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The role of gut microbiota
in gout: Is gut microbiota
a potential target for
gout treatment

Shuting Tong, Peiyu Zhang, Qi Cheng, Mo Chen, Xin Chen,
Zitao Wang, Xiaoyong Lu * and Huaxiang Wu *

Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of
Medicine, Hangzhou, China
Numerous studies have demonstrated that gut microbiota is essential for the

host’s health because it regulates the host’s metabolism, endocrine, and

immune systems. In recent years, increasing evidence has shown that gut

microbiota plays a role in the onset and progression of gout. Changes in the

composition and metabolism of the gut microbiota, result in abnormalities of

uric acid degradation, increasing uric acid generation, releasing pro-

inflammatory mediators, and intestinal barrier damage in developing gout. As

a result, gout therapy that targets gut microbiota has drawn significant interest.

This review summarized how the gut microbiota contributes to the

pathophysiology of gout and how gout affects the gut microbiota.

Additionally, this study explained how gut microbiota might serve as a unique

index for the diagnosis of gout and how conventional gout treatment

medicines interact with it. Finally, prospective therapeutic approaches

focusing on gut microbiota for the prevention and treatment of gout were

highlighted, which may represent a future avenue in gout treatment.
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1 Introduction

Gout is a common disease characterized by the deposition of monosodium urate

(MSU) crystals in joint and non-joint structures (Dalbeth et al., 2021). The inflammatory

response of host tissue to deposit monosodium urate (MSU) crystals induces clinical

symptoms (Dalbeth et al., 2019). Globally, gout is highly prevalent. Adults in China have
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a gout prevalence rate of 1.1%, compared to 3% to 4% in the

United States and 1% to 4% in Europe (Dehlin et al., 2020).

Genetic diversity, environmental exposure, gene-environment

interaction, and intrinsic risk factors (including age, gender and

weight) contribute to the risk of developing gout (Major et al.,

2018). In addition, gout and hyperuricemia have many common

comorbidities, such as cardiovascular disease, chronic kidney

disease, diabetes, metabolic syndrome and neurodegenerative

diseases (Bardin and Richette, 2017).

The human digestive system contains trillions of species,

including bacteria, fungi, archaea, viruses, and protozoa, which

comprise the gut microbiota, a complex ecological community

(Human Microbiome Project, 2012). The taxonomic diversity of

the gut microbiota impacts the integrity of the epithelial barrier,

preservation of intestinal metabolism, and immunological

homeostasis (Parker et al., 2020). The gut microbiota

influences healthy physiological function and disease

susceptibility through its collective metabolic activity and host

interaction (Lozupone et al., 2012). With the advancement of

sequencing technology and the creation of new bioinformatics, it

has been discovered that gut microbiota composition changes

and metabolism disruptions are connected to the pathogenesis

of numerous diseases, such as autoimmune disease (Jiao et al.,

2020), mental illness (Jarbrink-Sehgal and Andreasson, 2020),

cerebrovascular disease (Xu et al., 2020), and disorders of the

central nervous system (Vuotto et al., 2020).

Emerging evidence revealed a link between gut microbiota

and arthritis diseases, including gout (Chu et al., 2021).

Therefore, this review aims to summarize gut microbiota

function in gout pathogenesis and illustrate gut microbiota as

a potential target of gout treatment.
2 Gut microbiota and physiologic
acid uric metabolism

In humans and higher primates, urate is the final oxidation

product of purine catabolism (Cabau et al., 2020). It is

synthesized mainly in the liver, intestines and tissues, such as

muscles, kidneys, and vascular endothelium (El Ridi and Tallima,

2017). Purine synthesis begins with 5-phosphoribosyl-alpha-1-

pyrophosphate (PRPP) leading to hypoxanthine nucleotide

formation (Dewulf et al., 2022). Hypoxanthine is converted to

xanthine, which is then transformed into uric acid (UA) by either

xanthine oxidase (XO) or xanthine dehydrogenase (Sun et al.,

2022). Approximately 700 mg of UA is produced daily by such

processes (Yanai et al., 2021). Renal and gut excretions accounts

for around two-thirds and one-third of urate excretion,

respectively (Mandal and Mount, 2015). Urate homeostasis is

primarily influenced by renal proximal tubule cells, which express

several transporters that either reabsorb urate or are involved in

urate excretion (Eckenstaler and Benndorf, 2021).
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During the evolution of humanoid primates, the

pseudogenization of the uricase gene caused humans and

other mammals to lose uricase activity. It left them unable to

oxidize further urate to the more water-soluble compound,

allantoin (Chang, 2014).Therefore, serum uric acid (sUA)

levels in humans are three- ten times higher than in organisms

that preserve uricase (Kratzer et al., 2014).

