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Ixodes scapularis is one of the predominant vectors of Borrelia burgdorferi, the

agent of Lyme disease in the USA. The geographic distribution of I. scapularis,

endemic to the northeastern and northcentral USA, is expanding as far south as

Georgia and Texas, and northwards into Canada and poses an impending

public health problem. The prevalence and spread of tick-borne diseases are

influenced by the interplay of multiple factors including microbiological,

ecological, and environmental. Molecular studies have focused on

interactions between the tick-host and pathogen/s that determine the

success of pathogen acquisition by the tick and transmission to the

mammalian host. In this review we draw attention to additional critical

environmental factors that impact tick biology and tick-pathogen

interactions. With a focus on B. burgdorferi we highlight the interplay of

abiotic factors such as temperature and humidity as well as biotic factors

such as environmental microbiota that ticks are exposed to during their on-

and off-host phases on tick, and infection prevalence. A molecular

understanding of this ensemble of interactions will be essential to gain new

insights into the biology of tick-pathogen interactions and to develop new

approaches to control ticks and tick transmission of B. burgdorferi, the agent of

Lyme disease.
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Introduction

Ixodes scapularis is one of the predominant tick vectors of B. burgdorferi, the agent of

Lyme disease, and the most common tick-borne disease in North America emerging

from the northeastern and north central United States foci, where 95% of Lyme Disease

(LD) cases occur (Fleshman et al., 2021). Movement of B. burgdorferi within tick tissues,
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its maintenance across life stages as ticks molt, as well as its

proliferation and transmission to vertebrate hosts during tick

bloodmeal engorgement may all be subject to environmental

influence, be it biotic factors such as the composition of the

microbiome, abiotic factors such as temperature and humidity,

and the responses of the tick to the spirochete, the vertebrate

host and to the environmental components. There is an

increasing understanding that environmental conditions affect

tick physiology, population dynamics, and B. burgdorferi

acquisition and transmission (Dumic and Severnini, 2018).

This may be mediated through different components of tick

physiology, immune processes, or host activity. Modeling studies

have shown that environmental effects on I. scapularis can

influence phenology and B. burgdorferi dynamics across

geographic regions (Perret et al., 2000; Ogden et al., 2005;

Ogden et al., 2008; Gaff et al., 2020). Further, the population

dynamics of ticks is shaped by host species availability and

behavior (Lord, 1992; Tosato et al., 2021). To understand the

collective impacts of biotic and abiotic factors on tick biology

and on its vectorial capacity is the holy grail of tick research.
Abiotic factors and
tick-pathogen interactions

Studies on the direct impacts of abiotic climatic factors on I.

scapularis under natural conditions have demonstrated that both

temperature and humidity impact tick survival (Lindsay et al.,

1995; Bertrand and Wilson, 1996) and host-seeking success

(Randolph and Storey, 1999; Randolph, 2004; Ginsberg et al.,

2017) and, thus have a direct impact on spirochete infection

prevalence in endemic areas. Understanding the direct impacts

of these factors on ticks has been foundational to hypothesis

about the geographic range, seasonal phenology, and survival of

I. scapularis (Ogden et al., 2005) as well as the fitness of the

human pathogens they transmit (Ogden et al., 2008; Ogden

et al., 2014). Much of our current understanding of the role of

the environment on I. scapularis and B. burgdorferi transmission

dynamics comes from evaluation of effects on tick populations

by estimating population measures such as the timing of peak

abundance of each life stage (Ogden et al., 2018) or peak host

seeking (Ginsberg et al., 2017). Such measures, while

informative, are phenomenological such that the geographic

variation observed in I. scapularis phenology has been

associated with abiotic (Ogden et al., 2018) and biotic factors

(Tsao et al., 2021). There is a burgeoning interest in expanding

our mechanistic understanding of the drivers of I. scapularis

phenotypic expression using experimental methods to estimate

effect measures of light level (Perret et al., 2003), humidity,

temperature, and population differences in ticks (Arsnoe et al.,
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2015) and how these influence the transmission dynamics of

B. burgdorferi.
Impact of temperature on tick -B.
burgdorferi interactions

Temperature is a critical environmental factor, with evidence

across diverse insect taxa establishing its importance in driving

the development (Rebaudo and Rabhi, 2018), biophysical

processes (Gillooly et al., 2001), and population growth

(Savage et al., 2004). Fewer works have focused on the effect

of temperature in longer lived arthropods, whose life stages

span seasons, and years with notable exceptions (Sato and Sato,

2015). The phenological timing of peak abundance in the post-

egg life stages of I. scapularis vary by region (Ogden et al., 2018)

and are at least, in part, likely driven by climatic factors

including temperature, relative humidity, and daylight. I.

scapularis ticks spend most of their life cycle in the

environment rather than on vertebrate hosts, and must

contend with temperature fluctuations that occur daily, the

changes in temperature over months, seasons, and years, and

the cumulative effects of temperature over their lifetime.

