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Gastric cancer (GC) is one of the leading causes of cancer-related deaths

worldwide. The gastric microbiota plays a critical role in the development of

GC. First, Helicobacter pylori (H. pylori) infection is considered a major risk

factor for GC. However, recent studies based on microbiota sequencing

technology have found that non-H. pylori microbes also exert effects on

gastric carcinogenesis. Following the infection of H. pylori, gastric microbiota

dysbiosis could be observed; the stomach is dominated by H. pylori and the

abundances of non-H. pylori microbes reduce substantially. Additionally,

decreased microbial diversity, alterations in the microbial community

structure, negative interactions between H. pylori and other microbes, etc.

occur, as well. With the progression of gastric lesions, the number of H. pylori

decreases and the number of non-H. pylori microbes increases

correspondingly. Notably, H. pylori and non-H. pylori microbes show

different roles in different stages of gastric carcinogenesis. In the present

mini-review, we provide an overview of the recent findings regarding the

role of the gastric microbiota, including the H. pylori and non-H. pylori

microbes, in the development of GC.
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Introduction

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide,

ranking fifth in incidence and third in mortality of cancers (Bray et al., 2018). According

to World Health Organization International Agency for Research on Cancer (WHO-

IARC), the annual burden of GC will increase to approximately 1.8 million new cases and
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1.3 million deaths by 2040. Compared with those in 2020, the

numbers of new cases and deaths will increase by approximately

63% and 66%, respectively (Morgan et al., 2022). Helicobacter

pylori (H. pylori) infection is a critical risk factor for GC (Amieva

and Peek, 2016) and H. pylori was classified by the WHO-IARC

as a type I carcinogen (WHO-IARC, 1994). In recent years,

sequencing-based studies focusing on microbiota have shown

that patients with GC have gastric microbiota dysbiosis,

including reduced microbial diversity, altered microbial

community structure, altered compositions, and abnormal

bacterial interactions (Gantuya et al., 2020; Kadeerhan et al.,

2021). Furthermore, non-H. pylorimicrobes might also promote

gastric lesions and even GC (Coker et al., 2017; Yu et al., 2017;

Ferreira et al., 2018; Kadeerhan et al., 2021). The interactions

between H. pylori and other microbes may be also involved in

gastric carcinogenesis.

In the present mini-review, we aim to discuss the recent

findings regarding the role of gastric microbiota, including H.

pylori and non-H. pylori microbes, in the development of GC.
H. pylori infection, eradication,
and GC

H. pylori is a gram-negative, flagellated, microaerophilic

bacterium belonging to the Campylobacterota phylum, which

was first identified in 1982 (Warren and Marshall, 1983). H.

pylori colonizes in the stomach and becomes the predominant

microbe in stomach after infection (Schulz et al., 2018). In terms

of the global epidemiology of H. pylori infection, according to a

global meta-analysis (Hooi et al., 2017), there were about 4.4

billion H. pylori-positive cases worldwide in 2015. The

prevalence rate of H. pylori infection varied by region, with the

highest prevalence rate in Africa (70.1%, 95% CI: 62.6-77.7%)

and the lowest prevalence rate in Oceania (24.4%, 95% CI: 18.5-

30.4%). Furthermore, for the temporal trend of H. pylori

infection, the prevalence in different regions is stable or

decreasing, especially in the developed world and in children

(Burucoa and Axon, 2017; Hooi et al., 2017).

H. pylori infection is considered a major risk factor for gastric

carcinogenesis. Overall, a large-scale pooled analysis of case-control

studies nested within prospective cohorts showed that H. pylori

infection was associated with nearly six-fold increased risk of non-

cardia cancer (Helicobacter and Cancer Collaborative Group,

2001). The mechanism that H. pylori induces GC has been

explored (Ishaq and Nunn, 2015; Talebi Bezmin Abadi, 2016).

