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Staphylococci are commensals of human skin and mucous membranes, but

some species can also cause serious infections. Host niches during both

colonization and infection differ greatly and are characterized by specific

environmental conditions (pH, temperature, oxygen, nutrient availability, and

microbiota) that can affect gene expression and virulence of microbes. To

successfully occupy extremely different habitats at different anatomical sites,

Staphylococci are equipped with a variety of regulatory elements that allow

specific adaptation to the changing environments. Not surprisingly, gene

expression in vivo can be significantly different from the expression pattern

observed in vitro. Niche specific stimuli that influence the bacterial ability to

either cause infection or maintain colonization are only partially understood.

Here, we describe habitat specific conditions and discuss the available

literature analyzing staphylococcal gene expression, focusing on

Staphylococcus aureus and S. epidermidis during colonization of the nose

and skin.

KEYWORDS
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Introduction

Staphylococci are commensals of human skin and mucous

membranes but can also cause serious infections (Gordon and

Lowy, 2008). The versatility to colonize and infect various

human body sites is facilitated by a complex transcriptional

regulatory network. Regulation is achieved by > 100 regulatory

elements, including two component systems (TCSs), alternative

sigma factors, transcription factors and small regulatory RNAs

(sRNAs) (Bleul et al., 2021). Recent advances in transcriptomics

and molecular analyses revealed a close link between metabolic

adaptation and virulence gene expression (Prince andWong Fok

Lung, 2020; Rudra and Boyd, 2020). For Staphylococcus aureus

co-regulated genes were grouped into 29 independently

modulated sets of genes (i-modulons) (Poudel et al., 2020),

and for many regulators, prototypic target genes are well

defined based on known binding motifs (Novichkov et al.,

2013). However, which signals are perceived and how they are

transmitted is often less clear (Bleul et al., 2021).

To obtain a better understanding of the adaptive processes in

vivo, several approaches were chosen. First, the in vivo

conditions can be defined e.g. through metabolomics and the

information used to establish adapted growth media to mimic in

vivo conditions (Krismer et al., 2014). Second, organoids or the

use of explants are useful tools to unravel host-bacterial

interactions (Burian et al., 2021; Cruz et al., 2021). Third,

analyses of gene expression in ex vivo samples can decipher

which regulatory circuits are active and allow conclusions about

the growth conditions encountered in vivo (Burian et al., 2010b;

Chaves-Moreno et al., 2016). The major limitation of such

analyses in the authentic human environment is the difficulty

in obtaining enough RNA at high purity and data normalization.

Here, we summarize the current knowledge of conditions

prevailing in two important staphylococcal habitats - the nose

and the skin - and describe how in vivo gene expression may be

determined by these conditions.
Nasal colonization

The nose environment

Vestibulum nasi forms the main ecological niche for S.

aureus (Wertheim et al., 2005). According to the traditional

view, the nasal epithelium consists of basal, secretory and ciliated

cells. However, single-cell RNA sequencing revealed more than

10 different cell types, some of which were highly specialized.

Club and goblet cells form nasal secretions (Hewitt and Lloyd,

2021), which are mainly composed of water (95%), mucin

glycoproteins (2%), salt (1%), lipids (1%) and various proteins

(1%) (Kaliner et al., 1984). Nasal secretions, along with the nasal

microbiome, contribute to the first layer of host defense. Mucin
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glycoproteins provide binding sites for interactions with

microbial structures and thus contribute to the sequestration

of pathogens (Fahy and Dickey, 2010). In nasal secretions, in

addition to the numerous antimicrobial proteins, of which

lysozyme, lactoferrin, and the secretory leukoprotease inhibitor

are the most abundant, immunoglobulins (IgA, IgE and IgG),

and a- and b-defensins are also present (Cole et al., 1999;

Tomazic et al., 2020). However, the detectability of defensins

is highly donor dependent (Cole et al., 1999; Preiano et al., 2018).

Krismer and colleagues determined the metabolites in nasal

secretions (Krismer et al., 2014) and found that nutrients were

present in rather low amounts compared to the amounts in

plasma (Nasset et al., 1979) and sputum from cystic fibrosis

patients (Palmer et al., 2007). Of the carbohydrates in nasal

secretions, glucose is the major monosaccharide (35 µM - 1

mM), and urea is the most abundant organic substance (2.5 - 7.5

mM). Interestingly, while most amino acids in nasal secretions

are present at an average concentration of 50 - 150 µM,

methionine, glutamine, tyrosine, isoleucine, asparagine and

aspartate were nondetectable. In addition, no lactate and only

trace amounts of fatty acids were detected (Krismer et al., 2014).

