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1The outbreak of COVID-19 in December 2019 caused a global pandemic of

acute respiratory disease, and with the increasing virulence of mutant strains

and the number of confirmed cases, this has resulted in a tremendous threat to

global public health. Therefore, an accurate diagnosis of COVID-19 is urgently

needed for rapid control of SARS-CoV-2 transmission. As a new molecular

biology technology, loop-mediated isothermal amplification (LAMP) has the

advantages of convenient operation, speed, low cost and high sensitivity and

specificity. In the past two years, rampant COVID-19 and the continuous

variation in the virus strains have demanded higher requirements for the

rapid detection of pathogens. Compared with conventional RT–PCR and

real-time RT–PCR methods, genotyping RT-LAMP method and LAMP plus

peptide nucleic acid (PNA) probe detection methods have been developed to

correctly identified SARS-CoV-2 variants, which is also why LAMP technology

has attracted much attention. LAMP detection technology combined with

lateral flow assay, microfluidic technology and other sensing technologies

can effectively enhance signals by nucleic acid amplification and help to give

the resulting output in a faster, more convenient and user-friendly way. At

present, LAMP plays an important role in the detection of SARS-CoV-2.
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1 Introduction

Coronavirus disease-2019 (COVID-19), a disease that

seriously threatens human life, is caused by severe acute

respiratory syndrome coronavirus-2 (SARS-CoV-2).

Conventionally, computed tomography (CT), immunoassay

and reverse transcriptase polymerase chain reaction (RT–PCR)

are used to assist in the diagnosis of COVID-19 (Pan et al., 2020;

Dinnes et al., 2021; Safiabadi Tali et al., 2021; Lopera et al., 2022).

The antigen load is low at the stage of infection, which makes it

difficult to detect (Zhao et al., 2020). At present, SARS-CoV-2

detection mainly focuses on antibody and nucleic acid detection

with quantitative reverse transcription-polymerase chain

reaction (qRT–PCR) as the main method. However, these

methods have a long detection time, require many reagents,

and have complicated operation processes and high

requirements for laboratory personnel. These disadvantages

strictly restrict the rapid and accurate detection of SARS-CoV-

2 for clinical screening. Due to the characteristics of isothermal

amplification, which includes a short reaction time and low cost,

loop-mediated isothermal amplification (LAMP) may have great

potential to become an important nucleic acid detection method

in SARS-CoV-2 testing. LAMP is a molecular technology for
Frontiers in Cellular and Infection Microbiology 02
nucleic acid amplification with the characteristics of simplicity,

rapidity and high specificity. The detection of SARS-CoV-2 by

the LAMP method can not only rapidly and massively amplify

the target fragment but also solve the limitation of PCR, which

requires special instruments for changing the temperature (Yang

J. et al., 2022). This review will describe the latest progress in

SARS-CoV-2 detection based on LAMP combined with lateral

flow assays, microfluidic technology or other biosensors and

provide references for the rapid development of virus detection

during the COVID-19 pandemic (Figure 1).
2 Characteristics and detection
methods of SARS-CoV-2

At the end of 2019, an emerging novel coronavirus spread all

over the world and caused great harm to human health. SARS-

CoV-2 is a novel enveloped virus with a positive-sense, single-

stranded RNA genome of ~30k nucleotides, which is closely

related to SARS-CoV and has a similar clinical disease (Zhu

et al., 2020). SARS-CoV-2 contains four main structural proteins

embedded in the virus envelope, including spike (S), membrane

(M) and envelope (E) proteins. Nucleocapsid (N) protein
FIGURE 1

Loop-mediated isothermal amplification reaction process and detection of SARS-CoV-2 based on LAMP combined with biosensors. (A) LAMP
reaction process and result readout. (B) SARS-CoV-2 detection based on LAMP combined with lateral flow assays. (C) SARS-CoV-2 detection
based on LAMP combined with microfluidic chips. (D) SARS-CoV-2 detection based on LAMP combined with other biosensors.
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interacts with the virus RNA in the core of the virus particles to

form the nucleocapsid and participates in the transcription and

replication of virus RNA (Ning et al., 2021).

