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Citrobacter spp. are Gram-negative bacteria commonly found in environments

and intestinal tracts of humans and animals. They are generally susceptible to

third-generation cephalosporins, carbapenems and colistin. However, several

antibiotic resistant genes have been increasingly reported in Citrobacter spp.,

which leads to the postulation thatCitrobacter spp. could potentially be a reservoir

for spreading of antimicrobial resistant genes. In this study, we characterized two

colistin-resistant Citrobacter spp. isolated from the feces of a healthy individual in

Thailand. Based on MALDI-TOF and ribosomal multilocus sequence typing, both

strains were identified as Citrobacter sedlakii and Citrobacter amalonaticus.

Genomic analysis and S1-nuclease pulsed field gel electrophoresis/DNA

hybridization revealed that Citrobacter sedlakii and Citrobacter amalonaticus

harbored mcr-3.5 gene on pSY_CS01 and pSY_CA01 plasmids, respectively.

Both plasmids belonged to IncFII(pCoo) replicon type, contained the same

genetic context (Tn3-IS1-DTnAs2-mcr-3.5-dgkA-IS91) and exhibited high

transferring frequencies ranging from 1.03×10-4 - 4.6×10-4 CFU/recipient cell

Escherichia coli J53. Colistin-MICs of transconjugants increased ≥ 16-fold

suggesting that mcr-3.5 on these plasmids can be expressed in other species.

However, beside mcr, other major antimicrobial resistant determinants in

multidrug resistant Enterobacterales were not found in these two isolates. These

findings indicate that mcr gene continued to evolve in the absence of antibiotics

selective pressure. Our results also support the hypothesis that Citrobacter could

be a reservoir for spreading of antimicrobial resistant genes. To the best of our
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knowledge, this is the first report that discovered human-derived Citrobacter spp.

that harbored mcr but no other major antimicrobial resistant determinants. Also,

this is the first report that described the presence of mcr gene in C. sedlakii and

mcr-3 in C. amalonaticus.
KEYWORDS

colistin resistance, citrobacter spp., citrobacter sedlakii, citrobacter amalonaticus,
mcr gene, mcr-3
Introduction

The emergence of antimicrobial resistance (AMR) is one of

the most public health concerns. As declared by the World

Health Organization (WHO) recently, the most problematic

multidrug-resistant (MDR) bacteria is carbapenem-resistant

Gram-negative bacilli, in particular Enterobacterales (CRE)

(Tacconelli et al., 2018). The presence of such MDR bacteria

and the lack of new antimicrobial agents lead to the use of

colistin, which has been considered as a last-resort antibiotic

(Madec et al., 2017; Zheng et al., 2020; Ouchar Mahamat et al.,

2021). Colistin is a cyclic polypeptide antibiotic that targets the

lipid A moiety of lipopolysaccharide (LPS), causing

destabilization of the bacterial outer membrane, and leading to

cell death. Beside clinical usage, colistin was also heavily used as

a growth promoter in livestock (Rahal, 2008). As a result of the

increased use in clinical practice and inappropriate use in animal

production, acquired colistin resistance has emerged (Rahal,

2008; Papp-Wallace et al., 2011). Most of colistin resistant

mechanisms are related to chromosomal mutation within two-

component systems (TCSs), resulting in modification of LPS by

addition of positively charged molecules including

phosphoethanolamine (PEtN) and 4-amino-4-deoxy-L-

arabinose (Ara4N) to the 1-phosphate or 4-phosphate groups

of Lipid A, respectively. Beside chromosomal mutations,

plasmid-mediated mobile colistin resistant (mcr) gene has also

been reported. The discovery of mcr-1 in 2015 has raised a

significant public health concern, since the gene can easily

spread by horizontal gene transfer (Liu et al., 2016). Shortly

after the discovery ofmcr-1, other genetic alleles includingmcr-2

to mcr-10 have been identified from various species of Gram-

negative bacteria (Xavier et al., 2016; Yin et al., 2017; Borowiak

et al., 2017; AbuOun et al., 2018; Wang et al., 2018; Yang et al.,

2018; Kieffer et al., 2019; Wang et al., 2020). Currently,mcr genes

have been distributed globally. The genes have been identified in

at least 70 countries, with mcr-1 being the most prevalent
02
followed by mcr-3 and mcr-4, respectively. They are frequently

isolated from E. coli, K. pneumoniae and Salmonella spp.

