
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Anis Rageh Al-Maleki,
University of Malaya, Malaysia

REVIEWED BY

Juan F. González,
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Introduction

Over the millennia, Gram-negative bacteria (GNB) have evolved to become one of

the leading causes of fatalities across the globe. These bacterial species range from

colonizers of the mammalian gut to pathogenic clones, often implicated in foodborne

outbreaks and hospital-associated infections (HAIs) (Janda and Abbott, 2021;

Ruegsegger et al., 2022). Eradication of these pathogens is further challenged by the

emergence of multidrug-resistant (MDR) phenotypes and lack of novel drugs in the

discovery pipeline (Laxminarayan et al., 2016). Recent estimates show that bacterial

antimicrobial resistance (AMR) was responsible for 4.95 million recorded death cases in

2019, ranking third among all other global disease burdens (GBD) (Murray et al., 2022).

It is noteworthy that six of the twelve pathogens mentioned by the WHO (https://www.

who.int/initiatives/glass/glass-routine-data-surveillance; Veeraraghavan and Walia,

2019) were GNB, highlighting the need for a deeper understanding of the likely

molecular mechanisms behind the propensity and fitness of these pathogens including

their interactions with hosts.

With leaping whole genome sequencing (WGS) data, understanding of the molecular

and genetic mechanisms underlying the evolution of bacterial pathogens from
Abbreviations: GNB, Gram-negative bacteria; HAIs, Hospital-Associated infections; MDR, Multidrug-

Resistant; AMR, Antimicrobial Resistance; GBD, Global Disease Burdens; WHO, World Health

Organization; WGS, Whole Genome Sequencing; HGT, Horizontal Gene Transfer; MGEs, Mobile

Genetic Elements; GIs, Genomic Islands; ST, Sequence Type; pks, Polyketide Synthase; EHEC,

Enterohemorrhagic E. coli; LGI, Lectin-Glycan Interaction network; GEMs, Genome-Scale Metabolic

models; XDR, Extremely Drug-Resistant; LPS, Lipopolysaccharide; CCA, Canonical Clustering Analysis;

MOMA, Multi-Omics Model and Analytics.
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commensals to pathogens has considerably improved over the

past two decades. Acquisition of genetic variation through

horizontal gene transfer (HGT) and genome reduction are two

major events responsible for bacterial evolution and colonization

in diverse host and environmental contexts (Ahmed et al., 2008).

Amongst GNBs such as Escherichia coli, Salmonella spp.,

Klebsiella pneumoniae , Pseudomonas aeruginosa , and

Acinetobacter baumannii, HGT-mediated acquisition of

mobile genetic elements (MGEs) such as plasmids, phages and,

genomic islands (GIs) remains the predominant mechanism of

genome evolution (Hawken and Snitkin, 2019). These MGEs

harbor genes encoding virulence factors and AMR to avert host-

defense mechanisms and environmental vulnerabilities thus

providing a survival advantage. The evolution of E. coli strains

into diverse sequence types (STs) such as ST73, ST131, and ST95

provides substantial evidence regarding the role of HGT in

genomic fine-tuning and pathogenicity (Forde et al., 2019;

Shaik et al., 2022). High-throughput computational studies

from our previous work (Suresh et al., 2021) demonstrated

HGT-mediated dissemination of polyketide synthase (pks)

island across different STs and serotypes of E. coli, which is

often implicated in colorectal malignancies. Genome reduction

is another major evolutionary force observed among

Mycobacteria. Compared to other Gram-negative pathogens

and host generalist species of Salmonella, pseudogenization-

mediated metabolic fine-tuning in the immediate host niche

appears to be a predominant mechanism of the genome

evolution in Salmonella Typhi strains (Baddam et al., 2014).

Given that complex adaptive processes exhibited by the bacteria

operate in a network of interactions spanning several molecular

layers, the response of an entire cellular system to a given

perturbation cannot be adequately captured from a single layer.