Since the initial outbreak of SARS-CoV-2 up to September

2022, the total number of confirmed cases worldwide has

exceeded 600 million, with more than 6 million deaths. The

virus has evolved a variety of subtypes and spread all over the

world. After the virus variant VOC-202012/01 was first reported

in the UK, many countries successively confirmed the infections

with the Alpha (B1.1.7), Beta (B.1.351), Gamma (P.1), Delta

(B.1.617.2) and Omicron (B1.1.29) mutants, which have the

ability to spread rapidly (Harrington et al., 2021; Kannan et al.,

2022; Kumar et al., 2022; Wink et al., 2022). According to the

global initiative on sharing all influenza data (GISAID) survey,

the variant rate of the S protein in SARS-CoV-2 is very high

(Korber et al., 2020; Rocheleau et al., 2021). A new variant of

concern (VOC) has emerged, designated as Omicron (B.1.529),

which is distinct compared with the original strain (Wuhan

strain) (Zhu et al., 2020), and this new variant virus has a strong

infection rate (Alkhatib et al., 2022; Das et al., 2022). More

importantly, viral mutations can allow the virus to evade the

human immune system, and several variants display a reduction

in the susceptibility to neutralization antibodies generated by

natural infection or vaccination, which prolongs the epidemic

period of COVID-19 (Chakraborty et al., 2022; Zhang et al.,

2022). At present, China has successfully developed kits for

sample collection and detection of SARS-CoV-2 based on S,

ORF1ab and N genes with high mutation sites to identify strains

that have mutated compared to the original strain (Coolen et al.,

2021). The method of LAMP plus PNA probe to detect SARS-

CoV-2 has been reported for the first time, and it can correctly

identify the L452R spike mutation (Iijima et al., 2022). qRT–PCR

is the gold standard method for detecting SARS-CoV-2 (Ford

et al., 2021), but the reaction process relies heavily on

temperature-changing equipment and analytical instruments.

In addition, the operation process is complex and cumbersome

with a long detection time, and thus it is difficult to use in remote

areas and in laboratories of poor regions. LAMP is a rapid

detection method with no requirement for special instruments

or equipment. It is a good way to achieve early detection of

SARS-CoV-2 infection to control the spread of the virus

(Augustine et al., 2020).
3 LAMP reaction principles

The reaction process mainly includes three stages: template

synthesis, cyclic amplification, and extension and recycling,

resulting in a DNA mixture with multiple cauliflower and

stem-loop structures. The key step of the LAMP process is the

design of four primers with high specificity for the target

sequence of DNA. The two inner primers are designated the

forward inner primer (FIP) and backward inner primer (BIP),
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and the two outer primers consist of F3 and B3. The inner

primer is composed of two different sequences, which

correspond to the forward sequence and backward sequence of

the target sequence. FIP is the upper inner primer used to initiate

the reaction in the first step of template synthesis, and BIP is the

lower inner primer used to carry out the second stage of cyclic

amplification; the four primers participate in the LAMP reaction

process in the initial stage of template synthesis, and only the

inner primer is needed in the subsequent cycle reaction process.

Under the action of Bst DNA polymerase, nucleic acid

amplification is carried out at 60-65°C (Matthew et al., 2022).

The detection of the amplified products generally includes three

methods: agarose gel electrophoresis, metal ion indicator or dye

coloration, and observation of the white magnesium

pyrophosphate precipitate, which can be directly observed

with the naked eye (Petrusha and Faizuloev, 2020).