First, H. pylori primarily triggers the transition from normal

mucosa to non-atrophic gastritis and then initiates precancerous

lesions (Dıáz et al., 2018). The responses after infection are mainly

mediated through the action of bacterial virulence factors, including

cytotoxin-associated gene A (CagA), vacuolating cytotoxin A

(VacA), and other outer membrane proteins (Dıáz et al., 2018;
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Alipour, 2021). CagA has multiple effects on epithelial cells,

including stimulating cell proliferation, reducing epithelial cell

apoptosis, etc. (Saadat et al., 2007; Nagy et al., 2009; Buti et al.,

2011). Additionally, inflammatory cells can be recruited and

oxygen species-induced damage can be induced after CagA and

the type IV secretion system (T4SS) activate the inflammatory

signaling (Viala et al., 2004; Chaturvedi et al., 2011). VacA can also

cause alterations of cells, such as vacuolization and promoting

immune regulation (Willhite et al., 2003; Yang et al., 2022). Further,

the urease production by H. pylori and the glandular atrophy

induced by H. pylori infection lead to reduced acid production and

shifts in gastric pH value. As a result, the bacterial colonization

environment in the stomach changes and gastric microbiota

dysbiosis may occur (Schulz et al., 2015; Noto and Peek, 2017).

The above-mentioned effects promote GC development.

For H. pylori-positive cases, eradication therapy could be

given (Fallone et al., 2016; Malfertheiner et al., 2017; Liu et al.,

2018). The effect of H. pylori eradication therapy on the GC risk

has been evaluated. You et al. reported that, based on a

randomized trial with a follow-up of 7.3 years, H. pylori

treatment resulted in statistically significant decreases in the

combined prevalence of severe chronic atrophic gastritis,

intestinal metaplasia, dysplasia, or GC (OR = 0.77, 95% CI:

0.62-0.95) (You et al., 2006). With a follow-up of 22 years for this

randomized trial, this team found that the protective effect of H

pylori treatment on GC incidence (OR= 0.48, 95% CI: 0.32-0.71)

and GC death (HR= 0.62, 95% CI: 0.39-0.99) persisted 22 years

post-intervention (Li et al., 2019). Additionally, a recent well-

designed meta-analysis enrolling randomized controlled trials

(RCTs) with 10 or more years of follow-up found that the GC

incidence decreased significantly with H. pylori eradication

therapy (RR=0.54, 95% CI: 0.41-0.72); on the other hand,

eradication of H. pylori showed significant reductions in GC

mortality (RR=0.66, 95% CI: 0.46-0.95) (Ford et al., 2022).
H. pylori associated gastric
microbiota dysbiosis

The gastrointestinal microbiota refers to microorganisms

lived in the gastrointestinal tracts, which is critical to many

aspects of human health (Clemente et al., 2012; Valdes et al.,

2018). For human immune, the microbiota is key to the

induction, training, and function of the host immune system

(Belkaid and Hand, 2014; Ling et al., 2022). Regarding the gastric

microbiota, due to the high acidity of the stomach, the human

stomach was once assumed to be a sterile organ (Espinoza et al.,

2018). However, H. pylori is able to colonize the human gastric

mucosa and survive in the highly acidic environment of the

stomach (Schulz et al., 2015). With the advent of novel

techniques for analyzing the microbial community, the unique

features of the gastric microbiota have been identified that the
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major microbes in the healthy human stomach environment are

Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria, and

Proteobacteria (Guo et al., 2020; Guo et al., 2021).

For H. pylori-infected individuals, the stomach is dominated

by H. pylori and accordingly, the abundances of non-H. pylori

microbes reduce substantially (Brawner et al., 2017; Das et al.,

2017). In addition to the changes of microbial composition,

other phenomena of gastric microbiota dysbiosis have also been

found. For the microbial alpha diversity, Gantuya et al. reported

that individuals infected with H. pylori showed significant

decreased microbial diversity compared with H. pylori-negative

individuals (Gantuya et al., 2019). Another study found that

there was a negative association between the gastric microbiome

diversity and Helicobacter abundance (Das et al., 2017). In

addition to microbial alpha diversity, infection with H. pylori

results in alterations of the microbial community structure (beta

diversity). According to a population-based study, the H. pylori

positive group and negative group were clearly separated

according to beta diversity (Llorca et al., 2017). Furthermore,

studies focusing on the microbial ecological interactions found

shifts of the interactions betweenH. pylori and other microbes in

the stomach environment. In detail, according to an Indian

study using16S rRNA gene sequencing, the network analyses

showed that Helicobacter had negative interactions with other

microbes of the gastric microbiome (Das et al., 2017); another

Chinese study reported similar findings (Guo et al., 2020).