Deep and accurate knowledge to develop a holistic molecular

perspective of a biological system requires not just one but several

omics analyses. Heterogeneous datasets derived from different

omics platforms such as genomics, transcriptomics, proteomics,

metabolomics, metagenomics, meta-transcriptomics, meta-

proteomics, and meta-metabolomics may complement each other

and offer an attractive approach to understand the organisms as

well as their interactions with corresponding hosts. Hence, the aim

of this review is to discuss and build a narrative on multi-omics/

panomics research on Gram-negative priority pathogens and to

emphasize upon the need to harness integrated omics analyses to

comprehend and control life-threatening infections.
Multi-omics analyses to decode
intricate biological processes of
Gram-negative bacteria

The current state of art elucidates several omics

methodologies and interdisciplinary approaches which have
Frontiers in Cellular and Infection Microbiology 02
surpassed the traditional ones. This section highlights some of

the studies that have used two or more omics layers to shed light

on the GNB’s dynamic biological processes. We discuss them

taking examples from some of the known priority pathogens.
Escherichia coli

Humans are susceptible to a wide range of intestinal and

extraintestinal diseases and infections caused by E. coli. The enteric E.

coli are divided into different pathotypes such as enteropathogenic,

enterotoxigenic, enteroinvasive, enterohemorrhagic, enteroaggregative,

and diffusely adherent based on their virulence traits (Kaper et al.,

2004; Ahmed et al., 2008). Antibiotic-resistant E. coli is commonly

employed as a model organism in structural and functional

investigations to comprehend the physiology and gene expression

of MDR bacteria. By using an integrated multi-omics approach that

includes the genomic, transcriptomic, and proteomic data of

enterohemorrhagic E. coli (EHEC) EDL933, Cho and colleagues

investigated the interactions between host mucin and pathogen

proteins, providing a valuable resource for the creation of Lectin-

Glycan Interaction Network (LGI) of E. coli (Cho et al., 2020).

Extracting critical phenotypic alterations responsible for drug

resistances was made possible by the integration of transcriptomics

and genomics data (Suzuki et al., 2014). Comparative genomics,

transcriptomics, and functional characterization (Hazen et al., 2017)

demonstrated that hybrid-pathogenic strains of E. coli are capable of

expressing the virulence genes from various pathovars. Some of the

transcriptomicsandfluxomics studies (Fongetal., 2006)enablednew

insights into the evolutionary dynamics of E. coli by demonstrating

the flexibility of the metabolic network to countervail genetic

perturbations and also emphasized the advantage of combining

multiple omics datasets to differentiate between causal and

noncausal mechanistic changes. Another important work (Piazza

et al., 2018)predicted anetworkof interactions andbinding sites inE.

coli using a metabolomics and proteomics approach, thus allowing

the discovery of novel enzyme-substrate interactions. Genome-scale

metabolicmodels (GEMs) of E. coliB and E. coliK12 constructed by

integrating the comparative analyses of genomes, transcriptomes,

proteomes, and phenomes provided the basis for differentiating the

twostrains. Similar studiesproviding insights into cellularphysiology

and metabolism could be relevant for engineering microorganisms

for bioprocess applications as well as towards understanding the

virulence mechanisms of various pathogens (Yoon et al., 2012).
Salmonella spp.

Salmonella’s rising antibacterial resistance and the lack of

novel antimicrobials on the horizon are being addressed via

multi-omics studies. Proteomics, metabolomics, glycomics, and

metagenomics were used in a multi-omics ‘systems’ approach
frontiersin.org
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(Deatherage Kaiser et al., 2013) to investigate the molecular

interactions between Salmonella enterica serovar Typhimurium

(S. Typhimurium), the murine host, and the microbiome during

intestinal infection with S. Typhimurium. Proteogenomics was

employed recently (Karash et al., 2017) to identify the potential

genes and proteins that play a role in S. Typhimurium's

resistance to H2O2, thus deepening the current understanding

of S. Typhimurium's survival mechanisms in macrophages.