The levels of essential metals, such as iron, zinc, and manganese,

are also low (Krismer et al., 2014). Sodium chloride was present

in nasal secretions at physiological concentrations (~150 mM)

(Vanthanouvong and Roomans, 2004), and the mean nasal pH

was 6.5 (± 0.5) (Kim et al., 2013). Based on these data, a synthetic

nasal medium (SNM) was composed and gene expression in

SNM versus BM complex medium compared (GSE43712)

(Krismer et al., 2014). Key genes were expressed in SNM in a

similar way as in the human nose, indicating that SNM

represents a suitable surrogate environment for in vitro

simulation studies.
Bacterial adaptation to the
nose environment

S. aureus and coagulase-negative staphylococci (CoNS), such

as S. epidermidis, are core members of the nasal microbiome (Liu

et al., 2015) and thus have evolved to cope with that specific

environment. In contrast to S. epidermidis, only approximately

20% of the healthy human population is persistently colonized

with S. aureus in the nose (Van Belkum et al., 2009). Whereas S.

aureus usually has only one strain colonizing the host

(Vandenbergh et al., 1999; Van Belkum et al., 2009), recent

metagenomics studies for S. epidermidis show a large

heterogeneity at the strain level within a host niche (Both

et al., 2021; Severn and Horswill, 2022). Nevertheless,

virulence regulators such as the agr quorum sensing system

are conserved among staphylococci (Thoendel et al., 2011).

Individual virulence factors such as the sphingomyelinase gene

of S. epidermidis are also highly conserved, as demonstrated in a
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large cohort of skin isolates from healthy volunteers (Zheng

et al., 2022).

Ex vivo gene expression analyses are promising approaches

to gain insight into niche adaptation. There are a few studies

describing gene expression during nasal colonization of S. aureus

(Burian et al., 2010b; Burian et al., 2012; Song et al., 2012;

Krismer et al., 2014; Chaves-Moreno et al., 2016) or S.

epidermidis (Teichmann et al., 2022). In most studies,

transcript analyses were performed directly on nasal swabs

from persistently colonized individuals. Gene expression was

measured by qRT-PCR and compared to the expression pattern

of the isogenic strain(s) grown in vitro. Similar in vivo

transcriptional profiles were observed for most of the genes

analyzed when specimens from different volunteers or follow-up

specimens from the same volunteer were compared (Burian

et al., 2010b). A similar in vivo expression pattern was also

detected in a cotton rat model (Burian et al., 2010a) and in a

human airway epithelial coculture model (Kiedrowski

et al., 2016).

In one study, meta-transcriptomics was applied to obtain a

more comprehensive overview of the in vivo gene expression of

S. aureus (GSE73485) (Chaves-Moreno et al., 2016). Reads were

compared to data obtained for two non-isogenic reference

strains (USA300 LAC or IPL32) grown in vitro. Cluster

analysis revealed that all in vivo transcriptomes differed

substantially from those of the in vitro-grown S. aureus

strains. However, large differences were obvious between the

five in vivo transcriptomes, with them sharing only >55%

similarity (Chaves-Moreno et al., 2016). Based on the known

large strain differences between S. aureus isolates (Lindsay, 2010;

Lindsay, 2014), it is not surprising that the in vivo transcription

differs from transcription of laboratory strains. Thus,

comparison with the isogenic strains grown in vitro (Burian

et al., 2010b) is more informative about habitat specific changes

in gene expression.

Nevertheless, comparison of the analyses performed thus far

revealed some common themes (Figure 1). Nasal colonization of

S. aureus is clearly linked to increased expression of adhesin

genes (clfB, fnbA, sdrCDE, isdA, sasF, ebpS, atlA, and eap) and

wall teichoic acid (WTA) biosynthesis genes (measured by tagO

(Burian et al., 2010b) and by tagA (Chaves-Moreno et al., 2016)).