Regarding the numbers of interactions, Coker et al. found that

H. pylori infection reduces the number of gastric microbiome

interactions (Coker et al., 2017). However, all the above-

mentioned findings were based on statistical analyses of

sequencing data. Thus, we need more clinical data supporting

current presented concept (Rivas-Ortiz et al., 2017).

For H. pylori-positive individuals, the H. pylori eradication

could reverse gastric microbiota dysbiosis and exert beneficial

effects on the gastric microbiota (Guo et al., 2022). Firstly, for the

reduced gastric microbial diversity among H. pylori-positive

cases, the diversity could increase significantly after successful

eradication of H. pylori (Guo et al., 2020; Mao et al., 2021). Also,

significant differences were observed for the microbial

community structure (the beta diversity) following eradication

(Guo et al., 2020; Sung et al., 2020b; Mao et al., 2021; Watanabe

et al., 2021; Yuan et al., 2021). For the gastric microbiota

composition, after removing H. pylori in the stomach

environment, the gastric commonly dominant commensals are

enriched (Guo et al., 2020; Shin et al., 2020). Different changes of

specific microbes were reported, which may be resulted from

different population, sequence methods, and sampling details.

The common reported commensals included Firmicutes,

Streptococcus, Prevotella., etc. (He et al., 2019; Guo et al., 2020;

Mao et al., 2021; Watanabe et al., 2021; Yuan et al., 2021). In

terms of interactions between gastric commensal bacteria, a

reduction in these interactions was reported after eradication

of H. pylori (Sung et al., 2020b; Yuan et al., 2021), which were
Frontiers in Cellular and Infection Microbiology 03
also based on statistical analyses of sequencing data and required

further validation. Moreover, due to the development of

bioinformatics, microbiota function could be predicted and

analyzed. According to the bioinformatic analysis of functional

capacity, the bacteria reproduction-related pathways are down-

regulated and pathways of gastric acid secretion, etc. are up-

regulated (He et al., 2019; Guo et al., 2020), indicating beneficial

effect of eradication on the recovery of gastric microbiota. In

combination with the prevention effect of H. pylori eradication

on GC, the alterations in gastric microbiota after eradication

may contribute to the reduction in GC risk; further studies with

long-term follow-up are needed (Guo et al., 2022).
The overall features of the gastric
microbiota associated with GC

In recent years, the characterization of the gastric microbiota

associated with GC has been identified, indicating that gastric

microbiota dysbiosis occur in gastric carcinogenesis (Yang et al.,

2021). In the year of 2009, the team of Prof. Engstrand compared

the gastric microbiota of patients with GC and controls using the

terminal restriction fragment length polymorphism (T-RFLP)

and 16S rRNA gene cloning and sequencing. They found that

diversity indices of GC microbiota were not significantly

different from that in controls according to the T-RFLP. In

terms of gastric microbiota composition of GC, the abundance

of H. pylori was low and the GC microbiota was dominated by

the following genera: Streptococcus, Lactobacillus, Veillonella and

Prevotella (Dicksved et al., 2009). However, the sample size of

this study was small (only ten patients and five controls);

additionally, 16S rRNA sequencing technology and related

procedures are not yet developed and extensively used,

therefore this work is an initial investigation of this field.

In following decade, other findings have been reported.

Firstly, the gastric microbial diversity alteration in GC has

been the most focused topic. Several studies reported that

compared with the gastritis status, gastric microbial diversity is

significantly reduced; analyses showed that the microbial

community structure (beta diversity) is significantly altered in

GC patients (Coker et al., 2017; Ferreira et al., 2018). Similarly,

according to studies based on comparison between GC tissues

and non-cancerous tissues, GC tissues also have reduced

diversity and shifted microbiota structure (Chen et al., 2019).