Compared with the traditional nucleic acid amplification

method, the LAMP method uses four primers for six specific

regions of the target gene, which allows for a high specificity. In a

clinical pathogen infection test, the limited detection of DNA or

RNA copy numbers by the LAMP method is also significantly

higher than that of the PCR method, and the LAMP method

does not need precise instruments to control the reaction

temperature, and therefore it is easy to operate. Moreover, a

large number of amplification products can be obtained in a

short time, and visual detection based on turbidity can be

performed (Hassan et al., 2022; Wang C. et al., 2022). As a

new nucleic acid amplification method, LAMP can be used not

only for amplification of DNA but also for RNA amplification

via reverse transcription. However, there will be some errors in

the operation and assessment of the results by directly observing

the sediments or using dye coloration after the reaction,

sediments of the sample after amplification cannot remain

stable for a long time. The results should be observed as soon

as possible after the amplification reaction, which does not meet

the standard of accurate detection (Kubota et al., 2008; Safavieh

et al., 2014). Moreover, agarose gel electrophoresis for

amplification products testing is usually accompanied by

aerosol pollutions, which affects the accuracy of the results due

to laboratory pollution. But, a facile way to rapidly configure

LAMP assays by integrating OSD probes into individual and

multiplex assays were demonstrated by Bhadra et al., which is an

accurate probe-based readout of SARS-CoV-2 (Bhadra et al.,

2021). These probes can suppressed noise from spurious

amplification by LAMP primers and thereby yielded target-

specific signals. An integrated modular centrifugal microfluidic

platform for SARS-CoV-2 testing based on LAMP were

developed by Soares et al. (2021). A few tens of virion

genomic RNA could be identified by converting amplicon

accumulation to color development on lateral flow dipsticks.

Since agarose beads modified with dried n-benzyl-n-

methylethanolamine were pre-packed in the discs to remove

primer dimers selectively, the platform showed 100% specificity
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with fluorescence detection after the inactivation reaction. The

combined application of LAMP and lateral flow assays or

microfluidic technology can not only facilitate the readout of

results but also effectively avoid false-positive results caused by

nonspecific amplification, furtherincreasing the specificity and

sensitivity of the assay.
4 Application of SARS-CoV-2
detection methods based on LAMP

4.1 RT-LAMP

Because of its convenient operation, rapid nucleic acid

amplification and high specificity, RT-LAMP has been applied

for the detection of SARS-CoV-2. RT-LAMP usually uses RNA

as the template for amplification reactions. The viral RNA

is converted into complementary DNA (cDNA) by adding

reverse transcriptase to the LAMP mixture, after which the

amplification reaction is carried out.

The RT-LAMP method has been used to detect SARS-CoV-

2 infection, which can not only greatly shorten the reaction time

but also allows for multidirectional selectivity of the target gene

(Mohon et al., 2020; Urrutia-Cabrera et al., 2021). The ORF 1ab,

N and S genes are usually used as target genes to detect SARS-

CoV-2 infection (Saxena et al., 2022; Talap et al., 2022). A one-

step RT-LAMP method for detecting SARS-CoV-2 was

developed and evaluated (Park et al., 2020). The primers of the

one-step RT-LAMP method were designed with the S and N

genes of SARS-CoV-2, the reaction conditions were optimized,

and the reaction mixture was detected by using colorless crystal

violet with a colorimetric detection method. The assay can be

completed within 30 min from the amplification reaction to the

detection of the fluorescence signal. A RT-LAMP method

targeting the ORF 1ab and N genes was established and

carried out under isothermal conditions of 63°C from reverse

transcription to result read-out (Wang Y. et al., 2021). Fourteen

copies/reactions of SARS-CoV-2 were detected in 35 min.