(Mmatli et al., 2022). In Thailand, various mcr alleles

including mcr-1, mcr-2, mcr-3, mcr-6, mcr-7, mcr-8, and mcr-9

have been reported. Most of these alleles were found to associate

with farmed animals, especially pig and poultry (Mmatli et al.,

2022). Beside animals, prevalence of mcr-1 in human patients

and co-occurrence of mcr -2 and mcr -3 on chromosome of

multidrug-resistant Escherichia coli isolated from a healthy

subject were recently reported by our group (Eiamphungporn

et al., 2018; Phuadraksa et al., 2022).

Citrobacter spp. are Gram-negative bacteria in the order

Enterobacterales. It is commonly found in soil, water, retail

meat, and intestines of animals and humans (Liu et al., 2018b). It

has been reported to carry several types of antimicrobial resistant

genes such as AmpC b-lactamase, extended-spectrum

-lactamases , plasmid-mediated quinolone resistant

determinants, and carbapenemases (Jacobson et al., 1995;

Hanson and Sanders, 1999; Wang et al., 2000; Mohanty et al.,

2007; Zhang et al., 2008; Samonis et al., 2009; Shahid, 2010;

Kanamori et al., 2011; Lee et al., 2015). Moreover, several

variants of mcr genes have been recently reported in many

species of Citrobacter, including mcr-1 (Li et al., 2017; Hu et al.,

2017; Zhou et al., 2017; Sadek et al., 2021) andmcr-9 (Bitar et al.,

2020) in C. freundii, mcr-1 in C. braakii (Sennati et al., 2017; Liu

et al., 2018a; Zelendova et al., 2020), and mcr-1.5 in C.

amalonaticus (Faccone et al., 2019). Therefore, Citrobacter spp.

has been speculated as a potential source for carrying and

spreading of antibiotic resistant genes (Jiang et al., 2019).

Herein, colistin-resistant C. sedlakii and C. amalonaticus

were isolated from healthy individual under healthcare check-

ups program at the Golden Jubilee Medical Center Mahidol

University, Nakhon Pathom, Thailand, in 2022. The

antimicrobial susceptibility profile, whole genome sequencing,

AMR mechanisms, plasmid characteristics and transferring

frequencies were investigated.
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Materials and methods

Bacterial identification and isolation of
colistin-resistant Citrobacter strains

A total of 55 left-over stool samples were obtained from

healthcare check-ups program at the Golden Jubilee Medical

Center Mahidol University, Nakhon Pathom, Thailand, in 2022.

Samples were cultured in MacConkey agar supplemented with 2

mg/L colistin. Citrobacter isolates were identified using

traditional biochemical tests (Farmer et al., 1985) and species-

level identification was confirmed by Biotyper (matrix-assisted

laser desorption/ionization time-of-flight (MALDI-TOF) mass

spectrometry) according to the manufacturer’s protocol (Bruker

Daltonik, Leipzig, Germany). Colistin-resistant isolates were

further confirmed by the gold standard broth-microdilution

method defined by the Clinical and Laboratory Standards

Institute (CLSI) (Clinical Laboratory and Standards Institute

(CLSI), 2020). The presence of mcr-1 to mcr-10 was screened by

multiplex PCR using the previously described protocols (Lescat

et al., 2018; Wang et al., 2020; Borowiak et al., 2020), and the

gene sequence was confirmed by Sanger DNA sequencing.
Antimicrobial susceptibility testing (AST)

The minimum inhibitory concentrations (MICs) of

amikac in , ce fo tax ime , ce f taz id ime , c iprofloxac in ,

chloramphenicol, colistin, gentamicin, imipenem, meropenem,

nalidixic acid, tetracycline, and tigecycline were determined by

broth microdilution method (BMD). MIC of fosfomycin was

investigated by agar dilution method, which is recommended by

CLSI. Escherichia coli ATCC 25922 was used as a quality control

strain. The results were interpreted according to CLSI guideline.
Whole−genome sequencing (WGS)
and bioinformatics analysis

Genomic DNA (gDNA) of C. amalonaticus and C. sedlakii

were extracted using PureLink® Genomic DNA Kits

(Invitrogen) according to the manufacturer’s instructions. The

DNA samples were subsequently sequenced through NovaSeq

6000-PE150 platform (Illumina, San Diego, CA, USA) to

generate paired-end 150-bp reads. The raw reads were then

checked for quality and trimming using FastQC and

TrimGalore, respectively (Andrews, 2022). De novo assembly

was performed by SPAdes genome assembler version 3.15.3

(Prjibelski et al., 2020) to obtain contigs. The assembled

contigs were then annotated through PROKKA and RAST

server (Aziz et al., 2008; Seemann, 2014). Acquired
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antimicrobial resistant genes and plasmid replicons were

determined using Resfinder (Bortolaia et al., 2020) and

PlasmidFinder (Carattoli and Hasman, 2020), respectively.