Unlike humans, bacteria can degrade uric acid by urate

oxidase (uricase), and specific bacterial strains also exhibit

xanthine dehydrogenase (XDH) inhibitory activity (Alam

et al., 2011). Lactobacillus species break down inosine and

guanosine to inhibit uric acid biosynthesis during purine

metabolism (Alvarez-Lario and Macarron-Vicente, 2010; Wu

et al., 2020). Recently, Lactobacillus gallinii has been shown to

reduce purine levels in the gut, and its fermentation products

have urate-lowering effects (Li et al., 2014). In addition,

Lactobacillus gasseri strains can reduce purine absorption in

the gut (Yamada et al., 2016). However, not all gut microbiota is

protective. Xi et al. demonstrated that Escherichia-Shigella

secretes xanthine deaminase, converting hypoxanthine and

xanthine into uric acid and elevating serum uric acid levels (Xi

et al., 2000).

The gut microbiota also plays a role in uric acid excretion.

Studies have shown that two short-chain fatty acids (SCFAs)

(propionate and butyrate) provide adenosine triphosphate

(ATP) to the intestinal wall cells and promote UA excretion

(Nieuwdorp et al., 2014). In addition, a recent study found

higher Escherichia coli levels in greater uric acid decomposition

(Liu et al., 2020).
3 Dysbiosis and gout

3.1 Description of the microbiome in
gout patients

The abnormal secretion of interleukin-1b (IL-1b) stimulated

by MSU causes the acute onset of gout, which occurs by

activating the innate immune system through the recognition

of Toll-like receptor (TLR) or NOD-like receptor (NLR)

(Dalbeth et al., 2021). The release of a large amount of IL-1b
by activating of NLRP3 (NOD-, LRR-, and pyrin domain-

containing 3 inflammasome) is the central process of MSU-

mediated gout acute attack (Martinon et al., 2006).

A recent study reported that Phascolarctobacterium and

Bacteroides were enriched in gout patients and identified a

“core microbiota” for the gout group encompassing three

Bacteroides species (Mendez-Salazar et al., 2021). Bacteroides is

a gut enterotype reported to promote urate conversion into

allantoin, and might be involved in serum urate level regulation

in humans (Lim et al., 2014).

GUO et al. observed that the gut microbiota of gout was

characterized by significantly-impaired butyric acid synthesis
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(Guo et al., 2016). Vieira et al. found that SCFAs were necessary

to assemble inflammasome and produce IL-1b (Vieira et al.,

2015). Another study explored the effects of a high-fiber diet and

acetate on inflammation in gout mice models. The regression of

neutrophil inflammation was found to be related to a decrease of

nuclear factor k B (NF-k B) activity and an increase of anti-

inflammatory mediators (including interleukin-10, tumor

necrosis factor-b and Annexin A1). Acetate controlled the

inflammatory response to the MSU lens by promoting the

regression of the inflammatory response (Vieira et al., 2017).

The species that make SCFAs have a protective effect on

inflammation, and are more abundant in the healthy group

(Sheng et al., 2021). These results collectively showed that SCFAs

and gut microbiota play a role in controlling inflammatory

response to MSU crystals (Cleophas et al., 2017). Additionally,

by up-regulating TLR2/4/5 and promoting the release of IL-1b
and tumor necrosis factor-a (TNF-a), the increase in the

number of inflammation-related microbiota causes

immunological diseases and intestinal barrier dysfunction.

Increased intestinal permeability, positively linked with serum

uric acid level, results from decreased levels of the epithelial tight

junction proteins occludin and claudin-1 (Lv et al., 2020).
3.2 Changes of gut microbiota
composition and hyperuricemia

3.2.1 Diversity and abundance of gut
microbiota in hyperuricemia

The variety and richness of gut microbiota have changed in

hyperuricemic individuals and rats, indicating that gut

microbiota may have a possible involvement in gout (Liu

et al., 2020; Chu et al., 2021). Uric acid is the final product of

purine metabolism and alterations in uric acid production or

excretion can lead to abnormal serum uric acid levels

(Balakumar et al., 2020). The changes in the abundance and

composition of gut microbiota increase the serum uric acid level

through the dysfunction of uric acid degradation and increased

uric acid production (Sheng et al., 2021).