Moreover, their behavioral repertoire includes walking within

and questing above the vegetative layer, and little is known

regarding the impact of the type of vegetation on the

fluctuations in temperature ticks experience as they move

within and without of leaf litter. Importantly, arthropod-

microbe symbioses, whether mutualistic or pathogenic, can

alter the effects of temperature on arthropod hosts and may

even mitigate the stress of heat shock experienced by arthropod

hosts during a vertebrate blood meal (Neelakanta et al.; Roma

et al., 2019; Lemoine et al., 2020).

Temperature has a significant impact on B. burgdorferi

(Tilly et al., 2008) serving as a critical cue to turn on or off B.

burgdorferi genes important for colonization of the tick,

transmission from the ticks to the vertebrate host and for

survival in the host (Carroll et al., 2001; Revel et al., 2002;

Ojaimi et al., 2002; Ojaimi et al., 2003). Shifting B. burgdorferi

from 23 to 37°C, representing ambient temperatures of the tick

or the mammalian host, was shown to alter B. burgdorferi

transcriptome (Ojaimi et al., 2002; Tokarz et al., 2004) and

these alterations are critical for B. burgdorferi survival in these

vastly different milieus (Radolf et al., 2012). Clearly,

temperature alone does not fully recapitulate the changes

that occur in the vertebrate or invertebrate host (Mulay et al.,

2009; Iyer and Schwartz, 2016) but it does highlight the

vulnerability of B. burgdorferi transcriptome to alterations in

temperature. Whether changes in ambient temperature that

ticks must face in different regions of the USA would similarly
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impact B. burgdorferi gene expression is not known. For

example, would increasing ambient temperatures increase

expression of OspC, a critical outer surface protein of B.

burgdorferi (Pal et al., 2004; Tilly et al., 2006) whose

expression is regulated by changes in temperature (Schwan

et al., 1995), and enhance B. burgdorferi transmission to the

murine host? A simple binary interaction could theoretically

produce such an outcome. Ginsberg et al. (2021) suggested

that higher temperatures in the southern USA may cause

desiccation stress, possibly resulting in ticks remaining under

the leaf litter and thus impacting host seeking behavior of I.

scapularis. In addition, the availability of hosts such as lizards

that are easily accessible under the leaf litter and that readily

clear B. burgdorferi infections further likely contributes to the

absence of a correlation between tick abundance, infection
Frontiers in Cellular and Infection Microbiology 03
prevalence, and Lyme disease incidences in the southern USA.

These observations underscore the need to bear in mind that

changes in ambient temperatures would simultaneously impact

tick biology in complex ways and in-turn have a functional

consequence on vectorial capacity (Schematically summarized

in Figure 1).
Impact of humidity on tick -B.
burgdorferi interactions

The impact of humidity on tick survival and host-seeking

behavior is profound (Ginsberg et al., 2017; Fleshman et al.,

2021), and I. scapularis may be more sensitive to perturbations

in humidity than temperature. Blacklegged ticks spend >95% of
A

B

FIGURE 1

Partitioning the microbiome. Panel (A) shows the components of the microbiome in Ixodes scapularis as partitioned by route of transmission
including environmental acquisition (green), transovarial transmission (blue), and via a vertebrate blood-meal (pink) (B. burgdorferi s.l, Borrelia
burgdorferi, sensu lato; A. phagocytophilum, Anaplasma phagocytophilum; Ba. microti, Babesia microti; B. miyamotoi, Borrelia miyamotoi;
POWV, Powassan virus). Panel (B) illustrates the hypothetical (dashed arrows) and demonstrated (solid arrows) effects on gene expression,
phenotypic expression, or fitness of the tick (green), B. burgdorferi (red), and their symbiotic interactions (blue) for each abiotic factor
(temperature and relative humidity), and for vertebrate host factors such as immune response to parasitism.
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their lives off hosts, where larvae and nymphs are particularly

subject to intense selection due to sensitivity to desiccation, and

therefore are restricted to areas where the relative humidity

approaches 100%, i.e., in the leaf litter and low-lying vegetation

of the forests they inhabit (Perret et al., 2003; Berger et al., 2014).