Another research (Crouse et al., 2020) focused on integrating

WGS techniques into food safety practices could establish links

between virulence and genetic diversity in Salmonella. They have

also presented a novel approach for risk assessment of particular

strains as well as for improved monitoring and source tracking

dur ing outbreaks . By ut i l i z ing metabolomics and

transcriptomics, it has been possible to understand that both

glycolysis and lipid metabolism were regulated by SlyA in

Salmonella (Tian et al., 2021). Another study based on high

throughput analyses (Hossain et al., 2017) harnessed the

advantage of genomics, gene expression analysis, proteomics,

metabolic pathways, and subcellular localization to discover 52

distinct essential proteins in the target proteome of the S.

enterica that could be used as novel targets to develop newer

drugs. Utilizing metabolomics and transcriptomics, it was

possible to assess adaptation of S. Typhimurium to essential

oils (thyme and cinnamon) and to study the induced resistance

as well as the underlying adaptive mechanisms (Chen et al.,

2022). Recently, a promising therapeutic target that activates

immune response against the extremely drug-resistant (XDR)

strain called S. Typhi H58 has been successfully identified using

a comprehensive strategy of computational reverse vaccination

along with subtractive genomics (Khan et al., 2022).
Klebsiella pneumoniae

It is challenging to treat infections caused due to MDR and

highly virulent K. pneumoniae strains, highlighting the urgent

need to discover novel and effective therapeutics against this

pathogen. This was addressed (Ramos et al., 2018) by integrating

various multi-omics data like genomics, transcriptomics,

metabolomics, and protein structure information to delineate

29 proteins with preferential properties for therapeutic

development against Klebsiella. This work also provided

insights into K. pneumoniae metabolism under various host-

imitating circumstances. Recently, a gene and metabolite-centric

network-based method (Cesur et al., 2019) identified potential

therapeutic targets for K. pneumoniae, MGH 78578. A thorough

assessment of the identification of pharmacological targets and

their implications in the therapeutic management of Klebsiella

infections was presented (Ali et al., 2022) using a multi-

omics perspective.
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Pseudomonas aeruginosa

AMR nosocomial pathogen P. aeruginosa is currently posing

unwavering and increasing threats to humans. Grady and

colleagues (Grady et al., 2017) integrated the results from

studies including RNA-Seq, proteomics, ribosome footprinting,

and small molecule LC-MS, to compare the gene expression of P.

aeruginosa. Collectively, their findings unleash the mechanisms

underlying the bacteria’s ability to grow and survive on n-

alkanes. Integrated analysis of transcriptomics and

metabolomics revealed that polymyxin therapy significantly

altered lipid, lipopolysaccharide, and peptidoglycan

biosynthesis as well as central carbon metabolism and

oxidative stress (Han et al. , 2019). This study also

demonstrated the systems-level dynamics of polymyxin-

induced cellular responses, highlighting the need for

combination therapy to reduce resistance to the last-resort

therapeutic option, polymyxins. Further, it was possible (Filho

et al., 2021) to integrate transcriptome data with genome-scale

metabolic networks of P. aeruginosa to identify potential

therapeutic targets. Rashid and colleagues (Rashid et al., 2017)

used a comprehensive subtractive genome and proteome

computational framework in their investigation to predict

potential P. aeruginosa vaccine candidates. Recently, a multi-

omics based investigation (Molina-Mora and Garcıá, 2021)

incorporating genomics, phenomics, comparative genomics,

transcriptomics, and proteomics provided new insights about

molecular determinants of antibiotic resistance in a MDR strain

of P. aeruginosa (PaeAG1).
Acinetobacter baumannii

A. baumannii’s exceptional propensity to quickly acquire

resistance determinants to a wide range of antibiotics has made it

a significant global cause of HAIs. Understanding the

pathophysiology and evolution of AMR can help us fight

illnesses caused by A. baumannii. Clinical isolates of A.