Gout has higher relative abundances of Prevotella and

Bacteroides while lower relative abundances of Enterobacteriaceae,

which might cause uric acid degradation dysfunction and the

buildup of uric acid in gout (Chu et al., 2021). Additionally, the

greater serum urate (SU) level was closely connected to the lower

relative abundance of Faecalibacterium in hyperuricemia (Wei

et al., 2021).

A shotgun metagenomic study revealed the microbiota with

the allantoinase gene, which can convert uric acid into urea was

deficient in gout. In contrast, the microbiota with the xanthine

dehydrogenase gene was abundant. The buildup of uric acid may

be caused by excessive xanthine dehydrogenase and a relative

lack of allantoinase (Guo et al., 2016; Gong et al., 2020).
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An increase in UA in blood circulation affects the intestinal

environment, causing changes in the gut microbiota (Wang

et al., 2022). A metagenomic study reveals that hyperuricemia

causes an imbalance in the gut microbiota and alters its

composition. It might induce the gut microbiota to translocate

into other tissues, particularly the kidney, causing inflammation

(Xu et al., 2019). In addition, a recent study has demonstrated

that the abundance of inflammation-related microbiota in

hyperuricemia and increased uric acid levels are associated

with the impairment of intestinal barrier, which disrupts the

host-microbiota crosstalk (Lv et al., 2020). While luminal UA

can play a protective role in intestinal injury, some studies

have shown that the changes in gut microbiota caused by uric

acid are beneficial to the body (Wada et al., 2022). However, a

study exploring the relationship between blood uric acid levels

and gut microbiota in diabetic patients, found that fluctuations

in uric acid within the normal range were not associated

with changes in gut microbiota (Zhang et al., 2021).

Therefore, further studies are needed to explore the causal

relationship between the alteration of gut microbiota and

hyperuricemia (Figure 1).

3.2.2 Metabolism of gut microbiota
in hyperuricemia

Various metabolites, including SCFAs, trimethylamine,

amino acid derivatives, and vitamins, are produced by the gut

microbiota from dietary components, including significant

amounts of micronutrients, fiber, and polyphenols (Parker

et al., 2020). Acetate (C2), propionate (C3), and butyrate (C4)

are the most prevalent SCFAs in the human body. SCFAs are

most extensively researched (Macfarlane and Macfarlane, 2003).

The human body relies heavily on SCFAs. Butyric acid protects

the human gut by nourishing the mucosa, fosters the

development and repair of intestinal villi, boosts intestinal

immunity, encourages the growth of good bacteria, and

prevents the colonization of pathogens (Louis and Flint, 2009).

A study through the Kyoto Encyclopedia of Genes and Genomes

(KEGG) metabolic pathway analysis revealed significant

differences in amino acid metabolism (phenylalanine, tyrosine

and tryptophan biosynthesis, D-glutamine and D-glutamate

metabolism, and phosphate and phosphonate metabolism) and

nucleotide metabolism (purine metabolism) between

hyperuricemia and healthy controls. The gut microbiota’s

metabolic dysfunction may influence serum uric acid levels

through its impact on host metabolites (Wei et al., 2021). The

production of SCFAs (concentrations of acetate, propionate, and

butyrate) derived from the gut microbiota in mice positively

correlates with the effectiveness of treating hyperuricemia. This

finding demonstrates that some beneficial bacteria decrease in

HUA mice, including bacteria that produce SCFAs, such as

Clostridium and Ruminococcus (Yu et al., 2018; Xu et al., 2019;

Guo et al., 2021).
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4 Gout diagnosis based on
gut microbiota

Due to the causative relationship between the gut microbiota

and gout development, the gout- specific gut microbiota may be

a diagnostic marker. Lin et al. made a classification model using

significantly-enriched bacterial genera between healthy

individuals and gout patients. The result showed a high mean

area under the working curve (AUC) of up to 0.973 by the

receiver operating characteristic (ROC) analysis (Lin et al.,

2021). Likewise, a cohort study established a diagnostic model

based on 17 kinds of gout-related bacteria and reached 88.9%

accuracy (Guo et al., 2016). The metagenomic analysis of gut

microbiota by Chu et al. found three genes significantly enriched

in the cohort gout. The AUC of the development and validation

cohort were 0.91 and 0.80, respectively (Chu et al., 2021).

