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Verticillium nonalfalfae and V. albo-atrum are notorious pathogenic fungi that

cause a destructive vascular disease called Verticillium wilt worldwide. Thus,

timely and quantitative monitoring of fungal progression is highly desirable for

early diagnosis and risk assessment. In this study, we developed a droplet digital

polymerase chain reaction (ddPCR) assay to detect and quantify V. nonalfalfae

and V. albo-atrum. The performance of this assay was validated in comparison

with that of a quantitative real-time polymerase chain reaction (qPCR) assay.

The standard curve analysis of the ddPCR assay showed good linearity. The

ddPCR assay indicated similar detection sensitivity to that of qPCR on pure

genomic DNA, while it enhanced the positive rate for low-abundance fungi,

especially in alfalfa stems. Receiver operating characteristic analysis revealed

that ddPCR provided superior diagnostic performance on field tissues

compared to qPCR, and the area under curve values were 0.94 and 0.90 for

alfalfa roots and stems, respectively. Additionally, the quantitative results of the

two methods were highly concordant (roots: R2 = 0.91; stems: R2 = 0.76);

however, the concentrations determined by ddPCR were generally higher than

those determined by qPCR. This discrepancy was potentially caused by

differing amplification efficiencies for qPCR between cultured and field

samples. Furthermore, the ddPCR assays appreciably improved quantitative

precision, as reflected by lower coefficients of variation. Overall, the ddPCR

method enables sensitive detection and accurate quantification of V.

nonalfalfae and V. albo-atrum, providing a valuable tool for evaluating

disease progression and enacting effective disease control.

KEYWORDS

droplet digital PCR, quantitative real-time PCR, diagnostic performance,
accuracy, precision
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1 Introduction

Verticillium wilt (VW), a major vascular plant disease,

causes considerable yield and economic losses worldwide.

Typical symptoms of VW are plant stunting, discoloration,

wilting, and eventual mortality (Klosterman et al., 2011). VW

is caused by soil-borne and pathogenic Verticillium spp., mainly

V. nonalfalfae and V. albo-atrum, which both have a broad host

range (Pegg and Brady, 2002). V. nonalfalfae (a relatively new

species in the genus) can infect potato, spinach, solanaceous

crops, and trees (Flajsman et al., 2017). The primary hosts of V.

albo-atrum are cotton, potato, tomato, hop, ornamental plants,

fruit trees, and, especially, alfalfa. Among of them, alfalfa, an

important forage resource with high yield and good palatability,

is widely planted around the world and known as “the king of

forage”. In the United States and Canada, VW is among the most

destructive diseases in alfalfa (Larsen et al., 2007). The

quarantine of all the alfalfa products from abroad was forcible

in China (Announcement No. 351 of the Ministry of Agriculture

and Rural Affairs of PRC, 2020). In the field, dormant structures

(microsclerotia) are triggered to germinate by exudates from the

roots of the host plant. Subsequently, hyphae infect the host

through the root hairs or lateral roots (Fradin and Thomma,

2006). After invading the xylem vessels, the hyphae infest the

adjacent vasculature and grow along the vascular system toward

the tip of the plant (Zhao et al., 2014; Su et al., 2018). Ultimately,

the pathogen reproduces and blocks the vascular system,

interfering with the transport of water throughout the host

and causing wilt symptoms (Floerl et al., 2008; Wang

et al., 2021).

Given the tremendously devastating effects and the difficulty

of prevention, developing an accurate method to qualitatively

and quantitively detect these two fungi provides an effective and

economical management strategy. Traditional methods of

isolation and biological assays have long operation cycles, poor

time efficiency, and relatively low sensitivity, and immunological

methods exhibit cross-reactivity, poor reproducibility, and

cumbersome operation steps (Isaac, 1946; Skadow, 1966;

Griffiths, 1971). Recently, quantitative real-time polymerase

chain reaction (qPCR) assays have been widely implemented

for pathogen load testing, with greatly improved sensitivity and

shortened detection times (Pasche et al., 2013). However,

quantification by qPCR depends on external standard curves,

which are a major source of variability (Bustin et al., 2009). In

practice, applicable reference standards are often not readily

available except for the most common target analytes;

furthermore, qPCR efficiency often varies within and between

laboratories (Svec et al., 2015). Thus, a lack of standardization

and relatively poor measurement precision limits its usefulness.