Additionally, the assembled contigs were also used for species

identification using ribosomal multilocus sequence typing

(rMLST). Based on the seven house-keeping genes (aspC, clpX,

fadD, mdh, arcA, dnaG and lysP), the sequence type (ST) was

identified using PubMLST server (Jolley and Maiden, 2010).

Furthermore, the phylogenetic tree was performed and

visualized through Roary (Page et al., 2015) and iTOL (Letunic

and Bork, 2021), respectively.
Plasmid characterization

Plasmid profiles of isolates containing mcr genes were

characterized by pulsed-field gel electrophoresis with S1

nuclease (S1-PFGE) (Barton et al., 1995). Briefly, bacterial

genomic DNA was embedded in plugs and digested with S1

nuclease (Fermentas, USA). Then, the linearized plasmid DNA

was separated using a CHEF-DRIII system (Bio-Rad, Hercules,

USA). Salmonella braenderup H9812 digested with XbaI was

used as a reference DNA size marker. The location of the mcr

gene in the plasmids was investigated by Southern blot analysis

with a specific probe. The probe was labeled and hybridized

using DIG-High Prime DNA Labeling and Detection Starter Kit

II (Roche Diagnostics, Indianapolis, IN, USA) according to the

manufacturer’s protocol. Transferability of plasmids harboring

mcr gene was determined by plasmid conjugation experiment

using the filter-mating technique as previously described

(Khajanchi et al., 2019). Briefly, Citrobacter isolates harboring

mcr gene and Escherichia coli J53, which is resistant to sodium

azide were used as donors and recipients, respectively. The

donor and recipient were mixed at a ratio of 1:2 on a filter

and incubated on LB plate at 37°C for 4 hr. Transconjugants

were selected on MacConkey agar containing 2 mg/L of colistin

and 150 mg/L of sodium azide. Then, MALDI-TOFMS was used

for identification of transconjugants and the presence of mcr

gene was investigated by PCR to ensure that the plasmid was

successfully transferred to the recipient strain.
Nucleotide sequence accession numbers

The nucleotide sequences of pSY_CA01 and pSY_CS01 have

been deposited in in the NCBI database with GenBank accession

numbers JALNMK010000021 and JALNML010000026,

respectively. The draft genomes of C. amalonaticus SY-CA35

and C. sedlakii SY-CS04 are also available in the NCBI

database with accession numbers PRJNA827636 and

PRJNA827638, respectively.
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Results

Bacterial isolation and identification

Based on MALDI-TOF MS experiment, two bacterial

isolates, SY-CS04 and SY-CA35, were identified as C.

sedlakii and C. amalonaticus, respectively (Figure 1A). This

result is in an agreement with ribosomal multilocus sequence

typing (rMLST), which showed that SY-CS04 and SY-CA35

were C. sedlakii and C. amalonaticus, respectively. Sequence

alignment with reference strains showed that SY-CS04 and

SY-CA35 had high sequence similarity to C. sedlakii

(accession no. CP071070) and C. amalonaticus (accession

no. CP014070), respectively (Figures 1B, C). Taken together,

SY-CS04 and SY-CA35 have been identified as C. sedlakii and

C. amalonaticus, respectively.
Antimicrobial susceptibility testing
and screening of mcr genes

Both SY-CS04 and SY-CA35 were susceptible to most of the

antibiotics tested except for colistin (Table 1). SY-CA35 also
Frontiers in Cellular and Infection Microbiology 04
exhibited resistance to nalidixic acid. The presence of mcr genes

was sought by multiplex-PCR and the results showed that both

isolates were positive for mcr-3. Then, the sequence of the gene

was confirmed by Sanger DNA sequencing, which revealed that

both isolates harbor mcr-3.5 gene, with 100% identity to the

reference sequence (accession number NG_055782.1).
Genomic analysis of Citrobacter isolates