A small amount of viral RNA can be amplified by RT-LAMP

that increases the detection rate of the virus. And a variety of

samples can be used for nucleic acid detection, among which

saliva, nasopharyngeal swabs and alveolar lavage fluid are

samples that are currently used to detect SARS-CoV-2 nucleic

acid (Kitsou et al., 2021; Kundrod et al., 2022). RT-LAMP and

qRT–PCR methods were used to assess the control sample and

viral RNA extracted from the patient’s nasopharyngeal swab,

and the specificity of RT-LAMP was evaluated (Lamb et al.,

2020). The results showed that SARS-CoV-2 could be

specifically detected in clinical patient samples within 30-

40 min. Compared with qRT–PCR, the RT-LAMP method

may allow for faster and cheaper field-based testing at the

point of risk. In addition, a rapid colorimetric RT-LAMP
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method was developed to amplify nasopharyngeal swab

samples from SARS-CoV-2-infected patients after high-

temperature treatment (Dao et al., 2020). It was found that the

structure of viral RNA was more stable after short-term high-

temperature treatment. The RT-LAMP method for detection of

SARS-CoV-2 samples had a high accuracy, and thus the

researcher proved the feasibility of RT-LAMP in the on-site

testing of SARS-CoV-2. RT-LAMP plays an important role in

the detection of SARS-CoV-2, which is very helpful for the

diagnosis of COVID-19 and on-site screening at the port

of entry.
4.2 LAMP combined with the lateral
flow assay

The lateral flow assay (LFA) uses a nitrocellulose membrane

as the carrier. The sample solution is added dropwise on the

sample pad, where it permeates and moves toward the end of the

absorption pad under the action of a capillary. The target binds

to the receptor, and fluorescent and quantum dot markers are

used to detect the optical reaction so that the signal value can be

detected on the test line or control line. LFA has the

characteristics of portability, low cost and efficiency, which

have allowed it to become an ideal choice for point-of-care

testing (POCT), and has been widely used in the rapid detection

of various targets, such as bacteria, viruses, parasites,

mycotoxins, and with the continuous innovation and

development of LFA technology, a photothermal test strip

assay that combines test strips with a portable photothermal

card reader was established for the sensitive, rapid and

quantitative detection of residues of food hazards (Wang et al.,

2020; Charlermroj et al., 2021; Wang, X. et al., 2021; Wang Y.

et al., 2022b; Yang J. et al., 2022). An LFA based on LAMP to

identify tissue of cattle origin has been developed with high

specificity and sensitivity (Jawla et al., 2021). The components of

LAMP reaction were lyophilized over test strip, a pair of probes

was designed, tagged and its hybridization with the amplified

product of LAMP reaction was optimized. This method were

eliminated the lengthy DNA extraction step and the detection

results were shown to be completely consistent with the PCR

assay. RT-LAMP combined with LFA for rapid and accurate

detection of zika virus was proposed (Ahn et al., 2021). This

method is based on LFA reaction, hybridization occurred

between the AuNPs: polyadenylated (polyA10) -ZIKV probe

and the LAMP amplicons. The results can be detected in less

than 5 min and reduce the number of false positives. A rapid

antigen detection kit based on LFA has been widely used during

the COVID-19 outbreak. China has developed and approved

LFAs for the detection of SARS-CoV-2 infection, and IgM and

IgG antibodies or antigens of SARS-CoV-2 in patients can be

detected within 15 min (Li et al., 2021; Liu et al., 2021). When the
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disease is at an early stage, focusing on antibodies or antigens

testing may lead to false negative results. With the development

of nanotechnology, carbon nanoparticles and carbon nanotubes

have signaficantly improved the sensitivity of LFA detection

results, and nucleic acid detection is the gold standard for the

diagnosis of new coronary pneumonia. At present, the method

of LAMP combined with LFA to detect SARS-CoV-2 has been

gradually proposed by many scholars (Zasada et al., 2020; Jang

et al., 2021; Zheng et al., 2021) (Figure 2).