However, the conclusions are inconsistent across studies. For

instants, two studies showed that the alpha diversity of GC

gastric microbiota was increased (Eun et al., 2014; Linz et al.,

2017). The difference of results may be caused by different

populations, sampling sites and stage of gastric disease.

In addition to microbial diversity analysis, with the

development of bioinformatics, more in-depth analysis

methods have been developed and used. The function

prediction analyses have been applied to explore potential
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mechanisms of gastric carcinogenesis. The most studies did

function prediction analyses using PICRUSt (Langille et al.,

2013). Ferreira et al. identified the presence of a nitrosating

microbial community in GC cases, indicating that nitrate-

reducing bacteria may contribute to gastric carcinogenesis

(Ferreira et al., 2018). Meanwhile, a switch towards purine

metabolism, D-alanine metabolism, drug metabolism, etc. in

GC were reported in another study (Coker et al., 2017). These

findings suggested that the microorganisms in the stomach may

contribute to the development of GC through specific functional

effects. Similarly, these findings need further validation

of mechanisms.
The non-H. pylori microbes
associated with GC

In addition to H. pylori, more and more studies have been

focusing on other non-H. pylori gastric microorganisms. Similar

to the bacterial driver-passenger model in the development of

colorectal cancer (Tjalsma et al., 2012), the hypothesis of GC has

been proposed that:H. pylori, as the “driver”, causes pathological

changes of gastric mucosa and dysbiosis of gastric microbiota;

with the progression of gastric lesions, the number of H. pylori

decreases and the number of other microorganisms in the

stomach, i.e. non-H. pylori microbes as the “passengers”,

increases correspondingly. These non-H. pylori microbes play

an important role in the pathogenesis of GC.

The above hypothesis has been confirmed in animal

research. An animal study using hypergastrinemic insulin-

gastrin (INS-GAS) transgenic mice found that compared with

the specific pathogen free (SPF) INS-GAS mice, the duration of

gastric lesions development was longer for germ-free INS-GAS

mice; compared with INS-GAS mice infected withH. pylori only,

INS-GAS mice with complex gastric microbiota had more severe

gastric lesions and an earlier onset of gastrointestinal

intraepithelial neoplasia (Lofgren et al., 2011). Another INS-

GAS mice-based study reported that INS-GAS mice coinfected

with H. pylori and other intestinal bacteria had a higher rate of

development of gastrointestinal intraepithelial neoplasia than

those infected with H. pylori alone (Lertpiriyapong et al., 2014).

These findings indicate the potential role of non-H. pylori

microbes and the interactions between H. pylori and non-H.

pylori microbes in gastric carcinogenesis.

More researchers are paying attention to human studies as

the hypothesis is supported in animal studies. In a population-

based study using the 16S rRNA gene sequencing method,

compared with individuals with gastritis, GC showed gastric

microbiota dysbiosis and a lower abundance of Helicobacter and

the over-representation of intestinal commensals was seen in GC

gastric microbiota. In detail, 16 enriched taxa and 13 depleted

taxa in GC according to the LEfSe analysis (Ferreira et al., 2018).
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Another study comparing gastric microbiota of GC patients and

superficial gastritis reported that 21 bacterial taxa were enriched

in GC and 10 bacterial taxa were depleted in GC. Specifically,

enrichment of oral microbes was observed in the stomach of GC

(Coker et al., 2017). In addition to above two cross-sectional

studies, a cohort study with a 4-year follow-up reported that

Helicobacter abundance was lower in the subjects with

progression of gastric lesions compared with non-progression

group. Specifically, the remarkable decline in Helicobacter was

observed after the progression to stage of dysplasia/GC

compared with non-progression controls (Kadeerhan et al.,

2021). The key non-H. pylori microbes associated with GC are

summarized in Table 1. However, inconsistent results were

found, necessitating additional validations.