For S. epidermidis, genes encoding the fibrinogen binding

protein SdrG and WTA (measured by tagB) were upregulated

(Teichmann et al., 2022). Some of the genes that encode host

defense subversion, such as staphylokinase (sak), chemotaxis

inhibitory protein (chp) and protein A (spa), were also expressed

in vivo (Burian et al., 2010b; Chaves-Moreno et al., 2016).

Expression of the S. aureus cap operon (encoding enzymes for

capsular polysaccharide synthesis) was variable between and

within specimens (Burian et al., 2010b; George et al., 2015). The

capBCAD operon of S. epidermidis is responsible for the

production of poly-g-glutamic acid (g-PGA) and highly

expressed during colonization (Teichmann et al., 2022). Since
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g-PGA is also present in other CoNS (Kocianova et al., 2005;

Watanabe et al., 2018), this, together with the observed high

transcription in S. epidermidis, suggests a species-wide protective

mechansims for CoNS.

It can be assumed that bacteria encounter specific stress

conditions in the nasal environment. There is a clear indication

that S. aureus is iron-restricted in vivo. Iron-regulated genes,

such as isdA, were found to be highly expressed in all studies

(Burian et al., 2010b; Krismer et al., 2014; Chaves-Moreno et al.,

2016) (Figure 1). Further indications of iron restriction are the

high transcription of genes encoding enzymes for siderophore

synthesis and their respective transport systems (sir and hts)

(Chaves-Moreno et al., 2016).

The induction of genes protecting against reactive oxygen

species (katA, ahpC) and genes forming the compatible solute

glycine betaine (betA, betB) indicate that S. aureus is exposed to

oxidative and osmotic stress, respectively (Chaves-Moreno

et al., 2016).

The metabolic state of in vivo-grown bacteria is still not well

understood. For S. epidermidis, sphingomyelinase (sph) activity

provides nutrients to the bacterium by cleaving sphingomyelin

into phosphocholine and ceramide (Zheng et al., 2022). This was

supported by the unusual high sph expression in S. epidermidis

nose and skin specimens (Teichmann et al., 2022). Interestingly,

the expression of genes encoding tricarboxylic acid cycle

enzymes of S. epidermidis was low in vivo. Since these

enzymes are usually suppressed under nutrient-rich conditions

(Somerville and Proctor, 2009), the results indicate good

nutrient supply for S. epidermidis in its natural habitat

(Teichmann et al., 2022). This seems to contrast with the

observation that in SNM medium, the growth of S. epidermidis

is inferior to that of S. aureus (Krismer et al., 2014). One can

speculate that the high activity of sphingomyelinase contributes

to the growth advantage of S. aureus in vivo since the substrate,

sphingomyelin, is missing in SNM.

The host nasal environment activates specific metabolic

pathways required for long-term colonization. For example de

novo synthesis of methionine and significant upregulation of

several amino acid biosynthesis genes was observed during S.

aureus nose colonization (Krismer et al., 2014). A shift toward

lipid and amino acid metabolism was also detected in an airway

epithelial coculture model (Kiedrowski et al., 2016).

The activity of pleiotropic regulators should be informative

to obtain further insights into the environmental conditions

encountered in vivo. Major regulatory systems driving the

expression of virulence genes, such as the agr quorum-sensing

system or the virulence gene regulatory system saePQRS, were

found to be inactive during nasal colonization (Burian et al.,

2010a; Burian et al., 2010b; Pynnonen et al., 2011; Song et al.,

2012; Teichmann et al., 2022). The inactivity of the SaePQRS

system might be due to the low abundance of a-defensins, which
were shown to be important ligands for the activation of the

histidine kinase SaeS (Geiger et al., 2008). The Agr system might
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FIGURE 1

Transcriptional patterns in the nose and skin of S. aureus and S. epidermidis based on the following literature: 1 = (Burian et al., 2010a); 2 =
(Burian et al., 2010b); 3 = (Chaves-Moreno et al., 2016); 4 = (Krismer et al., 2014); 5 = (Teichmann et al., 2022); 6 = (Burian et al., 2021); and 7 =
(Cruz et al., 2021). Genes upregulated were marked with a + (box with red background), while genes downregulated were marked with a – (box
with green background). The box with a gray background indicates no regulation. A box with + and – (red and green background) indicates
heterogeneous transcription. nd = not determined. – = not present.
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be inactive due to the low bacterial density, the inhibition by

interfering staphylococcal species (Jenul and Horswill, 2019) or

the presence of hemoglobin (Pynnonen et al., 2011). The

inactivity of both virulence regulators indicates that S. aureus

is kept in a nontoxic state during colonization.