After the biotin-labeled LAMP product is hybridized with the

FITC-labeled specific probe and the FITC-labeled specific probe is

combined with the anti-FITC antibody on gold nanoparticles, the

immune complex is added to the test strip. When the immune

complex diffuses through the chromatographic membrane to the

detection line, the biotin-labeled amplification product is captured

by the biotin ligand and develops color. The combined application

of the two methods can be effectively used for the detection of

SARS-COV-2 with the naked eye. A new method for the combined

application of nanoparticle-based flow test strips and RT-LAMP

has been established (Chen et al., 2021). Themethod can be used for

tests of the RdRp and N genes of SARS-CoV-2, and the whole
Frontiers in Cellular and Infection Microbiology 05
reaction process can be completed in only 1.5 h with 100%

specificity and the limit of detection was 20 copies/reaction. A

method combining RT-LAMP with LFA was proposed for

detecting SARS-CoV-2 (Agarwal et al., 2022). In this method,

biotin and FITC were combined with 11 dUTP and LF primers

on the strip to produce highly specific results. The results can be

detected in 15 min with high accuracy. CRISPR-Cas12 based gene

editing technology has also been applied to the detection of SARS-

CoV-2 infection. After extracting the viral RNA from the throat

swab sample, RT-LAMP amplification was carried out. Cas12

targeted the predetermined viral nucleic acid sequence. Then, a

reporter molecule was cleaved to confirm the presence of virus

nucleotides, and the results were interpreted in strips. The method

of detecting SARS-CoV-2 based on CRISPR-Cas12, which

combines LAMP and LFA, can quickly detect SARS-CoV-2 from

samples. Compared with qRT–PCR, this method has reliable

accuracy and was verified to be feasible (Broughton et al., 2020).

A novel DNA capture probe-based LFA for detecting SARS-CoV-2

was proposed (Yi et al., 2021). First, based on a CRISPR/Cas12a

detection method, a biotinylated reporter gene was designed

according to the S and N genes of SARS-CoV-2. Second, the RT-
FIGURE 2

Detection method of lateral flow assay based on loop-mediated isothermal amplification technology. (A) Multiplex reverse transcription loop-
mediated isothermal amplification linked with gold nanoparticle-based lateral flow assay. (B) Lateral flow assay with enzyme incorporation of
biotin labeled dUTP. (C) Lateral flow assay based on loop-mediated isothermal amplification and Cas12a. (D) Lateral flow analysis of Argonaute
integrated loop-mediated isothermal amplification.
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LAMP assay was used to improve reaction sensitivity. In addition, a

customized reporter was used, which was hybridized with an

optimized complementary capture probe fixed on the test line for

result readout through two independent systems: strips for the

naked eye and real-time fluorescence signals. The combined

application of RT-LAMP and LFA to detect SARS-CoV-2 can

achieve ultrasensitivity of 1 copy/mL within 60 min. This will

provide strong support for the detection of SARS-CoV-2 and

other pathogens in laboratories in poor or remote areas. To break

the limitation of the complexity and instability of multiple detection

caused by guide RNA in the CRISPR-based method, an integrated

nucleic acid detection system (Mulan) integrating Argonaute (Ago)

and RT-LAMP was established (Ye et al., 2022). The system

combines the multiple inclusiveness of RT-LAMP and a single

Ago molecule, which can specifically detect a variety of pathogens,

including SARS-CoV-2 and influenza A and B viruses, and analyze

the results in the form of flow test strips and fluorescent signals.

This method can alleviate the shortage of false-positive from LAMP

detection by Argonaute’s specifically cleave target directed by base-

pairing guide.
Frontiers in Cellular and Infection Microbiology 06
4.3 LAMP combined with microfluidic
technology