Furthermore, Yang et al. verified that several bacteria,

including unclassified Enterobacteriaceae, Roseburia, and

Faecalibacte-rium, have excellent diagnostic value for

asymptomatic hyperuricemia (Yang et al., 2021). Therefore,

the gut microbiota imbalance characterized by gout may

become a non-invasive diagnostic tool for gout and

asymptomatic hyperuricemia. It has a promising target for

future prevention and intervention.
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5 Treatment of gout

5.1 Traditional treatment and gut
microbiota changes

Non-steroidal anti-inflammatory drugs (NSAIDs),

glucocorticoids, and colchicine are the first-line drugs for acute

gout (Kiltz et al., 2016). International guidelines describe

xanthine oxidase inhibitors and uricosuric drugs as the first-

and second-line treatments, respectively, in uric acid-lowering

therapy (Engel et al., 2017). Gut microbiota has become an

important factor in hyperuricemia and has been shown to affect

the response to disease treatment (Yu et al., 2018). A recent

study found substantial alterations in the gut microbiota

composition and promotion of SCFA formation, particularly

acetate, in gouty arthritis patients after treatment (Park and

Lee, 2022).

5.1.1 Non-steroidal anti-inflammatory drugs
NSAIDs are classic drugs for treating acute gout that affect

pain relief and inflammation (Bindu et al., 2020). However,

NSAIDs have several side effects, including gastrointestinal

damage. Studies have indicated that NSAIDs can disrupt the

gut microbiota equilibrium, multiplying gram-negative bacteria
FIGURE 1

Interactions between gut microbiota and gout. The diversity and abundance of gut microbiota change include the increase of Prevotella and
Bacteroides and the decrease of Enterobacteriaceae, Faecalibacterium, the microbiota with the allantoinase gene, Clostridium, and Ruminococcus.
These changes result in excessive uric acid production in the liver and insufficient uric acid excretion in the kidney and intestine, raising serum uric
acid levels above normal. In addition, some microbiota with the allantoinase and the xanthine dehydrogenase gene changed in gout can directly
regulate the intestinal uric acid levels. However, the contribution of elevated intestinal uric acid levels to elevated serum uric acid levels remains
unknown. Consequently, occludin and claudin-1 levels at tight epithelial junctions can drop when serum uric acid levels rise. Gout is caused by
inflammation-related bacteria that upregulate TLR2/4/5 and encourage the release of IL-1 b and TNF- a. However, some SCFAs may have a
protective role in inflammation. SCFAs, especially butyrate, are associated with the increased expression of Inhibitory-kkBa (I-kBa), which inhibits
the phosphorylation and nuclear translocation of NF-kB p65, and the downstream inflammatory cytokine, MCP-1, and IL-1b expression.
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and decreasing gram-positive bacteria. Subsequently, pathogens

activate inflammatory pathways through TLR4 and release

inflammatory cytokines (Wang et al., 2021). In addition,

NSAIDs can enhance intestinal permeability, making bacteria

enter the mucosa (Montalto et al., 2010), leading to further

changes in gut microbiota composition.
5.1.2 Colchicine
Colchicine (COL) is a traditional drug for gout that can

block tubulin polymerization and prevent inflammasome

activatin (Tristan Pascart, 2018). However, colchicine has

potential toxicity to human health. Gastrointestinal discomfort

is the most common symptom of COL toxicity, including

nausea, vomiting and diarrhea (Akodad et al., 2020). Shi et al.

found that acute oral COL in mice significantly affected the

gastrointestinal structure and substantially changed the gut

microbiota’s diversity, composition, and function. This is

closely related to the down-regulation of intestinal

proinflammatory cytokines and the destruction of intestinal

integrity in mice. Therefore, it supports the destruction of

homeostasis in the intestinal microbiome and might increase

the toxic burden of COL (Shi et al., 2020). Another study in

the same group identified bacterial biomarkers associated

with diarrhea, indicating that the adverse reactions caused by

COL were closely related to the gastric microbiological

disturbance. By understanding the microbiome’s role in

adverse COL reactions, the gut microbiota can be targeted,

and the effectiveness of COL treatment can be increased (Shi

et al., 2021).
5.1.3 Allopurinol
Allopurinol, an inhibitor of xanthine oxidase, is one of the

most widely-used uric acid-lowering drugs (Mackenzie et al.,

2020). Yu et al. found that the gut microbiota in the allopurinol

treatment group changed compared with the control group. The

treatment group had increased bifidobacterium and decreased

anaerobes, which may be related to the decrease in UA. In

addition, Bilophila, the only reduced genus in the allopurinol

treatment group (Yu et al., 2018), has been shown to cause

systemic inflammation (Feng et al., 2017).
5.1.4 Benzbromarone
Benzbromarone decreases blood uric acid levels and