As revealed by whole-genome sequencing, the genomic sizes

of SY-CS04 and SY-CA35 were 5,047,858 and 4,851,785-bp,

respectively. The GC content of SY-CS04 was 54.46% while that

of SY-CA35 was 53.38% (Figure 2). Based on Resfinder analysis,

the acquired resistant genes in both isolates were discovered

(Figure 3). Both SY-CS04 and SY-CA35 possessed genes

conferring resistance to macrolides (erm(B), mph(A)),

b-lactams (blaSED-1), and colistin (mcr-3.5). It is worth noting

that these two isolates did not contain any other major

antimicrobial resistant determinants found in multidrug

resistant Enterobacterales. Additionally, SY-CA35 also carried

quinolone-resistant gene (qnrS1) and fluoroquinolone-resistant

genes (oqxA, oqxB). Virulence factors of SY-CS04 and SY-CA35
B

C

A

FIGURE 1

Identification of Citrobacter spp. (A) Mass fingerprinting of C. sedlakii and C. amalonaticus from Matrix-Assisted Laser Desorption/Ionization-
Time Of Flight Mass Spectrometry (MALDI-TOF-MS). (B) Sequence alignment of C. sedlakii strain SY-CS04 with C. sedlakii strain 3347689II
(accession no. CP071070). (C) Sequence alignment of C. amalonaticus strain SY-CA35 with C. amalonaticus strain FDAARGOS_165 (accession
no. CP014070).
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were predicted by VirulenceFinder. The presence of genes

encoding extracellular nucleation factors (csgA, csgB, csgD),

enterobactin (entB, entE), siderophores transportation (fepC,

fepD, fepG) were found in both isolates. SY-CA35 also carried

enterobactin (entA) while SY-CS04 carried enterobactin (entC).

Furthermore, SY-CS04 also contained genes encoding

extracel lular nucleat ion factors (csgE, csgG, csgF) ,

yersiniabactin receptor (fyuA), siderophore yersiniabactin

(ybtA, ybtE, ybtO, ybtP, ybtS, ybtT, ybtU, ybtX), iron

regulatory proteins (irp1, irp2), and outer membrane protein

A (ompA). MLST analysis performed by PubMLST revealed that

the sequence of SY-CS04 and SY-CA35 did not match with the

existed sequences in the database. Therefore, SY-CS04 and SY-

CA35 were newly assigned as ST682 and ST681, respectively

(Table 2). Then phylogenetic tree was generated through roary

bacterial genome analysis. All available genome data of C.

sedlakii and C. amalonaticus were retrieved from NCBI

genome database. Roary matrix-based gene sequence analysis
Frontiers in Cellular and Infection Microbiology 05
generated a pangenome consisting of 37,961 gene clusters of 86

whole genomes (Figure 4). The tree revealed that SY-CS04 and

SY-CA35 were closely related to a clinical isolate C. sedlakii stain

CB00020 (accession no. SAMN10435564) and a clinical isolate

C. amalonaticus stain LFYP1 (accession no. SAMEA6160257)

from the USA, respectively.
Plasmid characterization

The plasmid profiles of SY-CS04 and SY-CA35 were

characterized by S1-PFGE (Figure 5A), which revealed the

presence of two plasmids in each of the two strains. In SY-

CS04, the plasmid sizes were ~78.2 and ~100 kb, while in SY-

CA35, the plasmid sizes were ~33.3 and ~78.2 kb. The location

of mcr-3.5 gene was then identified using DNA hybridization

with a specific probe (Figure 5B), which revealed that the gene

was located on the ~78.2 kb plasmid in both SY-CS04 and SY-
BA

FIGURE 2

Overview of genomic structure of Citrobacter isolates. (A) Citrobacter sedlakii SY-CS04. (B) Citrobacter amalonaticus strain SY-CA35. The inner
circle and outer circle represent GC skew and GC content, respectively. The protein-coding gene on forward strand and reverse strand
represent in blue and red, respectively.
TABLE 1 The minimum inhibitory concentrations (MICs) of bacterial isolates.

