molecular phylogeny of *Laetiporus* and other brown rot polypore genera in north America. *Mycologia* 100, 417–430. doi: 10.3852/07-124R2

Liu, S., Chen, Y. Y., Sun, Y. F., He, X. L., Song, C. G., Si, J., et al. (2022a). Systematic classification and phylogenetic relationships of the brown-rot fungi within the polyporales. *Fungal Divers*. doi: 10.1007/s13225-022-00511-2

Liu, S., Han, M. L., Xu, T. M., Wang, Y., Wu, D. M., and Cui, B. K. (2021a). Taxonomy and phylogeny of the *Fomitopsis pinicola* complex with descriptions of six new species from east Asia. *Front. Microbiol.* 12, 644979. doi: 10.3389/fmicb.2021.644979

Liu, S., Shen, L. L., Wang, Y., Xu, T. M., Gates, G., and Cui, B. K. (2021b). Species diversity and molecular phylogeny of *Cyanosporus* (Polyporales, basidiomycota). *Front. Microbiol.* 12, 631166. doi: 10.3389/fmicb.2021.631166

Liu, S., Song, C. G., and Cui, B. K. (2019). Morphological characters and molecular data reveal three new species of *Fomitopsis* (Basidiomycota). *Mycol. Prog.* 18, 1317–1327. doi: 10.1007/s11557-019-01527-w

Liu, S., Song, C. G., Xu, T. M., Ji, X., Wu, D. M., and Cui, B. K. (2022b). Species diversity, molecular phylogeny, and ecological habits of *Fomitopsis* (Polyporales, basidiomycota). *Front. Microbiol.* 13, 859411. doi: 10.3389/fmicb.2022.859411

Liu, S., Sun, Y. F., Wang, Y., Xu, T. M., Song, C. G., Chen, Y. Y., et al. (2022c). Taxonomy and molecular phylogeny of *Trametopsis* (Polyporales, basidiomycota) with descriptions of two new species. *MycoKeys* 90, 31–51. doi: 10.3897/mycokeys.90.84717

Liu, S., Xu, T. M., Song, C. G., Zhao, C. L., Wu, D. M., and Cui, B. K. (2022d). Species diversity, molecular phylogeny and ecological habits of *Cyanosporus* (Polyporales, basidiomycota) with an emphasis on Chinese collections. *MycoKeys* 86, 19–46. doi: 10.3897/mycokeys.86.78305

Maddison, W. P., and Maddison, D. R. (2017) Mesquite: A modular system for evolutionary analysis, version 3.2. Available at: http://mesquiteproject.org.

Miettinena, O., Larssonb, E., Sjökvist, E., and Larssonc, K. H. (2012). Comprehensive taxon sampling reveals unaccounted diversity and morphological plasticity in a group of dimitic polypores (Polyporales, Basidiomycota). *Cladistics* 28 (3), 251–270. doi: 10.1111/j.1096-0031.2011.00380.x

Miettinen, O., Spirin, V., Vlasák, J., Rivoire, B., Stenroos, S., and Hibbett, D. (2016). Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). *MycoKeys* 17, 1–46. doi: 10.3897/mycokeys.17.10153

Matheny, P. B. (2005). Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (*Inocybe*, agaricales). *Mol. Phylogenet Evol.* 35, 1–20. doi: 10.1016/j.ympev.2004.11.014

Matheny, P. B., Liu, Y. J., Ammirati, J. F., and Hall, B. D. (2002). Using RPB1 sequences to improve phylogenetic inference among mushrooms (*Inocybe*, agaricales). *Am. J. Bot.* 89, 688–698. doi: 10.2307/4131413

Núñez, M., and Ryvarden, L. (2001). East Asian Polypores 2. Synop. Fungorum 14, 170–522.

Nylander, J. A. A. (2004). MrModeltest v2. program. distributed by the author; evolutionary biology center (Uppsala: Uppsala University).

Ortiz-Santana, B., Lindner, D. L., Miettinen, O., Justo, A., and Hibbett, D. S. (2013). A phylogenetic overview of the antrodia clade (Basidiomycota, polyporales). *Mycologia* 105, 1391–1411. doi: 10.3852/13-051

Petersen, J. H. (1996). *Farvekort* (Greve: The Danish Mycological Society's colourchart. Foreningen til Svampekundskabens Fremme).

Posada, D., and Crandall, K. A. (1998). Modeltest: Testing the model of DNA substitution. *Bioinformatics* 14, 817-818. doi: 10.1093/bioinformatics/14.9.817

Psurtseva, N. V. (2010). Conservation of medicinal mushrooms in the V. L. Komarov Botanical Institute Basidiomycetes Culture Collection (LE-BIN, Russia). *Int. J. Med. Mushrooms* 12 (12), 193–199. doi: 10.1615/IntJMedMushr.v12.i2.100

Quélet, L. (1886). Enchiridion fungorum in Europa media et praesertim in Gallia vigentium. Octave Dion, Paris, 1-352.

Rehner, S. (2001) *Primers for elongation factor 1-a (EF1-a)*. Available at: http://ocid. nacse.org/research/deephyphae/EF1primer.pdf (Accessed 20 May 2020).

Ronquist, F., and Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19, 1572-1574. doi: 10.1093/bioinformatics/btg180

Ryvarden, L. (1991). Genera of polypores: Nomenclature and taxonomy. Synop. Fungorum (Oslo, Norway) 5, 363.