Digital polymerase chain reaction (dPCR) is an emerging

technique that performs absolute quantification by counting

nucleic acid molecules, providing a simple, standardized
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quantification strategy (Huggett et al., 2015). It has potentially

unique advantages over qPCR, including absolute quantification

in a “calibration-free” manner and robustness to variations in

PCR efficiency (Sanders et al., 2011). Furthermore, sample

partitioning enables dPCR to tolerate inhibitors and decreases

background noise, thereby reducing false negatives (Alikian

et al., 2017). Additionally, perhaps most importantly, dPCR is

reported to improve accuracy and precision in quantification in

comparison with qPCR (Pinheiro et al., 2012; Hindson et al.,

2013). Therefore, digital PCR technique holds promise as a

highly sensitive and accurate measurement method

(Baker, 2012).

Although dPCR is increasingly utilized to quantify target

nucleic acids in various fields (Whale et al., 2012; Félix-Urquıd́ez

et al., 2016; Salipante and Jerome, 2020), its application for the

quantitative detection of plant pathogens has been limited;

moreover, the systematic evaluation of its performance against

a background matrix is understudied. In this study, we

established and validated a sensitive and accurate droplet

digital PCR (ddPCR) system for the detection and

quantification of V. nonalfalfae and V. albo-atrum, to explore

whether this method has the advantages over the analog qPCR

assay for plant pathogen diagnosis. Key performance

parameters, including diagnostic performance, detection

sensitivity, quantitative agreement, accuracy, and repeatability

regarding field samples, for the ddPCR assay were assessed in

comparison with standard qPCR.
2 Materials and methods

2.1 Fungal, bacterial, soil, and
plant samples

The V. nonalfalfae and V. albo-atrum strains were stored in

our laboratory. Eight fungal isolates (Exserohilum turcicum, V.

nigrescens, Magnaporthe oryzae, Bipolaris maydis, Rhizoctonia

cerealis, Fusarium oxysporum f. sp. conglutinans, Ustilaginoidea

virens, and Fusarium pseudograminearum) and five bacterial

isolates (Acidovorax citrulli, Xanthomonas oryzae pv. oryzae,

Pseudomonas syringae , Ralstonia solanacearum , and

Xanthomonas campestris pv. campestris) were obtained from

the Chinese Academy of Agricultural Sciences and China

Agricultural University. All samples were stored in 25%

glycerol at -80°C.

Samples of alfalfa stems and roots were collected in an

experimental field (Langfang, Hebei Province, China, 39°51’N,

116°60’E) and quickly frozen in liquid nitrogen. The plot had

been sampled and tested numerous times previously for

infection by V. nonalfalfae and V. albo-atrum; therefore, the

infection status of each alfalfa plant was known.
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We excised 200 mg fresh alfalfa stems and roots from each

sample, respectively. They were each homogenized separately in

4 mL lysis buffer. Nucleic acid quality and quantity were

determined using a NanoDrop 2000 spectrophotometer

(Thermo Fisher Scientific, USA).
2.2 Phylogenetic tree construction

The internal transcribed spacer regions (ITS) sequences of

V. albo-atrum (MH856937.1), V. nonalfalfae (KT362917.1), V.

alfalfae (NR 126129.1), V. longisporum (MH864843.1), V.

nubilum (MH856939.1), Ilyonectria radicicola (KM503139.1),

V. dahliae (MH864842.1), Volutella ciliata (JQ647447.1), V.

zaregamsianum (JN188008.1), V. tricorpus (MH857388.1),

V. klebahnii (NR 126128.1), V. tricorpus (GO336726.1),

Acremonium nepalense (LR590100.1), Plectosphaerella

cucumerina (KM357306.1), and Brunneochlamydosporium

nepalense (MH860634.1) were downloaded from the National

Center for Biological Information (https://www.ncbi.nlm.nih.gov/).