Furthermore, based on the current findings, a panel of

differential gastric bacteria can be developed to distinguish GC

and the progression of GC with outstanding performance. A

recently published meta-analysis, which enrolled six

independent studies, reported that eight bacterial taxa could

serve as a panel of biomarkers to discriminate GC from

superficial gastritis with an area under the curve (AUC) of

0.850 (Liu et al., 2022). Regarding the progression of GC,

Kadeerhan et al. reported a combination of four genera

(Bacillus, Capnocytophaga, Helicobater, Prevotella) with age

and sex to distinguish subjects after lesion progression from

non-progression controls (AUC = 0.927) (Kadeerhan et al.,

2021). In addition to a panel of bacteria, a new single index

called Microbial Dysbiosis Index (MDI) has been presented.

MDI is calculated by log (total abundance of genera increased in

GC/total abundance of genera decreased in GC); a higher value

of MDI means a higher risk of GC. The application of MDI has

been applied in the evaluation of GC: the GC gastric microbiota

had a higher MDI and the findings were confirmed in the

validation cohorts (Ferreira et al., 2018).
The different roles of H. pylori and
non-H. pylori microbes in gastric
carcinogenesis

The progression of gastric carcinogenesis is detailed in

Figure 1. Like bacterial driver-passenger model of colorectal

cancer, the development of GC showed similar change pattern of

gastric microbiota. Thus, H. pylori and non-H. pylori microbes

show different roles in different stages of gastric carcinogenesis.

First of all, the load ofH. pylori in the stomach increases after the

initial infection, especially in the active gastritis stage (Stewart

et al., 2020). Interestingly, the H. pylori load decreases with the

progression of gastric lesions. A population-based study showed

that a lower Helicobacter abundance was observed in subjects

with the progression of gastric lesions (Kadeerhan et al., 2021);

another study reported that the abundance of Helicobacter was
frontiersin.org
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TABLE 1 Key non-H. pylori microbes associated with gastric cancer.

PHYLUM CLASS ORDER FAMILY GENUS SPECIES

Firmicutes Bacilli Lactobacillales Streptococcacaeae Lactococcus: potential harmful microbes for gastric
mucosa (Coker et al., 2017; Ferreira et al., 2018; Hsieh
et al., 2018)

Lactococcus lactis:
potential beneficial
microbes for gastric
mucosa (Chen et al.,
2019)

Streptococcus: potential harmful microbes for gastric
mucosa (Chen et al., 2019; Liu et al., 2019); also
reported as potential beneficial microbes for gastric
mucosa (Ferreira et al., 2018)

Streptococcus anginosus:
potential harmful
microbes for gastric
mucosa (Coker et al.,
2017; Liu et al., 2019)
Streptococcus infantis:
potential harmful
microbes for gastric
mucosa (Coker et al.,
2017)

Bacillales Bacillaceae Bacillus: potential harmful microbes for gastric mucosa
(Kadeerhan et al., 2021)

Lactobacillales Lactobacillaceae Lactobacillus: potential harmful microbes for gastric
mucosa (Ferreira et al., 2018; Hsieh et al., 2018)

Lactobacillus brevis:
potential beneficial
microbes for gastric
mucosa (Chen et al.,
2019)
Lactobacillus salivarius:
potential harmful
microbes for gastric
mucosa (Coker et al.,
2017)
Lactobacillus fermentum:
potential harmful
microbes for gastric
mucosa (Coker et al.,
2017)

Clostridia Clostridiales Clostridiaceae Clostridium: potential harmful microbes for gastric
mucosa (Ferreira et al., 2018; Hsieh et al., 2018)

Bacteroidetes Bacteroidetes Bacteroidales Prevotellaceae Prevotella: potential harmful microbes for gastric
mucosa (Chen et al., 2019; Sung et al., 2020a;
Kadeerhan et al., 2021); also reported as potential
beneficial microbes for gastric mucosa (Ferreira et al.,
2018; Gantuya et al., 2020)