Isolate
Minimal Inhibitory Concentrations; MICs (mg/L)

AK CTX CAZ CIP C CL FOS GM IPM MEM NA TE TGC

SY-CS04 1 ≤0.25 0.5 0.5 16 4 4 ≤0.25 2 ≤0.25 4 2 0.5

SY-CA35 1 ≤0.25 0.5 0.5 16 8 4 ≤0.25 2 ≤0.25 32 2 0.5

E. coli J53 4 ≤0.25 0.5 0.5 8 ≤0.25 8 2 2 ≤0.25 4 2 0.5

(T)
SY-CS04

4 ≤0.25 0.5 0.5 8 4 8 2 2 ≤0.25 4 2 0.5

(T)
SY-CA35

4 ≤0.25 0.5 0.5 8 4 8 2 2 ≤0.25 4 2 0.5
frontiers
AK, amikacin; CTX, cefotaxime; CAZ, ceftazidime; CIP, ciprofloxacin; C, chloramphenicol; CL, colistin; FOS, fosfomycin; GM, gentamicin; IPM, imipenem; MEM, meropenem; NA,
nalidixic acid; TE, tetracycline; TGC, tigecycline. The alphabet letter (T) represents the corresponding transconjugants.
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FIGURE 3

Antimicrobial resistance and virulence-associated profiles of the 2 Citrobacter isolates. Blue squares indicate the presence of genes while white
squares represent the absence of genes.
TABLE 2 Genomic and plasmid profiles of Citrobacter isolates.

Strain Allelic profiles of house-keeping loci Sequence type (ST) Plasmid size (kb) Inc group Transfer rates

aspC clpX fadD mdh arcA dnaG lysP

Citrobacter
sedlakii
strain
SY-CS04

215 253 274 205 133 196 236 682 ~78.2 IncFII
(pCoo)

4.6×10-4

~100 IncFIIs/
IncR

ND

Citrobacter
amalonaticuus
strain
SY-CA35

137 152 214 213 75 184 186 681 ~78.2 IncFII
(pCoo)

1.03×10-4

~33.3 IncFII
(pMET)

ND
Frontiers in Ce
llular and Infection Microbiology
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ND, not determined.
FIGURE 4

Roary matrix-based gene sequence analysis of 86 Citrobacter isolates. The source of the isolates is shown in the inner ring. The location of the
isolates is depicted in the middle ring and the year of the isolates is indicated by the outer ring. Isolates in this study including SY-CS04 and SY-
CA35 were colored in red.
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CA35. The incompatibility group of the plasmids was identified

through PlasmidFinder. IncFII(pCoo) plasmid was found in

both SY-CS04 and SY-CA35. In addition, an IncFII(S)/IncR

plasmid was found in SY-CS04 while an IncFII(pMET) plasmid

was found in SY-CA35 (Table 2). In combination with S1-PFGE,

these results suggest that the mcr-3.5 gene is located on IncFII

(pCoo) plasmid with a size of ~78.2 kb in both strains. IncFII

(pMET) is the plasmid with a size of ~33.3 kb in SY-CA35.

IncFII(S)/IncR plasmid is a hybrid plasmid with the size of ~100

kb in SY-CS04.

Bioinformatic analysis revealed thatmcr-3.5 was located on a

plasmid of SY-CS04 and SY-CA35, which were then designated

as pSY_CS01 and pSY_CA01, respectively. The size of

pSY_CS01 and pSY_CA01 were 80,003-bp with 52.59% GC
Frontiers in Cellular and Infection Microbiology 07
content and 80,445-bp with 52.67% GC content, respectively.

Both plasmids belonged to IncFII(pCoo) plasmid replicon type

and contained 279 predicted ORFs encoding proteins with over

50 amino acids long (Figure 6). Notably, the genetic

environment of mcr-3.5 in pSY_CS01 and pSY_CA01 was the

same, which is Tn3-IS1-DTnAs2-mcr3.5-dgkA-IS91. Plasmids

pSY_CS01 and pSY_CA01 were then blasted through BLASTN

and 8 best matches with query cover >75% and identity >99%

were identified, these include pVNCEc57 (LC549806.1),

pRHBSTW-00122 (CP056847.1), p92944-mph (MG838205.1),

p702_18_4 (CP074705.1), pNCYU-26-73-6 (CP042621.1),

pECQ4552 (CP077064.1), unnamed3 (CP041102.1), and

pVE769 (AP018353.1). In this regard, mcr-3 was identified in

only 3 plasmids, which were found in E. coli including
FIGURE 5

Plasmid profile analysis of Citrobacter isolates harboring mcr-3.5 gene by S1-PFGE and DNA hybridization. (A) The profile of total DNA treated
with S1 nuclease and (B) relative hybridization of mcr-3 probe. Lane M, molecular standard, which is Salmonella braenderup H9812 digested
with XbaI. Lane 1, Citrobacter amalonaticus strain SY-CA35. Lane 2, Citrobacter sedlakii strain SY-CS04. Arrows indicate the locations of plasmid
harboring mcr-3 gene.
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pVNCEc57 from Vietnam, pECQ4552 from France, and