To construct a phylogenetic tree, the ITS sequences were compared

using the ClustalW program (http://www.clustal.org/clustal2/), and

the neighbor-joining approach was applied using the MEGA

software (version 7.0.26, Auckland, New Zealand).
2.3 DNA extraction

The biological samples were re-cultured in complete

medium and Luria-Bertani liquid medium at temperatures of

25°C and 37°C, respectively. Samples were harvested by
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centrifugation at 3000 ×g for 10 min. Subsequently, DNA was

extracted following the manufacturer’s instructions (KG203;

Tiangen, Beijing, China). DNA was extracted from alfalfa

stems following the instructions of the Hi-DNAsecure Plant

Kit (DP350; Tiangen, Beijing, China). Genomic DNA was

isolated from the soil samples using a TIANamp Soil DNA Kit

according to the manufacturer’s protocol (DP336; Tiangen,

Beijing, China). The quality and concentration of genomic

DNA were detected via 1% agarose gel electrophoresis and a

NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,

USA). Subsequently, samples were aliquoted and stored in

refrigerator at -80°C.

The ITS sequences were amplified with the primers 5’-

TCCGTAGGTGAACCTGCGG-3’ and 5’-TCCTCCGCTT

ATTGATATGC-3’ in V. nonalfalfae and V. albo-atrum strains

and sequenced by Sangon Biotech Co., Ltd. (Shanghai, China).

The results were aligned using the Basic Local Alignment Search

Tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
2.4 Primer and probe assessment

The primer/probe sets used in the qPCR and ddPCR

experiments (Table 1) were preliminarily screened and

evaluated to confirm the complete identity using only the

target sequences.

Probes were synthesized and labeled with 6-carboxy-

fluorescein reporter dye and black hole quencher 1 on the 5’-

and 3’-terminal nucleotides, respectively (Sangon Biotech). The

concentration was diluted to 100 mM as stock solution, stored at

-20°C, and diluted to 10 mM for the assay.
TABLE 1 Primers and probes used in this study.

Name Target Oligo sequence (5’-3’) Product length
(bp) Citation

va1 SCAR (DQ333342)

F: GGCCACGCTAGCCTTCACTA

75 (Larsen et al., 2007)R: CGAGTTCGCGGCAGGTA

P: TTTCGACCTGCCGTGCGCG

va2
V357I

(DQ266246.1)

F: GGCTTTTGCTTTCTCTTG

150 (Maurer et al., 2013)R: GACCAAATGTAATTGTCCAG

P: AGGTATAAGGTCCATATCCAACACGAG

va3 tef1a (LR026334.1)

F:
CGTACGATTGAGAAGTTTGAGATAAGTG

100
(General Administration of Customs of the
People's Republic of China., 2019)R: CGTCGGAAACCATGAAAACA

P: CTGCTTGAATCTACAC

va4 ITS (MH856937.1)

F: CCGGTACATCAGTCTCTTTA

330
(General Administration of Quality Supervision,
Inspection and Quarantine of the People’s
Republic of China., 2014)

R: CTCCGATGCGAGCTGTAAT

P: ATGCCTGTCCGAGCGTCGTTTCA
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2.5 qPCR

The qPCR amplification was accomplished using the ABI

7500 Fast Real-Time PCR system (Applied Biosystems, Foster

City, CA, USA). The final reaction was in a 20 mL volume

containing 10 mL of 2×AceQ Universal U+ Probe Master Mix V2

(Vazyme Biotech Co., Ltd, Nanjing, China), 0.4 mL each of the

forward and reverse primers, 0.2 mL of the probe solution, 2 mL
of genomic DNA, and 7 mL of nuclease-free H2O. The

amplification was performed as follows: denaturation at 95°C

for 5 min, followed by 40 cycles of denaturation at 95°C for 10 s

and annealing and elongation at 60°C for 50 s. The cycle

threshold (Ct) values were calculated using 7500 software v2.3

(Applied Biosystems, USA).