The essential two-component system WalKR seems to be

active during colonization (Burian et al., 2010a; Burian et al.,

2010b). To date, the signal for WalKR activation is still not well

defined but probably involves some disturbance of cell-wall

metabolism (Bleul et al., 2021). The defined WalKR target gene

sceD coding for a lytic transglycosylase (Dubrac et al., 2007) is the

most prominent and reproducible in vivo activated gene in S.

aureus (Burian et al., 2010a; Burian et al., 2010b; Krismer et al.,

2014; Chaves-Moreno et al., 2016; Kiedrowski et al., 2016) and S.

epidermidis (Teichmann et al., 2022). Given the clear involvement

of WalKR and especially its target gene sceD (Figure 1), this could

be a useful target to prevent colonization/infection. Therefore,

further research is needed to decipher the exact role of sceD and its

regulatory system WalKR. For S. epidermidis the accessory

staphylococcal regulator A (sarA) also seems to play an

important role during colonization (Teichmann et al., 2022).

Small RNAs are involved in the posttranscriptional

regulation of metabolic pathways and in responses to stress

and virulence (Menard et al., 2021). The expression levels of five

sRNAs of S. aureus were quantified during human colonization

and infection. The expression level of the Agr effector molecule

RNAIII was again much lower in vivo, supporting that the

system is largely kept inactive (Song et al., 2012).

One important question is whether the bacteria divide

actively and at what rate of growth. Evidence, such as the high

expression of cell envelope components (tagO, tarK, atlA, sceD

and oatA)indicates that S. aureus is not in a dormant state.

Moreover, genes expressed during the exponential growth phase

in vitro are highly expressed in the human nose (Burian et al.,

2010b). The expression levels of the sRNAs in vivo also

resembled those obtained at the exponential phase or late

exponential phase of growth in vitro (Song et al., 2012). The

assumption that S. aureus is rapidly dividing during colonization

is also supported by the distribution of sequencing coverage

along the staphylococcal chromosome and the rate of mutational

accumulation (Szafranska et al., 2019). This indicates that

colonization of the human upper respiratory tract is

characterized by a highly dynamic equilibrium between

bacterial growth and removal.
Skin colonization

The skin environment

Human skin represents a highly variable organ that varies in

temperature, pH, moisture and sebum content, creating different

niches for microorganisms (Grice and Segre, 2011). The
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outermost layer, the stratum corneum, consists of the upper

layers of corneocytes and is rich in ceramides, cholesterol, and

free fatty acids. The hydrophobic and viscous sebum produced

by sebaceous glands located in the dermis consists of a mixture

of nonpolar lipids, such as triglycerides, wax esters, squalene,

fatty acids and smaller amounts of cholesterol and diglycerides

(Pappas, 2009).

The microenvironment on the skin is also influenced by

sweat produced by eccrine and apocrine glands. Eccrine glands

excrete ions and various proteins and peptides, some of which

are also involved in innate host defense mechanisms, such as

DNase I, lysozyme, and dermcidin (for review see (Wilke et al.,

2007)). The molecular composition together with the secreted

products of the microbiota results in a pH range of the stratum

corneum between 4.1 and 5.8 (Proksch, 2018). Acidification of

the skin’s surface is critical to maintaining a healthy skin

environment, as antimicrobial peptides, such as dermcidin,

require an acidic pH for their action (Malik et al., 2016). In

inflammatory diseases, such as atopic dermatitis (AD), the skin

exhibits an elevated pH value, which contributes to the inability

to form a healthy skin environment (Panther and Jacob, 2015).
Bacterial adaptation to the
skin environment

Healthy human skin is rarely colonized with S. aureus (Shi

et al., 2016), in contrast to the skin of AD patients (Schlievert

et al., 2010). Therefore, to date, there are no gene expression

analyses of S. aureus colonizing healthy human skin. However,

some insights were gained using skin explant models (Burian

et al., 2021; Cruz et al., 2021). For S. epidermidis expression data

from healthy skin are available (Teichmann et al., 2022).