reabsorption by blocking the dominant apical (luminal) uric

acid exchanger in the human proximal tubule, URAT-1

(Azevedo et al., 2019). Similar findings were made in another

study, which showed that treating with benzbromarone altered

the gut microbiota in the group that received it. It led to an

increase in Bifidobacterium and a decrease in anaerobes

Butyricimonas. In addition, benzbromarone repaired the lipid

metabolism disorder in hyperuricemia rats through gut

microbiota intervention (Yu et al., 2018).
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5.1.5 Febuxostat
Febuxostat, a nonpurine inhibitor of xanthine oxidase, treats

hyperuricemia in gout patients. It inhibits oxidized and reduced

forms of xanthine oxidase, reducing uric acid formation (White

et al., 2018). Lin et al. detected a restriction of gut microbiota

biodiversity in untreated gout patients and febuxostat partially

restored this change. Functional analysis revealed that the gut

microbiome of gout patients was functionally-enriched for

carbohydrate metabolism but had a lower potential for purine

metabolism, which was relatively enhanced in gout patients

treated with febuxostat (Lin et al., 2021). Another animal

study verified that febuxostat could reshape gut microbiota

dysbiosis in an animal model, regulate gut-derived metabolites,

and inhibit microinflammation in vivo (Tu et al., 2020).
5.2 Treatment of gout based on gut
microbiota changes

5.2.1 Probiotics and prebiotics
Nowadays, the low rates of urate-lowering therapy initiation

and continuation and the side effects of traditional drugs remain

challenges for gout treatment. These side effects include

gastrointestinal toxicity, tolerance, allopurinol hypersensitivity

syndrome, nephrotoxicity, and contraindications of other

common comorbidities (Khanna et al., 2012; Becker et al.,

2015; Vargas-Santos and Neogi, 2017; Rai et al., 2018). About

40% of gout patients suffer from chronic kidney disease (CKD)

(at least stage II) and decreased GFR (Gaffo and Saag, 2008).

Non-steroidal anti-inflammatory drugs, colchicine and

uricosuric medicine use also are limited (Aslam and Michet,

2017). Therefore, therapies or drugs which are safer and can

intervene in gout development are greatly needed.

In recent years, a better understanding of gut microbiota in

the pathogenesis of gout and applying natural products in the

prevention and treatment of gout have attracted widespread

attention. Natural products, probiotics, probiotics and fecal

microbiota transplantation (FMT) have been widely studied by

new therapeutic methods acting on gut microbiota (Wu et al.,

2021; Zhao et al., 2022; Xie et al., 2022). These play a role in

treating gout by inhibiting the metabolism of purine and

inflammatory factors and bodies, regulating the expression of

transporters, and protecting the integrity of intestinal barrier. It

can also increase the abundance of intestinal bacteria related to

the production of SCFA and promote SCFA production, thus

inhibiting the activity of XOD in serum and liver (Ni

et al., 2021).

Probiotics are “live microorganisms that, when administered

adequately, confer a health benefit on the host (Hill et al., 2014).

Bifidobacterium and Lactobacillus strains are the most widely-

used probiotics in functional food and dietary supplements.

However, the next generation of probiotics, such as

Faecalibacterium prausnitzii, Akkermansia muciniphila, or the
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genus Clostridium, have shown promising results (Vallianou

et al., 2020).

Some in vitro experiments have proven that diets containing

probiotics can prevent hyperuricemia by regulating the structure

and function of intestinal flora. For example, Lactobacillus

fermentans JL-3 can regulate hyperuricemia-induced intestinal

microbiota dysbiosis and effectively reduce the UA level in mice

(Wu et al., 2021). DM9218, as a probiotic strain, has the

potential to ameliorate fructose-induced hyperuricemia.

Animal experiments showed that DM9218 could reduce serum

UA level and hepatic xanthine oxidase activity and regulate

intestinal dysbiosis induced by high fructose in fructose-fed mice

(Wang et al., 2019). In addition, Garcia-Arroyo et al.

demonstrated that probiotics containing urate-decomposing

bacteria could reduce serum uric acid in hyperuricemic

animals. It could also beneficially affect hypertension and

kidney disease (Garcia-Arroyo et al., 2018).