A standard curve for qPCR was constructed using the

genomic DNA of V. nonalfalfae and V. albo-atrum. DNA

concentration was measured using a NanoDrop 2000 (Thermo

Scientific). The standard curve was plotted according to the Ct

values from qPCR for various sample amounts, which were

obtained by serial dilution of the genomic DNA of V. nonalfalfae

and V. albo-atrum.
2.6 ddPCR reaction

The ddPCR assay was optimized with respect to the

annealing temperature, primer concentration, and probe

concentration. Temperatures of 54°C, 56°C, 58°C, 60°C, and

62°C were examined using a Veriti™ 96-Well Thermal Cycler

(Applied Biosystems, USA) with a primer/probe concentration

of 500 nM/250 nM. Primer/probe concentrations of 600 nM/400

nM, 500 nM/250 nM, and 400 nM/100 nM were examined using

a thermal cycler at 56°C.

The ddPCR reactions were performed using 500 nM

solutions of each forward and reverse primer, a 250 nM

solution of the 2 × ddPCR supermix for probes (Bio-Rad,

Pleasanton, CA, USA) (after optimization), and 2 mL of

genomic DNA. The total reaction volume was 20 mL. The
reaction mixture was added to an 8-well cartridge using a

droplet generator (Bio-Rad), and the wells were injected with

70 mL of droplet generation oil (Bio-Rad). The emulsion (70 mL)
was transferred to a 96-well ddPCR plate (Bio-Rad) and

amplified as follows with a ramp rate of 2°C s−1: denaturation

at 94°C for 10 min, followed by 45 cycles of denaturation at 94°C

for 30 s and annealing at 56 °C (optimized temperature) for 50 s,

followed by a final denaturation at 98°C for 10 min.

Subsequently, the 96-well plate was shifted to an QX200

droplet reader (Bio-Rad), and the data analysis was performed

using QuantaSoft Version 1.7.4.0917 (Bio-Rad). The ddPCR

analysis was performed in triplicate to accurately quantify the

amounts of genomic DNA.
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2.7 Linear regression curve of the
ddPCR assay

Linear regression curves were constructed using ten-fold

serial dilutions of genomic DNA as templates, ranging from 4 to

4 ×104 copies/reaction and 6 to 6 ×104 copies/reaction for V.

nonalfalfae and V. albo-atrum, respectively. Three independent

experiments were performed with four reactions at each

concentration. The linear regression curves were generated by

plotting the copy number concentrations measured by ddPCR

against the expected dilution values.
2.8 Limit of quantification and limit of
detection at 95% probability

The limit of quantification (LoQ) was determined as the

lowest concentration where all runs were positive and the

coefficient of variation (CV) of the measured copy number

was up to 25% (Kralik and Ricchi, 2017).

The limit of detection at 95% probability (LoD95%) was

defined as the lowest concentration at which at least 95% of the

replicates produced positive results, regardless of the accuracy or

precision (Forootan et al., 2017). The LoD95% of each assay was

estimated using a probit analysis with the target concentration

(dilution level) as an explanatory variable and the positive

detection rate (positive/total) as a response variable (Corman

et al., 2020). The probit analysis was conducted with 95%

confidence intervals (95% CI) using the SPSS software (version

20.0; SPSS, Chicago, IL, USA).

To obtain the LoQ and LoD95% of the ddPCR and qPCR

assays, a series of two-fold dilutions of genomic DNA (from 1.1

to 294 copies/reaction for V. nonalfalfae and from 1.8 to 236

copies/reaction for V. albo-atrum) were tested to ascertain the

end-point dilutions. Two independent experiments were

performed over two consecutive days, with five replicates of

each concentration on each day (Pavsǐč et al., 2016). These

experiments were tested in parallel, and the template DNA was

only frozen and thaw once. The distilled water was used as a

negative control.
2.9 Analytical specificity evaluation

A specificity evaluation panel was used to explore the

specificity of the ddPCR assays for V. nonalfalfae and V. albo-

atrum and included the eight fungal and five bacterial isolates

listed in the “Fungal, bacterial, soil, and plant samples”

section above.
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2.10 Evaluation of diagnostic
performance, quantitative agreement,
and precision with filed samples