pVE769 from Vietnam (Figure 7). Then, the sequences of

plasmid containing mcr-3 were compared with sequence from

our study. As shown in Figures 7, 8, all plasmids shared the same

backbone region. However, the surrounding region of mcr-3

from our study was different from the sequences in the database

suggesting that insertion of genetic elements had occurred.
Frontiers in Cellular and Infection Microbiology 08
Moreover, mobile genetic element also contained toxin/

antitoxin system indicating the stabilization of mobile genetic

element within plasmid (Song andWood, 2020). In addition, the

surrounding region of mcr-3.5 in this study were compared with

13 plasmids harboring mcr-3.5 (Figure 9), which were retrieved

from NCBI database. The result showed that DTnAs2-mcr-3.5-

dgkA region were found in all sequences. Various insertion
BA

FIGURE 6

Structure of the IncFII(pCoo) harboring mcr-3.5, including pSY_CS01 (A) and pSY_CA01 (B). The inner circle and outer circle represent GC skew
and GC content, respectively. The arrows indicate the directions of gene transcription. The red arrows represent antimicrobial resistance genes,
the green arrows show other functional genes, the blue arrows show mobile element-encoding genes, the yellow arrows show IncF plasmid
conjugative element and grey arrows for hypothetical protein-encoding genes.
FIGURE 7

Circular comparison of IncFII(pCoo) harboring mcr-3.5, pSY_CS01 and pSY_CA01 with eight homologous plasmids with considerable
query coverage.
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sequences (IS) such as IS91, Tn3, IS26 were also identified at the

upstream or downstream of that region.

Furthermore, the transferability of plasmids harboring mcr-

3.5 gene was determined by plasmid conjugation assay. Both

plasmids were successfully transferred to E. coli J53 with high

transferring efficiency, ranging from 1.03×10-4 - 4.6×10-4 colony

forming units (CFU) per recipient cell. Both transconjugants

exhibited a 16-fold (4 mg/L) increase in the colistin MICs when

compared with that of the recipient cell (E. coli J53) (Table 1).

These results suggested that the mcr-3.5 gene on IncFII(pCoo)

plasmid can be transferred and expressed in transconjugants.
Discussion

The mcr-3 gene was first reported by Yin W et al. in China

(Yin et al., 2017). The gene was located on IncHI2 replicon type

plasmid found in E. coli isolated from pig. Currently, more than

40 variants of mcr-3 have been deposited in the NCBI database,

indicating that the mcr-3 gene is widespread and genetically

diverse. In addition, the gene has been reported to be associated

with three replicon types including IncP1, IncFII and IncI1,

which can be found in various species of bacteria including

Aeromonas spp., E. coli, K. pneumoniae, Salmonella, and

Enterobacter spp. Citrobacter spp. are opportunistic bacterial

pathogens that can cause both hospital- and community-

acquired infections. It has been reported that Citrobacter spp.

represent up to 6% of all isolated Enterobacterales from clinical

specimens (Oberhettinger et al., 2020). In this study, we

identified and characterized two clinical isolates of Citrobacter

spp. (SY-CS04 and SY-CA35) harboring mcr-3.5. Identification
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of these isolates at species level was not possible with

biochemical tests. Yet, it has been reported that 16S rRNA

sequences displays limited resolution distinguishing only three

groups within the genus (Clermont et al., 2015). Therefore, in

our study, MALDI-TOF MS has been used for identification and

the results yielded a category A identification (score > 2.0),

which can be considered a reliable identification. In addition,

rMLST, an approach of integrating taxonomy and typing of

microbial communities by analyzing variation in 53 genes

encoding ribosome protein subunits (rps genes) has been used

to confirm the species and the results were in an agreement with

MALDI-TOF MS, which identified SY-CS04 and SY-CA35 as C.

sedlakii and C. amalonaticus, respectively. For mcr-3.5, it was

first identified on IncP1 plasmid found in E. coli in China (Liu

et al., 2017). It has also been found in other plasmid replicon

types including IncR, IncFII, and IncFII(pCoo). In our study,

IncFII(pCoo) harboring mcr-3.5, namely pSY_CS01 and

pSY_CA01 were identified in C. sedlakii SY-CS04 and C.

amalonaticus SY-CA35, respectively. It was noted that the

genetic context of pSY_CS01 and pSY_CA01 were the same.