A prebiotic published is “a substrate that is selectively

utilized by host microorganisms conferring a health benefit

(Swanson et al., 2020). Recent studies employing a variety of

probiotic molecules have consistently demonstrated an increase

in the relative numbers of Lactobacillus and Bifidobacterium spp.

as well as changes in bacterial metabolism, as evidenced, in

particular, by increased production of short-chain fatty acids,

such as butyrate and propionate (Holscher, 2017). The research

of prebiotics in treating gout has become a promising direction.

An animal experiment by Ren et al. found that fisetin

reversed changes in Bacteroides , and Firmicutes in

hyperuricemic mice, suggesting that fisetin reduced serum uric

acid levels by modulating hyperuricemia-induced changes in gut

microbiota. In addition, fisetin could improve renal function in

hyperuricemia-induced CKD mice by regulating intestinal

microbiota-mediated tryptophan metabolism (Ren et al.,

2021). In addition, relevant metabolomics studies have shown

that nuciferine may inhibit the pathological process of

hyperuricemia by regulating the disturbed metabolic pathways.

Furthermore, nuciferine can restore the metabolic changes

caused by hyperuricemia by regulating intestinal microbiota

composition in rats (Wang et al., 2020). E. prolifera

polysaccharides (EPP), one of the most widely distributed

green algae belonging to the family Ulvaceae, showed

beneficial effects on the serum levels of UA and significantly

improved the diversity of gut microbiota, especially the

proportions of Alistipes and Parasutterella . Further,

correlation analysis revealed that the presence of Parasutterella

might be negatively associated with increased UA (Li

et al., 2021).

In addition, it has been shown that co-feeding of b-carotene
and green tea powder in gouty mice significantly increased the

positive interaction between gut microbes, which may positively

in relieve gout symptoms (Feng et al., 2022). Dietary

administration of tuna meat oligopeptides (TMOP) alleviates

hyperuricemia and renal inflammatory phenotypes.
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Furthermore, it reprograms the uric acid metabolism pathway.

TMOP treatment repairs the intestinal epithelial barrier, reverses

the dysbiosis of the gut microbiota, and increased the production

of SCFAs. Furthermore, the antihyperuricemic effect of TMOP

was transmitted by transplanting fecal microbiota from TMOP-

treated mice, mediating the protective effect, at least in part, by

the gut microbiota (Han et al., 2020).

In recent years, there have been more studies on the

mechanism of various probiotics and prebiotics in treating

gout. Table 1 shows a summary of gout treatment targeting

intestinal microorganisms. However, most studied conducted

animal experiments, and no testing has been done on humans.

Future research should focus more on human experiments to

explore whether these new treatments, such as prebiotics and

probiotics, can relieve the symptoms of gout and achieve the

purpose of treatment.
5.2.2 Dietary habits
The microbiota composition can be modified by a variation

in the individual’s dietary-nutritional habits, especially

concerning the quality and quantity of fats, dietary fibers and

carbohydrates consumed (Voreades et al., 2014). Dietary factors

are also considered a risk factor for gout (Dehlin et al., 2020),

thus, several well-established healthy eating patterns, such as the

Mediterranean and Diet to Stop Hypertension (DASH) diets,

can lower serum urate levels (Yokose et al., 2021). Cohort studies

have shown that a typical western diet is associated with a higher

risk of developing gout, while adherence to a Mediterranean diet

is associated with a lower risk (Rai et al., 2017). Therefore, the

Mediterranean and DASH diets have preventive effects on

hyperuricemia (Sun et al., 2022).

In addition, studies have shown that an excessive fructose

diet can affect gut microbiota composition through a series of

damage to the intestinal barrier function of the inflammatory

response. Therefore, a new method for gout treatment could be

to limit the specific fructose intake and improve the composition

of gut microbiota or targeted metabolite (Fang et al., 2022).
5.2.3 Fecal microbiota transplantation
FMT is the transfer of fecal microbial content from a healthy

individual into the gastrointestinal tract of a diseased individual

(Ooijevaar et al., 2019). The action mechanism is not entirely

understood, but restoring a disturbed microbiota underlies the

observed effect (Smits et al., 2016). Since gut microbiota

imbalance is closely related to gout, FMT may become a new

direction for treating gout.

Xie et al. found that the washed microbiota transplantation

(WMT) effectively reduced serum uric acid levels, relieved gout

symptoms, and improved impaired intestinal barrier function in

gout patients (Xie et al., 2022). In addition, a previous study

showed that fecal transplantation attenuated hyperuricemia and

renal inflammatory phenotypes in mice (Han et al., 2020).
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TABLE 1 Mechanism of targeted gut microbiota in the treatment of gout.