Receiver operating characteristic (ROC) curves were

generated to compare the diagnostic performance of the

ddPCR and qPCR assays. True positive alfalfa roots and stems

that were infected with V. nonalfalfae or V. albo-atrum were

used to generate the ROC curves based on previous data. ROC

curves were constructed using the SPSS software (version 20.0;

SPSS, Chicago, IL, USA).

Quantitative agreement between ddPCR and qPCR was

investigated using the method of Bland and Altman (Bland

and Altman, 1986), which utilized the log10-transformed

concentration of each sample. The inhibition effect of the

residual matrix on both ddPCR and qPCR assays was

evaluated by quantifying a constant amount of gDNA in the

presence of alfalfa stem and root extracts. We spiked the

reactions with the same amount of gDNA from cultured

isolates (V. nonalfalfae: 1.6 ×104 ITS molecules; V. albo-atrum:

2.4×104 ITS molecules), and 5 ml of extracts from healthy cotton

stems and roots. The exact preparation process described by

Maheshwari et al. (Maheshwari et al., 2017).

For each alfalfa field sample, CV values for ddPCR and

qPCR were determined by calculating the standard deviation

within each set of triplicates (n = 4) and dividing each of these by

their respective average concentration values. The CV values for

qPCR were determined using linear-scale copy number

concentrations rather than the Ct values, which were directly

comparable to those of ddPCR.
3 Results

3.1 Development of the ddPCR assay

To analyze the position of Verticillium in a broader fungal

phylogenetic context, the phylogenetic relationships among

major Verticillium spp. and other fungi were analyzed using

ITS sequences. Phylogenetic analysis indicated that the 15

selected species were divided into two distinct clades, and V.

nonalfalfae and V. albo-atrum had the closest phylogenetic

relationship (Figure 1A). This is consistent with the fact that

both V. nonalfalfae and V. albo-atrum belong to Verticillium and

share a similar pathogenic mechanism that results in symptoms

of plant stunting, wilting, and early senescence. Hence, we aimed

to develop a ddPCR assay that enables the quantitative detection

of V. nonalfalfae and V. albo-atrum simultaneously, to improve

the efficiency of fungal diagnoses.

To develop an optimal ddPCR assay, four reported primer/

probe sets targeting the different regions of the two fungi

(KT362917.1 and MH856937.1 in the Genebank database)
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were initially validated using qPCR systems. The results

showed that Va4 primer/probe set performed better than the

other primer/probe sets, obtaining the target amplicons with low

Ct values for both fungal samples (Table S1; Figure S1). Based on

the sequence alignment, the amplification sequence of the Va4

primer/probe set was identical for V. nonalfalfae and V. albo-

atrum (Figure 1B). Therefore, Va4 primer/probe set was selected

for further establishment of the ddPCR assay.

The ddPCR reaction conditions were optimized with respect

to annealing temperature and primer/probe concentrations by

evaluating five temperatures (ranging from 54°C to 62°C) and

three primer/probe concentrations (600/400 nM, 500/250 nM,

and 400/100 nM). As shown in Figure 2, the optimal annealing

temperature and primer/probe concentrations were 56°C and

500/250 nM, respectively, which enabled the best separation

of the positive and negative droplets, with a low abundance

of “rain” (droplets falling between the positive and

negative populations).
3.2 Dynamic range and specificity testing
for the ddPCR assay

For the linear regression analysis, serial dilutions of genomic

DNA extracted from the two cultured isolates were prepared.

The ddPCR assays exhibited good linearity between the

measured and anticipated values for each interval for V.

nonalfalfae (R2 = 0.9996 and 0.94<Slope<1.03) and V. albo-

atrum (R2 = 0.9997 and 0.96<Slope<1.04) over a dynamic range

from approximately 101 to 104 copies/reaction (Figures 3A, B).