As the core technology of a micrototal analysis system,

microfluidic analysis integrates chemical, electronic, computer

and other function modules on one chip to establish biochemical

analysis by controlling the flow of trace liquid; it has the

characteristics of small sample requirement, controllability,

robust function, and rapid and sensitive detection (Yuan et al.,

2019). The development of a lab-on-chip (LOC) system based on

the integration of LAMP and microfluidic technology is

expected to speed the detection of pathogens and allow the

early diagnosis of diseases (Figure 3). Currently, LAMP

technology on LOC has been applied to the detection of breast

cancer biomarkers, dengue serotypes, carbapenemase-producing

organisms, and multiple pathogens in the lower reproductive

tract during pregnancy (Moser et al., 2022; Wormald et al., 2022;

Wu et al., 2022; Xu et al., 2022). Microfluidic chips are

characterized by high throughput and low cost, a method of

LAMP technology combined with a microfluidic chip to detect a
FIGURE 3

Detection method of microfluidic chips based on loop-mediated isothermal amplification technology. (A) Microfluidic point-of-care device
integrated plastic cartridges. (B) Real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip.
(C) Portable microfluidic chip based on particle imaging technique, particle diffusometry. (D) Microfluidic device based on commercial
pregnancy test strips and a palm size.
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variety of pathogens has been established, which can perform

detection of multiple pathogens and real-time detection within

40 min without aerosol pollution and cross reaction (Ou et al.,

2021). Research on the combined application of LAMP

technology and microfluidic chips to detect pathogens is of

great significance for the rapid detection of SARS-CoV-

2 infection.

A microfluidic analysis and equipment for detecting the

SARS-CoV-2 alpha mutant based on the RT-LAMP method

were demonstrated. SARS-CoV-2 was successfully detected in

the saliva of patients by using the N and S genes (Lim et al.,

2022). At the same time, this method can also distinguish the

alpha mutant from the early variant of SARS-CoV-2. The

method of LAMP combined with a microfluidic chip mainly

loads the nucleic acid template to the inlet the of microfluidic

chip, with 10 copies/mL of targets detected within 0.5 h.

Subsequently, based on the joint application of LAMP and

microfluidic chips, the research team developed a multiple

virus nucleic acid detection kit (Zhou et al., 2014). This kit can

detect a variety of pathogens, including influenza A virus and

SARS-CoV-2, showing high discrimination performance. A

method for detecting SARS-CoV-2 based on RT-LAMP and

particle imaging technology, particle diffusometry (PD), was

designed to detect virus particles by isothermal amplification

on an integrated heated portable chip, and then smartphone

devices were used for fluorescence imaging and particle diffusion

rate analysis. With this method, SARS-CoV-2 could be detected

in only 35 min. This method has a high specificity and

sensitivity, and the potential of cross contamination can be

eliminated (Colbert et al., 2022). To further improve the

portability of the combined application of LAMP and

microfluidic chips, an on-site, semiautomatic detection system

was developed (Yang M. et al., 2022). The entire detection was

integrated into a four-channel, palm-size microfluidic device.

SARS-CoV-2 can be detected within 2 h by detecting the RNA

signal generated by isothermal amplification and then reading

the results with a portable commercial pregnancy test strip. It

provides a rapid, cost-effective, and sensitive assay, with a limit

of detection at 0.5 copy/mL for SARS-CoV-2 RNA.
4.4 LAMP combined with other biosensors

The biosensor is composed of a molecular recognition part

and a conversion part, and the measured substance can be

sensed by the sensitive element and then transformed into an

identifiable signal output. In recent years, electrochemical

biosensors, optical biosensors, and colorimetric biosensors

have been widely used in pathogen detection (Mahshid et al.,

2021; Pinals et al., 2021; Lin et al., 2022; Park et al., 2022). Due to

the fast analysis speed, high sensitivity and low price of biosensor

technology, it has been widely used and adapted for new

applications by researchers involved in virus detection, disease
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screening and diagnosis in laboratories. During the COVID-19