Type Effect Mechanism

Inulin (Guo et al., 2021) Prebiotics Reduces serum uric acid level, relieves
inflammation and repairs intestinal
epithelial barrier.
Enhances microbial diversity and
increases the relative abundance of
beneficial bacteria.

Increase ABCG2 expression in the intestinal tract.
Down-regulate XOD expression and activity in the liver of KO mice.

Chicory (Bian et al., 2020) Prebiotics Reduces serum uric acid level and
increases fecal uric acid.
Repairs intestinal mucosal injury.

Increases the number of probiotics and reduce the number of pathogenic bacteria
to restore intestinal microbiota.
Reduces the inflammatory response of the LPS/TLR4 axis by down-regulating the
inflammatory pathways of serum LPS and TLR4/NF-kB in the kidney, thus
promoting the excretion of uric acid in the kidney

Tuna meat oligopeptides
(TMOP) (Han et al.,
2020)

Prebiotics Reduces hyperuricemia and renal
inflammatory phenotype.

Reprograms the uric acid metabolic pathway to inhibit NLRP3 inflammasome
activation and toll-like receptor 4/bone marrow differentiation factor 88/NF-
kappaB (TLR4/MyD88/NF-kB) signal pathway, and the phosphorylation of p65
murine NF-k B.
Repairs the intestinal epithelial barrier.
Reverses intestinal flora imbalance and increases short-chain fatty acids
production.

Camellia japonica bee
pollen polyphenols (CPE-
E) (Xu et al., 2021)

Prebiotics Reduces serum uric acid level and
improve renal function.

Inhibits hepatic xanthine oxidase (XOD) activity and regulates the expression of
URAT1, GLUT9, OAT1, OCT1 and ABCG2 in the kidney.
Changes gut microbiota structure and increases the abundance of beneficial
bacteria and the content of short-chain fatty acids.
Decreases NLRP3 inflammasome and related inflammatory cytokines.

Sea cucumber
hydrolysates (Wan et al.,
2020)

Prebiotics Reduces hyperuricemia and renal
inflammation caused by diet.

Inhibits uric acid biosynthesis and promote uric acid excretion.
Down-regulates pro-inflammatory cytokine transcription and up-regulates anti-
inflammatory cytokine transcription.
Inhibits TLR4/MyD88/NF-kB signal pathway.
Increases the abundance of beneficial lactobacillus and short-chain fatty acids
producers and reduces the abundance of opportunistic pathogens to alleviate
intestinal microbiota dysfunction.

b-carotin and green tea
powder (Feng et al., 2022)

Prebiotics Relieves acute gout attack. Reduces the joint swelling and pain in mice with gout.
Reduces serum uric acid and pro-inflammatory cytokines levels. Improves the gut
microbiota profile and reduces the metabolic levels of purines and pyrimidines.

Enteromorpha prolifera
(Li et al., 2021)

Prebiotics Reduces hyperuricemia and reverses
kidney damage.

Decreases serum uric acid, serum urea nitrogen, serum xanthine oxidase (XOD),
and hepatic XOD.
Up-regulates UA excretion genes, such as ABCG2, OAT1, and NPT1.
Down-regulates UA absorption gene URAT1 was down-regulated.
Maintains intestinal flora stability, which is closely related to the regulation of
hyperuricemia.

Hexapeptides derived
from Apostichopus
japonicus hydrolysate
(Fan et al., 2022)

Prebiotics Reduces uric acid biosynthesis and
reabsorption.

Inhibits uric acid biosynthesis and reabsorption to reduce serum uric acid.
Reduces renal inflammation and inhibits the activation of NLRP3 inflammasome.
Decreases the richness and diversity of gut microbiota and changes the
composition of phylum and genus levels.
Changes miRNA expression in the kidney.

Anserine supplementation
(Han et al., 2021)

Prebiotics Promotes uric acid excretion.
Has anti-inflammatory effects.

Increases hypoxanthine phosphate ribose transferase expression.
Inhibits the uric acid synthesis by activating uric acid transporter.
Inhibits NLRP3 inflammasome and TLR4/MyD88/NF-kB pathway.
Regulates the composition and abundance of gut microbiota during hyperuricemia
and renal inflammation.

Nuciferine (Wang et al.,
2020)

Prebiotics Relieves hyperuricemia and improves
renal function.