The LoQ of the ddPCR assay was 43 and 30 copies for V.

nonalfalfae and V. albo-atrum, respectively, which met the

criterion for a LoQ with a CV lower than 25% (Figures 3C, D).

Specificity evaluation indicated that the runs were specific

for V. nonalfalfae and V. albo-atrum, and no cross-reactivity was

observed with the other eight similar fungal and five bacterial

samples (Table S2).
3.3 Comparison of the LoD95% between
ddPCR and qPCR on pure genomic DNA

To determine the LoD95% for ddPCR and qPCR, a series of

two-fold dilutions of genomic DNA of the two fungi were

prepared as templates at concentrations near the detection end

points determined in preliminary experiments. As shown in

Figure 4, the probit analysis of the ddPCR assay indicated a

LoD95% of 6.8 copies/reaction (95% CI: 5.1–19.3) for V.

nonalfalfae and 7.2 copies/reaction for V. albo-atrum (95% CI:

5.6–14.2) (Figures 4A, B). In contrast, the estimated LoD95%

values for qPCR were slightly lower, at 5.6 copies/reaction (95%

CI: 4.4–12.8) and 5.2 copies/reaction (95% CI: 4.0–15.7) for V.

nonalfalfae and V. albo-atrum, respectively (Figures 4C, D). The
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results indicated that the two methods showed similar sensitivity

for the pure genomic DNA of both fungi, and the resulting

LoD95% values of ddPCR were slightly higher than those of

qPCR for the two fungi.
3.4 Evaluation of the diagnostic
performance of ddPCR on field samples
in comparison with that of qPCR

We further investigated the applicability of ddPCR via a

comparison with qPCR using field samples. We collected stems

and roots from 60 alfalfa plants in the field, each including 10
Frontiers in Cellular and Infection Microbiology 06
healthy tissue controls and 50 V. nonalfalfae- or V. albo-atrum-

infected samples, which had been previously confirmed.

ROC analysis showed that for ddPCR, the area under curve

(AUC) values were 0.94 (standard error 0.03, 95% CI: 0.88–0.99)

and 0.90 (standard error 0.04, 95% CI: 0.82–0.97) for roots and

stems, respectively (Figures 5A, B). In contrast, the AUC values

for qPCR were 0.86 (standard error 0.05, 95% CI: 0.78–0.95) and

0.76 (standard error 0.06, 95% CI: 0.63–0.89) for roots and

stems, respectively (Figures 5C, D). The AUC values of the

ddPCR assays were broader than those of the qPCR assays,

especially for the stems. Therefore, the ddPCR method provided

a more robust diagnostic performance than that of qPCR for

distinguishing the V. nonalfalfae- and V. albo-atrum-positive

cases from healthy samples.
A

B

FIGURE 1

Construction of the phylogenetic tree for Verticillium and other fungi. (A) Binding sites of va4 primer/probe sets for ITS sequence in
V. nonalfalfae and V. albo-atrum genomes (B). Phylogenetic tree was constructed based on ITS sequence of 15 species of fungi, and the
numbers at the nodes exhibit confidence level.
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In addition, the cut-off points of the qPCR assays were

determined based on the ROC curves, with values of 36 for the

stem and 35 for the root samples. Among the 50 positive cases,

ten stem and eight root samples were reported to be negative by

qPCR. However, six out of the ten false-negative stems and four

out of the eight false-negative roots tested positive by ddPCR.

Furthermore, the qPCR-negative but ddPCR-positive roots and

stems had an average load of 17 and 30 copies, respectively.

Hence, ddPCR showed improved detection sensitivity compared

to qPCR, especially regarding stem samples.
3.5 Evaluation of the quantification
performance of ddPCR on field samples
in comparison with that of qPCR

The copy number concentrations for ddPCR and qPCR were

compared using the samples that tested positive by both

methods. Linear regression analysis indicated that the copy

numbers determined by ddPCR correlated well with those
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determined by qPCR in both alfalfa tissues (roots, R2 = 0.91;

stems, R2 = 0.76) (Figures 6A, B).