outbreak, a variety of biosensors were developed to detect SARS-

CoV-2 infection. A biosensor device based on a field-effect

transistor (FET) was used to detect SARS-CoV-2 in samples

(Seo et al., 2020). The biosensor device was coated with a specific

antibody against the SARS-CoV-2 S protein through the

graphene in the FET. As a highly sensitive method for the

diagnosis of COVID-19, the biosensor successfully detected

SARS-CoV-2 in the sample, with a limit of detection at 2.42 x

102 copies/mL for clinical samples. The electrochemical

biosensor based on FET has the advantages of low cost, high

sensitivity and wide dynamic response range. It provides a highly

sensitive diagnostic method for clinical detection of SARS-CoV-

2 without any pretreatment or labeling of samples. In addition,

an FET biosensor based on graphene oxide graphene (GO/Gr)

van der Waals heterostructures has been developed (Gao et al.,

2022). The GO/Gr van der Waals heterostructure was in-situ

formed in the microfluidic channel through p-p stacking. GO

with abundant functional groups (OH-, COOH-, CO-) has an

improved adsorption force for target molecules than graphene,

and the abundant functional groups of GO nanosheets reacted

strongly with SARS-CoV-2 capture antibodies via both p–p
stacking and hydrogen bonding. This method can not only

detect SARS-CoV-2 within 20 min but also has strong

selectivity and sensitivity, providing a potential method for fast

and accurate SARS-CoV-2 detection. At present, a piezoelectric

microcantilever biosensor, a vertical microcavity and localized

surface plasmon resonance hybrid biosensor and an electronic

labeling strategy of protein molecules, and demonstration of a

SARS-CoV-2 protein biosensor employing a colloidal quantum

dot (CQD)-modified electrode have all been proposed (Kabir

et al., 2021; Zhao et al., 2022; Zheng et al., 2022). These biosensor

devices mostly utilize antigens or antibodies for biological

recognition. Recently, various detection methods for nucleic

acid-based biosensor devices have been developed (Figure 4).

Combining RT-LAMP with a glass nanopore biosensor, a

detection method for SARS-CoV-2 was demonstrated with a

high specificity, sensitivity, and portability and rapid operation

(Tang et al., 2022). The RNA of SARS-CoV-2 virus was reverse

transcribed and amplified by RT-LAMP, and then the

concentration of products was measured by nanopore sensor

and digital counting methods. The optimized RT-LAMP assay

targeting the N gene showed the limit of detection was 65 copies

and possessed an excellent specificity. With its integration

capability, the biggest advantage of the nanopore digital

analysis method is that it has the characteristic of single

molecule level sensitivity and can read and analyze the process

of RT-LAMP-amplified nucleic acid more quickly. A paper

microdevice including nucleic acid extraction, amplification

and signal reading was developed (Dinh and Lee, 2022). The

device utilizes the electrostatic interaction between a negatively

charged LAMP amplicon and positively charged saffron O

oligomers to effectively detect SARS-CoV-2 through
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colorimetry. In comparison with the existing fully integrated

devices, this strategy could reduce the cost and reaction time by

using eco-friendly paper and naked-eye detection. And this

method will be able to directly detect SARS-CoV-2-positive

samples on si te without the requir ing specia l ized

instruments. A method for the rapid detection of SARS-CoV-2

by LAMP combined with a nanoparticle biosensor (RT-LAMP-

NBS) was established (Suleman et al., 2021). Two sets of RT-

LAMP primers were designed according to the ORF1ab and N

genes to specifically identify 8 regions of the target gene. In the

specific analysis, the positive control and samples of SARS-CoV-

2 were positive results, while noninfected samples showed no

false-positive results. In the clinical diagnosis of patients with

COVID-19, RT-LAMP-NBS has 100% sensitivity and specificity

for SARS-CoV-2 samples, and the time from sample collection

to result is greatly shortened. Research shows that RT-LAMP-

NBS is an effective means to diagnose SARS-CoV-2 infection

and can be applied for robust clinical infection detection (Seo

et al., 2020). With the continuous innovation of detection

methods for SARS-CoV-2, home devices and POCT have

become the mainstream development trend of virus detection.