Since both Citrobacter isolates were from the same human

subject, the two plasmids might be derived from the same

clone. Comparison of 16 mcr-3.5 loci showed that the genetic

context of DTnAs2-mcr-3.5-dgkA might be the conserved

structure of the mcr-3.5 locus. Interestingly, this genetic

context has been interrupted by various IS elements at the

upstream or downstream, suggesting that the area surrounding

this conserved region could be the high-frequency region for

insertion of mobile genetic elements. IncFII type is a low-copy

number plasmid. It is one of the narrow-host range plasmids

that are commonly found in E. coli (Carattoli, 2009). However,
FIGURE 8

Linear comparison of surrounding regions of mcr-3. The arrows indicate directions of gene transcription. mcr-3 is labeled in red arrow,
while other antimicrobial resistance genes are labeled in orange. Mobile genetic elements are indicated in blue and other functional gene
are in green.
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IncFII plasmid can disseminate and replicate in a variety of

Enterobacterales, which contributes a crucial role for spreading

of antimicrobial resistant genes (Chen et al., 2014). As shown in

Figures 7, 8, comparison of pSY_CS01 and pSY_CA01 with

plasmids containing mcr-3 from E. coli recovered from Vietnam

and France showed that these plasmids share a similar backbone.

Since these plasmids have been recovered from different species

and geographical locations, these results suggest that pSY_CS01
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and pSY_CA01 may contribute to the transmission of mcr-3.5

among other Enterobacterales species.

There is an evidence that the presence of mcr genes in food

animals significantly increased the risk of direct contact with

bacteria harboring mcr genes, in particular transmission of

Enterobacterales to humans (Liu et al., 2016; Trung et al.,

2017; Shen et al., 2018). In addition, several research groups

have proposed the other risk factors with high potential for
FIGURE 9

Comparison of 14 mcr-3.5 regions from 16 plasmids. The arrows indicate directions of gene transcription. Shading in light blue denotes regions
of homology (nucleotide identity 95%).
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1067572
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Phuadraksa et al. 10.3389/fcimb.2022.1067572
dissemination of mcr genes to humans, especial ly

environmental contaminations (Liu et al., 2016; Malhotra-

Kumar et al., 2016; Trung et al., 2017; Shen et al., 2018;

Agnoletti et al., 2018). Based on a meta-analysis of

publications in six major databases published between 18

November 2015 and 30 December 2018, environmental

samples exhibited the highest cumulative average prevalence

of mcr genes, followed by animals, food, and humans. In

human, 62% were from clinical patients and 38% were from

asymptomatic carriers (Elbediwi et al., 2019). Thus, based on

these findings, the presence of Citrobacter spp. carrying mcr

gene in healthy individual found in our study may be due to

ingestion of contaminated food animals or environmental.

Therefore, strategic action plans, such as surveillance

programs of human, animal and environmental setting which

is the perspective of “One Health” to control and prevent the

spread of mcr genes are urgently needed.

In conclusion, in this study, two colistin-resistant

Citrobacter spp. were isolated from feces of healthy

individuals. The two isolates, C. sedlakii strain SY-CS04 and C.

amalonaticus strain SY-CA35 were newly assigned to ST682,

and ST681, respectively. Both isolates exhibited resistant

phenotype only to colistin, which is mediated by IncFII(pCoo)

plasmid harboring mcr-3.5. These plasmids displayed high

transferring efficiency and conferred colistin resistance to

transconjugant E. coli. These findings suggest the widespread

of mcr plasmid-mediated colistin resistance among

Enterobacterales species. It is worth noting that both

Citrobacter isolates harbored only mcr gene but no any other

major antimicrobial resistant determinants found in multidrug

resistant Enterobacterales. To the best of our knowledge, this is

the first report of mcr alleles in C. sedlakii and mcr-3 in C.

amalonaticus. Due to the fact that the two Citrobacter spp. were

isolated from the healthy individual and lacked major resistant

determinants in multidrug resistant Enterobacterales, our results

suggested an ongoing evolution of mcr gene in human under

unknown selection. More importantly, since Citrobacter spp. is

one of the most abundant intestinal bacteria, our findings

supported the theory that Citrobacter may serve as a reservoir

of antibiotic resistant genes, which poses a significant public

health threat.
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