Regarding quantitative agreement, ddPCR produced the

higher copy numbers of ITS than qPCR in most tested

samples. As shown in Figures 6C, D, Band–Altman plots

showed that the bias for the agreement ranged from -0.21 to

0.51 log10 and -0.31 to 0.82 log10 for roots and stems,

respectively, with most points falling inside the 95% CI. The

average difference in quantification between the two methods

was 0.16 log10 (a difference of 1.45 times on a normal scale) for

roots and 0.25 log10 (1.78 times) for stem samples. Moreover, the

intervals defined by the 95% CI for root samples were narrower

than those for stem samples. To determine whether the residual

matrix of field samples caused the quantification difference, we

quantified the samples that spiked with equal amounts of gDNA

from cultured isolates and extracts from healthy alfalfa stems

and roots. The extracts inhibited the quantification of the spiked

DNA by both methods, but the concentrations determined by

the ddPCR were significantly higher than qPCR (Figure 7).In

addition, absolute quantification by ddPCR revealed greater

precision in V. nonalfalfae and V. albo-atrum abundance
A B

DC

FIGURE 2

Optimization of annealing temperatures and primer/probe concentrations for V. nonalfalfae (A, B) and V. albo-atrum. (C, D) The blue spots
represent positive droplets, and the gray spots represent negative droplets.
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A B

DC

FIGURE 3

Linear range and precision analysis for ddPCR quantification of V. nonalfalfae and V. albo-atrum. (A, B) Linear regression of the ddPCR assays for
V. nonalfalfae (A) and V. albo-atrum (B) (p < 0.0001). Data are shown as mean and standard deviation for each dilution series (n =4). (C, D)
Inter-assay precision profiles for ddPCR at each low-concentration dilution for V. nonalfalfae (C) and V. albo-atrum (D) The LOQ was set at the
copies/reaction that corresponded to a CV of 25% (intersecting dotted lines on the plots).
A B

DC

FIGURE 4

Comparation of the limits of detection of the ddPCR and qPCR assays based on pure genomic DNA of V. nonalfalfae and V. albo-atrum. Probit
analysis determined the LoD95% of ddPCR (A, B) and qPCR (C, D). The y axis shows the fraction of positive results in 10 parallel reactions performed
at each given concentration, which is indicated on the x axis. The inner line is a probit curve (dose-response rule). The outer lines are the 95%
confidence interval (95% CI). Intersecting dotted lines indicate the dilution level where the estimated probability of detection is 95% (LoD95%).
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compared to those of qPCR, and the CV values were 18–72%

and 28–76% lower than those of qPCR with respect to overall

variation for alfalfa roots and stems, respectively (Figure 8).
4 Discussion

dPCR offers highly accurate and precise quantification by

directly counting nucleic acid molecules and is commonly used

as a reference measurement method to assign values for

reference materials (Félix-Urquıd́ez et al., 2016; Lee et al.,

2022). In this study, we established a ddPCR assay to detect

and quantify V. nonalfalfae and V. albo-atrum and compared its

performance with that of the qPCR assay to investigate whether

this method is more reliable for pathogen diagnosis. Overall, our

data suggest that, compared to those of qPCR, ddPCR exhibits

higher sensitivity, accuracy, and precision for the quantitative

detection of the two fungi in field samples.

Due to sample partitioning and the end-point PCR

approach, dPCR exhibits increased tolerance to suboptimal

PCR reactions, such as PCR inhibitors in the samples (Dingle

et al., 2013; Wang et al., 2022). In contrast, such inhibitory

substances markedly influence the amplification efficiency of
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qPCR, introducing significant variations in its detection

sensitivity and quantification accuracy (Bustin et al., 2009).

For the alfalfa field samples, ddPCR was more sensitive than

qPCR for diagnosing V. nonalfalfae and V. albo-atrum at low

abundances, although the two methods had similar LoD95%

values when testing pure genomic DNA. We speculate that the

existence of PCR-inhibitory substances in the matrix of the field

samples might have been the primary cause of the reduced

detection capability of qPCR; this is in agreement with previous

observations (Maheshwari et al., 2017; Cao et al., 2020).