baumannii have been reported to be resistant to triclosan

(Chen et al., 2009). A multi-omics investigation employing

WGS, transcriptomics, and proteomics was carried out to

better understand the global alterations in protein expression

in the triclosan-resistant mutant strain, AB042 to understand the

mechanisms of resistance (Fernando et al., 2017). According to

their findings, A. baumannii reacts to triclosan by changing the

expression of genes related to amino acid and fatty acid

metabolism, and AMR. The colistin resistance mechanism in

MDR-ZJ06, an MDR clinical strain of A. baumannii, was

elucidated (Hua et al., 2017) by combining genomics,

transcriptomics, and proteomics. The loss of bacterial

lipopolysaccharide (LPS) caused by ISAba1 insertion in lpxC
frontiersin.org
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was identified in their investigation as the resistance mechanism

of the colistin-resistant strain. Through the integration of

various data sources, including the co-expression, operon

organization, and associated protein structural data of genes in

A. baumannii (Xie et al., 2020), a co-functional network was

built with potential AMR and virulence related features.

Public data sharing is an essential component of research to fight

against pathogens. The growing accessibility of microbial omics data

combined with heterogeneous metadata is revolutionizing the study

of infectious diseases and numerous resources are being created to

organize such enormous amounts of data. The prominent

microbiological databases that incorporate multi-omics and multi-

(meta) omics datasets as well as the specialized databases that focus

on a particular GNB are listed in Table 1. In addition, it also includes

technologies/resources available for data integration. A more
Frontiers in Cellular and Infection Microbiology 04
comprehensive list can be found in the database-focused annual

edition of Nucleic Acids Research (Rigden and Fernández, 2022).
Holo-omics approach for
deciphering the host-pathogen
interactions

Extremely intricate interactions exist between microorganisms

and host cells, and these interactions are not always uniform or

linear in nature. Pathogens alter the primary metabolic processes in

themselves as well as in the host cell based on the nutrient sources

prevailing in the infected host niche. This necessitates a

comprehensive strategy that can take into account the various
TABLE 1 Prominent microbiological databases and resources available for data integration.

Database Omics data types Functionality Organisms URL Reference

Bacterial and
Viral
Bioinformatics
Resource Centre
(BV-BRC)

Genomics
Transcriptomics
Proteomics
Metabolomics
Metagenomics

Provides access to a variety of data for the National institute of
Allergy and Infectious Diseases (NIAID’s) priority pathogens.

NIAID category
A to C/
emerging/
reemerging
pathogens

https://www.bv-brc.
org/

(Davis et al.,
2020)

Omics Discovery
Index (Omicsdi)

Genomics
Transcriptomics
Proteomics
Metabolomics
Metagenomics

An open-source platform that provides access, discovery and
dissemination of omics data sets. Currently, 11 different
repositories,hosted on 4 continents are included in this database.

Various
microorganisms

http://www.
omicsdi.org

(Perez-
Riverol
et al., 2017)

National Centre
for
Biotechnology
Information
(NCBI)

Genomics
Transcriptomics
Proteomics
Metabolomics
Metagenomics
Metatranscriptomics
Metaproteomics

NCBI establishes standards for data deposition and exchange
for the scientific and medical sectors, as well as access to a variety
of databases and tools.
NCBI provides access to a variety of databases and software,
promotes standards for data deposition and exchange for the
scientific and medical communities

Various
microorganisms

https://www.ncbi.
nlm.nih.gov/

(Schuler
et al., 1996)

European
Molecular
Biology
Laboratory -
European
Bioinformatics
Institute (EMBL-
EBI)
European Life-
Science
infrastructure
(ELIXIR)

Genomics
Transcriptomics
Proteomics
Metabolomics
Metagenomics
Metatranscriptomics
Metaproteomics

Provides bioinformatics resources for promoting research, and
disseminates cutting-edge technologies to the academic
community and industry.