Ryvarden, L., and Gilbertson, R. L. (1993). European Polypores 1. Synop. Fungorum 6, 1–387.

Shen, L. L., Cui, B. K., and Dai, Y. C. (2014). A new species of *Postia* (Polyporales, basidiomycota) from China based on morphological and molecular evidence. *Phytotaxa* 162, 147–156. doi: 10.11646/phytotaxa.162.3.3

Shen, L. L., Liu, H. X., and Cui, B. K. (2015). Morphological characters and molecular data reveal two new species of *Postia* (Basidiomycota) from China. *Mycol. Prog.* 14, 7. doi: 10.1007/s11557-015-1032-4

Shen, L. L., Wang, M., Zhou, J. L., Xing, J. H., Cui, B. K., and Dai, Y. C. (2019). Taxonomy and phylogeny of *Postia*. multi-gene phylogeny and taxonomy of the brownrot fungi: *Postia* (Polyporales, basidiomycota) and related genera. *Persoonia* 42, 101–126. doi: 10.3767/persoonia.2019.42.05

Sjökvist, E., Larsson, E., Eberhardt, U., Ryvarden, L., and Larsson, K. H. (2012). Stipitate stereoid basidiocarps have evolved multiple times. *Mycologia* 104 (5), 1046–1055. doi: 10.3852/11-174

Song, J., Chen, Y. Y., Cui, B. K., Liu, H. G., and Wang, Y. Z. (2014). Morphological and molecular evidence for two new species of *Laetiporus* (Basidiomycota, polyporales) from southwestern China. *Mycologia* 106, 1039–1050. doi: 10.3852/13-402

Song, J., and Cui, B. K. (2017). Phylogeny, divergence time and historical biogeography of *Laetiporus* (Basidiomycota, polyporales). *BMC Evol. Biol.* 17, 102. doi: 10.1186/s12862-017-0948-5

Song, J., Sun, Y. F., Ji, X., Dai, Y. C., and Cui, B. K. (2018). Phylogeny and taxonomy of *Laetiporus* (Basidiomycota, polyporales) with descriptions of two new species from western China. *MycoKeys* 37, 57–71. doi: 10.3897/mycokeys.37.26016

Spirin, W. (2003). Antrodiella romellii (Irpicaceae, basidiomycetes) in Russia. Mycena 3, 48–52.

Spirin, V., Vlasák, J., Rivoire, B., Kout, J., Kotiranta, H., and Miettinen, O. (2016). Studies in the *Ceriporia purpurea* group (Polyporales, Basidiomycota), with notes on similar *Ceriporia* species. *Cryptogamie Mycol* 37 (4), 421–435. doi: 10.7872/crym/ v37.iss4.2016.421

Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. *Bioinformatics* 22, 2688–2690. doi: 10.1093/bioinformatics/btl446

Sun, Y. F., Costa-Rezende, D. H., Xing, J. H., Zhou, J. L., Zhang, B., Gibertoni, T. B., et al. (2020). Multi-gene phylogeny and taxonomy of *Amauroderma* s. lat. (Ganodermataceae). *Persoonia* 44, 206–239. doi: 10.3767/persoonia.2020.44.08

Sun, Y. F., Xing, J. H., He, X. L., Wu, D. M., Song, C. G., Liu, S., et al. (2022). Species diversity, systematic revision and molecular phylogeny of ganodermataceae (Polyporales, basidiomycota) with an emphasis on Chinese collections. *Stud. Mycol.* 101, 287–415. doi: 10.3767/10.3114/sim.2022.101.05

Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (*and other methods). version 4.0b10 (Sunderland, MA: Sinauer Associates). doi: 10.1111/j.0014-3820.2002.tb00191.x

Tomšovský, M., Menkis, A., and Vasaitis, R. (2010). Phylogenetic relationships in European Ceriporiopsis species inferred from nuclear and mitochondrial ribosomal DNA sequences. *Fungal Biol.* 114 (4), 350–358. doi: 10.1016/j.funbio.2010.02.004

Volobuev, S. (2019). To the study of aphyllophoroid fungi (Agaricomycetes, basidiomycota) in shebekinsky district, belgorod region. *Diversity Plant World* 3, 21–25. doi: 10.22281/2686-9713-2019-3-21-25

White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). "Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics," in *PCR protocols: A guide to methods and applications.* Eds. M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White (San Diego: Academic Press), 315–322. doi: 10.1016/B978-0-12-372180-8.50042-1

Wu, F., Chen, J. J., Ji, X. H., Vlasák, J., and Dai, Y. C. (2017). Phylogeny and diversity of the morphologically similar polypore genera *Rigidoporus, Physisporinus, Oxyporus*, and *Leucophellinus. Mycologia* 109, 749–765. doi: 10.1080/00275514.2017.1405215

Wu, S. H., Nilsson, H. R., Chen, C. T., Yu, S. Y., and Hallenberg, N. (2010). The whiterotting genus Phanerochaete is polyphyletic and distributed throughout the phleboid clade of the Polyporales (Basidiomycota). *Fungal Divers* 42 (1), 107–118. doi: 10.1007/ s13225-010-0031-7

Yu, C. J., Dai, Y. C., and Yuan, H. S. (2004). *Leptoporus*, a polypore genus new to China. *Mycosystema* 23, 596–598.