Interestingly, compared to qPCR, ddPCR largely increased the

AUC (from 0.76 to 0.90) for alfalfa stems, whereas for root

samples, the difference between the two methods was less (0.86

versus 0.94). Alfalfa stems contain more polysaccharides, a type

of amplification inhibitor, than roots do; therefore, the residual

matrix inhibitors might have caused these discrepancies in

detection sensitivity and diagnostic performance between pure

genomic DNA and field samples.

A major advantage of dPCR over qPCR is that it enables

absolute quantification without an external calibration curve,

which facilitates the robustness of dPCR to variations in PCR

efficiency (Sanders et al., 2011; Rački et al., 2014). In this study, the

quantitative results of the positive field samples were highly
A B

DC

FIGURE 5

Diagnostic performance comparison between ddPCR (A, B) and qPCR (C, D) assays for the identification of healthy and infected alfalfa samples
(roots and stems).
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A B

DC

FIGURE 6

Quantitative comparison between ddPCR and qPCR. (A, B) Linear regression of the copy number concentration measured by ddPCR and qPCR
assays in alfalfa roots (A) and stems (B). The grey dashed lines represent the line of equality (y = x). The 95% confidence limits (red areas) are
interval estimates for the regression line. (C, D) Bland–Altman plot analysis of the differences in log10 concentration for the two methods in
alfalfa roots (C) and stems (D). The solid lines in the center indicate average differences in concentration between the two methods and the
dashed lines represent 95% limits of agreement (mean ± 1.96 SD) (root, n = 42; stem, n = 40).
FIGURE 7

Influence of alfalfa root and stem extracts on quantification of V. nonalfalfae and V. albo-atrum by ddPCR and qPCR assays. Samples spiked with
an equal amount of alfalfa root and stem extracts and genomic DNA. Error bars represent the standard error of inhibition between four
replicates. Asterisks (*) indicate significantly (p < 0.05) different qPCR tests, compared to ddPCR.
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concordant between methods; nevertheless, the concentrations

determined by ddPCR were generally higher than those

determined by qPCR, which was also found in previous studies

(Maheshwari et al., 2017; Persson et al., 2018). Notably, the

inhibition analysis showed that ddPCR was more tolerant to

residual matrix for the quantification of targets compared with

qPCR. Thus, we speculate that the interfering substances in field

samples potentially markedly reduced the amplification efficiency

of the qPCR, and caused the difference in PCR efficiency between

the pure genomic DNA and samples, thereby resulting in the

underestimation of the target concentrations (Corbisier et al.,

2015). Additionally, the ddPCR assay showed appreciably

decreased intra-experiment variability than those of qPCR for

the most alfalfa stems and roots we examined. Hence, these

strengths enable ddPCR to overcome the drawbacks of qPCR

for quantitative detection in a reproducible manner.

Although this study did not further validate more target

genes across multiple instruments with different sample types,

our approach to ddPCR evaluation provides a valuable step

toward ensuring accurate and reliable analytical and field

performance for the quantitative monitoring of plant

pathogens. Currently, the application of dPCR is limited,

largely owing to its complicated operational workflow and

high cost. Considering that these issues will likely improve

with ongoing technological development, we consider that

dPCR methods will play an increasingly important role in

sensitive and accurate quantitative detection in various fields.
5 Conclusions

In conclusion, this study aimed to develop and validate a

sensitive and accurate ddPCR assay to quantitatively detect V.

nonalfalfae and V. albo-atrum. Our results demonstrate that the
Frontiers in Cellular and Infection Microbiology 11
dPCR method is sensitive and robust for detecting field samples

with low-titer pathogens and residual matrix inhibitors.

Furthermore, it can provide an accurate and reproducible

alternative to qPCR for diagnostic applications. Finally, dPCR is

of higher metrological quality, which facilitates measurement

standardization and can be used for inter-laboratory comparisons.
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