Various
microorganisms

https://www.ebi.ac.
uk/
https://elixir-
europe.org/

(Kanz et al.,
2005)

DNA Databank
of Japan (DDBJ)

Genomics
Transcriptomics
Proteomics
Metabolomics
Metagenomics
Metatranscriptomics
Metaproteomics

Provides services for depositing and retrieving sequencing data,
software tools for analyzing biological data

Various
microorganisms

https://www.ddbj.
nig.ac.jp/index-e.
html

(Tateno
et al., 2002)

China National
GenBank
(CNGB)

Genomics
Transcriptomics
Proteomics

A unified platform created for the research community’s
application services and sharing of biological big data.

Various
microorganisms

https://db.cngb.org/ (Guo et al.,
2020)
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TABLE 1 Continued

Database Omics data types Functionality Organisms URL Reference

Metabolomics
Metagenomics
Metatranscriptomics
Metaproteomics

Joint Genomic
Institute
Integrated
Microbial
genomes
(JGI-IMG)

Genomics
Transcriptomics
Proteomics
Metabolomics
Metagenomics
Metatranscriptomics
Metaproteomics

Supports the annotation, analysis and distribution of microbial
genome and microbiome datasets.

Various
microorganisms

https://img.jgi.doe.
gov/

(Markowitz
et al., 2014)

Metagenomic
Rapid
Annotations
using
Subsystems
Technology
(MG-RAST)

Genomics
Transcriptomics
Metagenomics
Metatranscriptomics

A Metagenomic analysis server for microbial communities Various
microorganisms

https://www.mg-
rast.org/

(Keegan
et al., 2016)

BioCYC Genomics
Transcriptomics
Proteomics
Metabolomics
Regulatory networks

The tools for omics data analysis, comparative genomes, and
comparative pathway analysis are all provided by BioCyc. It has
distinct home pages for the different organisms like EcoCyc.org
for E. coli; Salmonella.biocyc.org for Salmonella spp

Various
microorganisms

https://biocyc.org/ (Karp et al.,
2019;
Keseler
et al., 2021)

Ecomics Transcriptomics
Proteomics
Metabolomics
Fluxomics
Phenomics

Multi-omics compendium for E. coli E. coli http://
prokaryomics.com/

(Kim et al.,
2016)

SalmoNet Protein-protein
interactions,
transcriptional regulatory
interactions and enzyme-
enzyme interactions

A molecular interaction database providing network resource
containing regulatory, metabolic and protein-protein interactions

Salmonella http://salmonet.
org/

(Métris
et al., 2017)

SYSTOMONAS Genomics
Transcriptomics
Proteomics
Metabolome
Gene regulatory network

A source for Pseudomonas systems biology analysis Pseudomonas http://www.
systomonas.de.

(Choi et al.,
2007)

Klebnet Genomics A platform for genomic surveillance with analytics, specifically
designed for the complex of K. pneumoniae species

Klebsiella https://klebnet.org/ (Lee et al.,
2019)

ABviresDB Resistance or virulence
features as well as their co-
functional interactions.

ABviresDB will be useful in revealing the mechanisms of
bacterial resistance and virulence and for the network study of
bacterial infection

Acinetobacter https://acba.
shinyapps.io/
ABviresDB/

(Xie et al.,
2020)

Resources for omics data integration

Omics integrator Genomics
Transcriptomics
Proteomics
Metabolomics
Pathway analysis
Visualization

Holistic analysis of different types of omics datasets Various
Microorganims

http://fraenkel-nsf.
csbi.mit.edu/
omicsintegrator/

(Tuncbag
et al., 2016)

Paintomics 3.0
(web based)

Genomics
Proteomics
Metabolomics
Pathway analysis

A web application for visual representation of integrated view of
several omic datasets

Various
Microorganisms

https://www.
paintomics.org/

(Garcıá-
Alcalde
et al., 2011)

integrOmics (R
package)

Genomics
Proteomics
Metabolomics
Microbiome

Two ‘omics’ variables that are measured on the same samples are
effectively integrated by integrOmics.