Using human skin explants cultivated at the air-liquid

interface for up to 8 days, we could mimic skin colonization of

S. aureus. Similar to the expression profile in the human nose, we

provided evidence for significant downregulation of the global

virulence regulator agr and its target genes hla and psm during

co-culture (Burian et al., 2021) (Figure 1). In contrast, the

alternative sigma factor B (sigB) and its target genes (clfA and

fnbA) as well as the antimicrobial peptide-sensing system

(graRS) were strongly upregulated upon skin contact. At later

time points, transcription of molecules involved in immune

evasion (scn and sak) and WTA synthesis (tagO) was induced.

Similar to the expression profile in the nose, enzymes involved in

cell wall metabolism (sceD and atlA) were highly transcribed

during co-culture. Interestingly, proteases from all three catalytic

classes were strongly induced during the entire colonization

process (Burian et al., 2021).

Gene expression was also analyzed using a similar human

skin explant model in which the stratum corneum was “tape-

stripped” to mimic barrier dysfunction. This procedure allowed

invasion of S. aureus from the epidermis to the dermis (Cruz
frontiersin.org
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et al., 2021). Similar to analysis of un-disturbed skin explants

(Burian et al., 2021) asp23, clfA, atlA and the protease genes

(aur, sspA, sspB) were upregulated upon skin contact (Figure 1).

Additionally, genes encoding part of the ESAT-6 secretion

system (esxA, esxB, esxC, esaA, and essB), immunodominant

antigens (isaA and isaB), conserved staphylococcal antigens

(csa1A and csa2) and adhesion proteins (ebpS and sasF) were

found activated after skin inoculation. The highly similar gene

expression pattern observed in both skin explant studies indicate

that deeper invasion of the strains does not per se induce major

changes in gene expression. Only, hla promoter activity was

shown to be enhanced inside the sweat glands and ducts but not

on the skin surface (Cruz et al., 2021).

Recently, S. epidermidis gene expression from skin and nose

specimens from the same patients were compared (Teichmann

et al., 2022). Gene expression was mostly congruent between

both sides and characterized by strong induction of adhesion

and immune evasion genes (sdrG, capC, dltA and sceD), as well

as sph and a putative chitinase (SE0760) (Figure 1). However, agr

activity was low in the nose but readily present on the skin. A

similar expression profile was also identified for SE0760, whereas

sceD and the wall teichoic acid (WTA) biosynthesis gene tagB

were more pronounced in the nose specimens.
Conclusion and outlook

The still limited data on gene expression during colonization

of the nose or healthy skin indicate that the bacteria are actively

growing, adapted to adhere to the underlying tissue and are kept

in a non-toxic state by down-regulation of major virulence

regulators and their target genes. However, one may assume

that gene expression drastically changes once the bacteria enter

deeper tissues or the blood stream. Pulia and colleagues

demonstrated that gene expression was significantly different

when comparing pus samples and wound swabs (Pulia et al.,

2022). For example, a relative increase in the expression of toxin

genes and virulence regulators (agr and sae) was observed in

purulent material (Pulia et al., 2022). Higher strain toxicity is

also indicated by analyses of human cutaneous abscesses

(Loughman et al., 2009; Date et al., 2014). Quorum and/or

defensin sensing may be major triggers for the switch towards

higher toxicity. One can also assume that colonization of non-

healthy skin impact gene expression. Recently, Poh and

colleagues analyzed the expression of S. aureus virulence

factors on lesional and non-lesional skin of AD patients. Of

the genes investigated, scn (encoding staphylococcal

complement inhibitor) and the protein A-encoding gene spa

were the two most highly expressed genes in atopic skin (Poh

et al., 2022).
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Each habitat is characterized by specific conditions (pH,

temperature, nutrient availability, and microbiota) and the

habitat can even be subdivided into microenvironments. Thus,

gene expression is controlled by a variety of different stimuli.

Various tools (metabolomics, improved cell culture techniques,

global transcriptome analyses) have been developed to tackle this

issue. However, we are still far from knowing the major triggers

acting in vivo and which regulatory circuits and i-modulons

determine specific niche adaptation. Controlled switches likely

determine the severity and/or chronicity of infections. More

comprehensive gene analyses, sophisticated imaging and

metabolomics from different infection sites are required to

understand the transition from commensal to pathogenic

lifestyles. Such insight can guide new anti-infective strategies to

suppress bacterial growth and virulence.
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