Interferes with the gut microbiota and restores the metabolic balance of
hyperuricemia rats.
Reverses the levels of creatinine and creatine in rats to some extent after nuciferine
treatment.

Fisetin (Ren et al., 2021) Prebiotics Prevents CKD induced by hyperuricemia. Regulates tryptophan metabolism and aromatics receptor (AHR) activation
mediated by gut microbiota.

Curcumin (Xu et al.,
2021)

Prebiotics Reduces the level of uremic toxin and
improves renal inflammation and fibrosis.

Regulates gut microbiota’s structure and improves intestinal permeability.
Increases beneficial bacteria and reduces pathogens.

(Continued)
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5.2.4 Traditional Chinese medicine
Traditional Chinese medicine (TCM) has been applied to

treat gout since ancient China. Some chemical ingredients

isolated from TCM herbs are multi-target and low toxicity,

showing advantages and good prospects in gout prevention

and treatment (Chi et al., 2020).

An animal study by Lin et al. demonstrated that Si Miao

decoction improved gut microbiota dysbiosis associated with

gouty arthritis by significantly reducing the abundance of

Prevotella in the gut microbiota of mice, beneficial to relieve

inflammation. In addition, some pathogenic bacteria positively

correlated with intestinal inflammatory cytokines were reduced

by Si Miao decoction, including Klebsiella, Brautia, Escherichia-

Shigella, and Enterococcus (Lin et al., 2020).

Qu-Zhuo-Tong-Bi Decoction (QZTBD) has been shown to

inhibit the growth of Larrelidae _A2, a bacterium enriched in gouty

mice, and to improve the abundance of ranunculus (a bacterium

closely related to SCFAs). QZTBD can exert its therapeutic effects

by restoring the gut microbiota composition and SCFA production.

QZTBD treatment attenuated intestinal mucosal barrier function

and promoted intestinal uric acid excretion through these changes.

Furthermore, it inhibited glycolysis and suppressed intestinal

proinflammatory cytokines (Wen et al., 2020). Therefore,

traditional Chinese medicine targeting intestinal flora in gout

treatment may be a promising direction
6 Conclusions

Gut microbiota plays a key role in gout pathogenesis through

the changes of diversity, abundance, metabolic pathway, and

metabolites, such as SCFAs, resulting in hyperuricemia and gout
Frontiers in Cellular and Infection Microbiology 08
flare. Hyperuricemia and gout can cause an imbalance in the

microbiota in the gut, which can then trigger the development of

other metabolic illnesses, creating a vicious cycle. In addition,

drugs related to gout treatment can play a therapeutic role by

changing the composition of gut microbiota. Gut microbiota

examination provides a non-invasive, simple, sensitive, and

reliable index in diagnosis. Developing novel and safe new drugs

targeted at gut microbiota has become a research focus. Prebiotics,

probiotics, traditional Chinese medicine and fecal transplantation

therapy are expected to become new methods for gout treatment.
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TABLE 1 Continued

Type Effect Mechanism

AJOP (Lu et al., 2021) Prebiotics Relieves hyperuricemia. Regulates uric acid metabolism, inhibits NLRP3 inflammasome and NF- kB signal
pathway activation, and repairs intestinal epithelial barrier.
Globally changes the spectrum of GIT microflora.

Lactobacillus brevis
DM9218 (Wang et al.,
2019)

Probiotics Reduce serum uric acid level. Down-regulates xanthine oxidase expression and activity stimulated by
inflammatory cytokines.

Limosilacto-bacillus
fermentum JL-3 (Wu
et al., 2021)

Probiotics Attenuates oxidative stress and
inflammation induced by UA and
regulates UA-induced flora imbalance in
hyperuricemia mice.

Degrades UA in the intestine and reduces the amount of UA reabsorbed by
intestinal epithelium into circulation.
Contains purine-degrading lactobacillus strains and improves defecation activity,
thus reducing fecal excretion of UA.
Regulates gut microbiota’s structure and function.

Qu-Zhuo-Tong-Bi
Decoction (QZTBD)
(Wen et al., 2020)

Traditional
Chinese
medicine

Relieves acute gout attack. Recovers the imbalance of gut microbiota and enhances SCFA formation.
Inhibits intestinal barrier function, key glycolysis-related enzymes, and
inflammatory factors production.

Fecal microbiota
transplantation
(Liu et al., 2020; Han
et al., 2020; Xie et al.,
2022)

Reduces serum uric acid level. Restores damaged intestinal barrier function.
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