Various
Microorganisms

http://CRAN.R-
project.org/

(Lê Cao
et al., 2009)

(Continued)
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data types using the same inference framework so as to broaden the

scope of investigations on microbes and hosts. ‘Holo-omics’

investigations incorporate information from many omic levels in

the host and microbial domains (Nyholm et al., 2020). Expanding

the scope of biological interpretation and examining biological

pathways in greater detail are made possible by the ability to

integrate many meta-omics levels, like meta-genomes, meta-

transcriptomes, meta-proteomes, and meta-metabolomes.

Epigenomic and exposomic profiling is made possible by similar

technologies, and this can help to further disentangle the

biochemical interactions between host-microbiota and

environment and their impact on host phenotypes (Kumar et al.,

2014; Rogler and Vavricka, 2015). GEMs offer a better

comprehension of how intracellular infections make use of the

host’s existing milieu. The host-cell nutritional environment and

gene expression data from S. Typhimurium grown inside

macrophage cell lines were used to study Salmonella metabolism

during infection (Raghunathan et al., 2009). Salmonella’s metabolic

changes proceeding from the early stages of infection until chronic

infection was predicted by simulations of the GEM (iRR1083)

(Raghunathan et al., 2009). Their data reveal occurrence of a

minimal set of metabolic pathways that is necessary for

Salmonella to successfully replicate inside the host cell.

Additionally, this model provides a framework for the

identification of networked metabolic pathways, incorporation of

high-throughput data to produce hypotheses regarding metabolism

during infection, and the logical development of new antibiotics.

Another work (Ding et al., 2016) used in silico metabolic modeling

to predict the crucial genes of enterobacterial human pathogens (E.

coli and Salmonella strains) in different host habitats, including the

human bloodstream, urinary tract, and macrophage for

understanding the pathogen’s survival and infection mechanisms.

It is possible to explore condition-specific pathogenicity bymapping

multi-omics data to GEMs. Although the technology to produce
Frontiers in Cellular and Infection Microbiology 06
huge amounts of data for use in a holo-omics environment is

currently available, the data integration methods to uncover and

detect host-microbe interactions are still limited, thus opening new

avenues towards applied research.
Way forward: Integrative data
analytics

Data integration approaches broadly fall into two distinct

categories depending upon the assumption as to whether the

biological variation is unidirectional or multidirectional i.e,

multi-staged analysis and meta-dimensional analysis (Ritchie

et al., 2015; Jendoubi, 2021).

A multi-staged analysis refers to the integration of data in a

hierarchical or stepwise manner wherein only two different data

types are combined at once to investigate the relationship

between them. In contrast, meta-dimensional analysis refers to

simultaneous integration of multiple variables from different

data types (Ritchie et al., 2015). Though meta-dimensional

analysis is statistically more robust as compared to multi-

staged analysis, it also increases the dimensionality of the data

while combining many data types, making it more complex to

interpret. The choice of data integration approach primarily

depends on the aim of the study along with other factors such as

sampling, omics platforms, and quality of the data (Graw et al.,

2021). Recently, such a multi-dimensional approach has been

used for drug target prioritization in MDR K. pneumoniae

(Ramos et al., 2018).

Further, meta-dimensional analyses could be categorized

into three different methods depending upon the stage of data

integration i.e, concatenation-based (early integration),

transformation-based (intermediate integration), and model-

based (late integration) (Ritchie et al., 2015). In concatenation-
TABLE 1 Continued

Database Omics data types Functionality Organisms URL Reference

mixOmics (R
package)

Genomics
Transcriptomics
Proteomics
Metabolomics
Visualization

Focused on data exploration, dimension reduction, and
visualisation with a particular emphasis on multivariate analysis
of biological data sets.