A home temperature cup (T-Cup) device based on LAMP for

testing SARS-CoV-2 was created by using a simple aluminum
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coffee capsule, a phase change material (PCM) and a 3D printed

holder (Velders et al., 2022). The paraffin-based PCM and 3D

printed vial holder were placed in the cup together with the PCR

tubes. PCM can be melted when it reaches the melting point in a

hot water bath and maintained at a constant temperature of 61-

67°C for 25 min, which meets the conditions required for the

LAMP reaction. Finally, the colorimetric method was used to

observe the results. T-Cup and PCR were used to detect positive

and negative samples of SARS-CoV-2 infection, and the results

of the two methods were consistent, which shows that T-Cup has

a certain feasibility in detecting SARS-CoV-2 infection. The

development of biosensors and their combined application

with LAMP technology has provided a foundation for the

rapid detection of SARS-CoV-2 (Table 1).
5 Conclusion

As an isothermal nucleic acid amplification method, LAMP

has been pursued as an ideal low-tech alternative for rapid and

portable testing, a large number of studies for promoting the

transformation of LAMP technology to POCT have showed

great potentials in clinical (Mautner et al., 2020). The LAMP
FIGURE 4

Other biosensors detection methods based on loop-mediated isothermal amplification technology. (A) A fully integrated paper microdevice of
using Safranin O dye coupled with loop-mediated isothermal amplification. (B) Reverse transcription loop-mediated isothermal amplification
coupled glass nanopore digital counting method. (C) T-Cup: A cheap, rapid, and simple home device for isothermal nucleic acid amplification.
(D) A crumpled graphene field-effect transistor biosensor.
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based biosensors to detect SARS-CoV-2 infections has great

advantages, but there are still some shortcomings and challenges.

First, false positive detection results caused by aerosol pollution

in nucleic acid amplifications have attracted extensive attentions

of researchers. Microfluidic chip provide micro closed channels

and micro reaction chambers with different shapes and sizes for

LAMP (Zhang et al., 2019). At the same time, the multi-channel

LAMP diagnostic integrated system can make the micro reaction

chambers to be connected in parallel without interference (Peng

et al., 2019). In addition, the results can be directly detected after

the reaction in the chip, without exposing to the environment.

Therefore, the combined application of LAMP and microfluidic

technology effectively overcomes the disadvantage of traditional

LAMP caused by aerosol pollution. Secondly, LAMP requires a

minimum of four primers to target six binding sites with strict

requirements regarding the distances between each of the

binding sites while each primer must also meet specific

conditions. The complicated LAMP primer design makes

primer development time-consuming. Once a set of reliable

primers is developed, the sensitivity and amplification rate of

LAMP will be further improved and does not produce non-

specific amplification. Finally, most of signal out-put after

nucleic acid amplifications are fluorescence or color changes

during the reaction with subjective judgments. The current

technology development and research mainly focus on how to

complete the quantitative detection with rapid, high specificity

and sensitivity without exposing the amplified products, which is
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an inevitable trend in the development of nucleic acid detection

and POCT.

Currently, the number of cases of COVID-19 and

asymptomatic patients worldwide is still rising, and

developments and innovations in detection methods for SARS-

CoV-2 are also ongoing to control the rapid spread of the

epidemic. As an effective assay with a high specificity and

sensitivity, convenient operation and low price, LAMP can be

used for the robust detection of SARS-CoV-2 nucleic acid when

combined with a variety of biosensors, which make up for the

shortcomings of traditional PCR detection technology including

equipment dependence and long detection cycles, so that nucleic

acid detection can be performed in a wide range of environments

or locations. The combined application of LAMP technology

with other biosensors for the detection of SARS-CoV-2 has great

advantages, and rapid and accurate detection for identifying

SARS-CoV-2 is of great significance for disease prevention

and control.
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