Prevotella melaninogenica:
potential harmful
microbes for gastric
mucosa (Liu et al., 2019)
Prevotella oris: potential
harmful microbes for
gastric mucosa (Coker
et al., 2017)
Prevotella intermedia:
potential harmful
microbes for gastric
mucosa (Coker et al.,
2017)

Proteobacteria Betaproteobacteria Neisseriales Neisseriaceae Neisseria: potential beneficial microbes for gastric
mucosa (Ferreira et al., 2018)

Fusobacteria Fusobacteria Fusobacterales Fusobacteriaceae Fusobacterium: potential harmful microbes for gastric
mucosa (Coker et al., 2017; Hsieh et al., 2018; Chen
et al., 2019)

Fusobacterium nucleatum:
potential harmful
microbes for gastric
mucosa (Coker et al.,
2017)
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substantially lower in GC patients than gastritis (Ferreira et al.,

2018). This phenomenon could be explained that, following H.

pylori infection, due to the persistence of inflammation and the

loss of acid-secreting parietal cells, the gastric environment

becomes more favorable for the colonization of other bacteria

and progression of lesions are accelerated (Polk and Peek, 2010).

In detail, with the development of gastric lesions, oral or

intestinal commensal microbes are enriched (Coker et al.,

2017; Ferreira et al., 2018; Stewart et al., 2020). However, by

the late stage of gastric precancerous lesions, the stomach

environment is no longer suitable for H. pylori and the

abundance H. pylori of decreases. This phenomenon has been

confirmed in human studies (Ferreira et al., 2018; Kadeerhan

et al., 2021). The key roles of H. pylori in different stages of

gastric carcinogenesis were shown in the Table 2. In addition to

the overall description of the progression of gastric

carcinogenesis, the roles of certain bacteria remain to be
Frontiers in Cellular and Infection Microbiology 06
clarified and further mechanism investigation is needed for a

deeper understanding of this issue.
Future perspectives

Non-H. pylori microbes and their interactions may also play

a critical role in the development of GC. However, inconsistent

findings were reported for non-H. pylori microbes associated

with GC. Accordingly, further mechanism investigation is

needed to validate these potential GC-associated non-H. pylori

microbes, such as animal studies. Additionally, most human

studies are case-control studies, which compared gastric

microbiota of gastric mucosa between GC patients and control

population. Due to this study design, we cannot infer a causal

relationship between gastric microbiota dysbiosis and

development and progression of GC. In other words, it is
FIGURE 1

H. pylori and non-H. pylori microbes in the development of gastric carcinogenesis. H. pylori, Helicobacter pylori.
TABLE 2 Key roles of H. pylori in gastric carcinogenesis.

Stages in the
development of
GC

Descriptions

Uninfected stage • The major microbes in the healthy human stomach environment are Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria, and
Proteobacteria (Guo et al., 2020; Guo et al., 2021)

• The abundance of H. pylori in the gastric microbiota of uninfected status is low (Guo et al., 2020; Guo et al., 2021).

H. pylori-dependent
stage

• H. pylori, as the “driver”, causes pathological changes of gastric mucosa and dysbiosis of gastric microbiota.
• After H. pylori infection, the stomach is dominated by H. pylori and accordingly, the abundances of non-H.pylori gastric commensals

reduce substantially (Brawner et al., 2017; Das et al., 2017).
• H. pylori associated gastric microbiota dysbiosis includes: decreased microbial diversity, alterations in the microbial community

structure, negative interactions between H. pylori and other microbes, etc. (Das et al., 2017; Llorca et al., 2017; Gantuya et al., 2019).

H. pylori-independent
stage

• With the progression of gastric lesions, the number of H. pylori decreases and the number of non-H. pylori microbes, as the
“passengers”, increases correspondingly.

• The “passengers” are considered oral or intestinal commensal microbes (Coker et al., 2017; Ferreira et al., 2018; Stewart et al., 2020).
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unclear whether gastric microbiota dysbiosis causes GC or

whether GC causes gastric microbiota dysbiosis. Therefore,

cohort studies with long-term follow-up are needed to confirm

the major findings.
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