Various
Microorganisms

http://www.
bioconductor.org/
packages/release/
bioc/html/
mixOmics.html

(Rohart
et al., 2017)

ProteoClade
(Python)

Genomics
Proteomics
Metaproteomics

Associate taxonomic studies of several species with proteomic
data

Various
Microorganisms

http://github.com/
HeldLab/
ProteoClade

(Mooradian
et al., 2020)

Metaboanalyst
5.0

Proteomics
Metabolomics
Pathway analysis
Visulaization

Analysis, interpretation, and integration of metabolomics data
with other omics data

Various
Microorganisms

https://www.
metaboanalyst.ca/

(Pang et al.,
2022)

Qiime2 Metagenomics
Metatranscriptomics
Metaproteomics
Metabolimics

Open-source microbiome analysis tool that transforms
unprocessed sequence data into understandable visualisations and
statistical findings

Various
Microorganisms

https://qiime2.org/ (Caporaso
et al., 2010)
fro
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based methods, data gathered across various omics platforms

could be combined to create a joint matrix that serves as an input

dataset for machine learning algorithms. This approach has been

used to study stress response in E. coli wherein a combined

dataset of transcriptomics and metabolomics was used as an

input for machine learning algorithms. K-means clustering and

canonical clustering analysis (CCA) were used to understand the

coordinated changes in transcripts and metabolites under

different stress conditions (Jozefczuk et al., 2010).

In transformation-based methods, data are first transformed

into intermediate forms such as graph and kernel matrix

followed by integration into a combined matrix and data

analysis. As the data are transformed into intermediate form,

this particular strategy of integration preserves the

characteristics of each unique data type. Different machine

learning frameworks have been developed to learn from

transformed datasets. DeepDRK is one such deep learning

model which involves kernel-based integration of multi-omics

data to predict drug response of cancer cell lines (Wang

et al., 2021).

In model-based approach, individual omics datasets are first

used as training datasets to build respective models and finally,

multiple models are integrated to mine biological processes.

MOMA (Multi-Omics Model and Analytics) (Kim et al., 2016) is

one such platform wherein model-based data integration was used

to study the cellular states of E. coli under unexplored conditions.

Although multi-omics data integration techniques have

lately gained popularity in a number of scientific domains, this

area of study is still in its infancy in case of bacterial species.

Given the exponential increase in multi-omics data, integrated

analytics may prove to be one of the most effective methods to

comprehend both the basic as well as stress physiology of

bacteria. This strategy can assist biomedical researchers in

discovering strain-specific biomarkers thereby elucidating

cellular mechanisms of pathogenesis and developing novel

therapeutic approaches.
Open challenges and
future directions

The advantage of panomics data integration to get a holistic

understanding of biological processes and infection mechanisms

has its own inherent challenges. Multi-omics analyses present

additional obstacles such as methods to be used for integration,

clustering, visualization, and functional characterization on top

of the difficulties that single-omics analyses entail (Pinu et al.,

2019). For instance, researchers may encounter difficulties with

data harmonization (data scaling, data normalization, and data

transformation methods pertaining to individual omics datasets)

prior to combining two or more omics datasets. Furthermore,

the computational resources and storage space needs can be
Frontiers in Cellular and Infection Microbiology 07
prohibitive for a given study due to dimensionality limits when

integrating huge datasets. Our ability to integrate pathogen-

specific omics data, community-level omics data and the non-

omics datasets such as clinical metadata will improve the

understanding of infectious diseases and hasten the discovery

of new diagnostic or therapeutic targets (Figure 1). Despite

inevitable practical, financial, and computational challenges,

the incorporation of various multi-omics data types from both

the microbe and the host sides could revolutionize the

understanding of infections caused by AMR bacteria. Given

this, in-depth analyses of the disease coordinates, both at the

levels of pathogens and hosts, would be beneficial in devising

personalized treatments.
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Métris, A., Sudhakar, P., Fazekas, D., Demeter, A., Ari, E., Olbei, M., et al. (2017).
SalmoNet, an integrated network of ten strains reveals common and distinct
pathways to host adaptation. NPJ Syst. Biol. Appl. 3, 31. doi: 10.1038/s41540-017-
0034-z
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