As nymphal I. scapularis frequently climb above the leaf litter to

host-seek (Arsnoe et al., 2019), the ticks lose water through their

integumentary space as they respire and return to below the leaf

litter to rehydrate as needed. In I. scapularis, the consequences

for the daily drops in humidity (below 85% RH) have cumulative

survival consequences (Ginsberg et al., 2017). Importantly, tick

nutritional reserve levels have been shown to relate negatively to

tick movement and the drive to maintain adequate hydration

(Crooks and Randolph, 2006; Ginsberg et al., 2017). This

suggests that off-host survival is linked to the quality and

quantity of the bloodmeals which, after hatching, are required

to progress through the three motile life stages, larva, nymph,

and adult.

Water absorption in ticks is dependent on their

environment. In humid environments, passive absorption is

the primary mechanism (Fielden and Lighton, 1996). Active

absorption of water vapor can also occur once a certain

threshold is reached (the “critical equilibrium humidity”)

leading to additional water uptake. The critical equilibrium

humidity for ticks generally lies between 75% to 96% relative

humidity (Rodgers et al., 2007). Questing as a host-seeking

behavior makes Ixodes scapularis “sit and wait” predators. This

type of arthropod predators have comparatively low Standard

Metabolic Rates (SMR), as demonstrated in spiders (Greenstone

and Bennett, 1980). Though spiders are considered to have low

SMRs, ticks have an SMR that is 12% of that (Lighton and

Fielden, 1995). A low SMR rate allows ticks to maintain

respiratory substrate (energy stores) for longer periods of time,

and results in less frequent occurrences of the burst phase of

their respiratory cycle. Active water absorption is energetically

costly, as shown by increased metabolic rates in dehydrated

Dermacentor andersoni when placed in highly humid

environments (Fielden and Lighton, 1996), that was

accompanied by net water gain.

It was shown in Culex pipiens mosquitos that exposure to

dehydration resulted in depletion of fat reserves and this had a

significant impact on egg production (Benoit et al., 2010). Little

is known regarding the patterns of respiration and hydration of

I. scapularis, or the impact of the percent relative humidity in the

air on tick survival and fecundity in association with B.

burgdorferi. Multiple studies have confirmed that I. ricinus has

higher rates of survival in unfavorable thermo-hygrometric

conditions when infected with B. burgdorferi (Benelli, 2020).

Body composition analysis of Ixodes ricinus, the European Lyme

disease vector, showed that B burgdorferi-infected I. ricinus have

a higher fat content than uninfected (Herrmann et al., 2013). In

theory, this allows for greater energy reserves, i.e., longer periods

that ticks can survive in the environment before finding the next
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bloodmeal, and reserves for the caloric expenditures of questing

above the leaf litter providing a potential mechanistic basis for

tick-microbe-environment interactions (Figure 1).
Tick-B. burgdorferi interactions

Microbes can mediate arthropod host behavior to increase

the probability of transmission, a phenomenon that has been

demonstrated in insect-borne vertebrate pathogens such as

Trypanosoma spp. and Dengue (Hurd, 2003; Lefevre and

Thomas, 2008). Behaviors affected by parasites and viruses

range from feeding behaviors, to reproduction and locomotion

(Ribeiro, 2000; Rogers et al., 2002; Lacroix et al., 2005). Within

the cycle of transmission by which it is maintained, B.

burgdorferi is not pathogenic to ticks. Small vertebrate hosts

involved in B. burgdorferi enzootic transmission cycle, from

which the immature stages of I. scapularis (the blacklegged tick)

take obligatory blood meals, tolerate B. burgdorferi infection.

Evidence suggests that the ecological association between I.

scapularis and B. burgdorferi may be characterized as a

facultative symbiont. Thus, the language around B. burgdorferi

as a pathogen, while appropriate in human studies, contradicts

the nature of the ecological interactions between B. burgdorferi

and arthropod hosts in the enzootic cycle. The non-pathogenic

status of B. burgdorferi for I. scapularis and the primary enzootic

reservoir host Peromyscus leucopus (the white footed mouse) is

not in dispute (Schwanz et al., 2011). Yet even in studies focused

on within-tick interactions, B. burgdorferi is often described as

pathogenic. Benelli (2020) reviewed the hypothesis of parasite

manipulation in tick-borne pathogens, a theory which suggests

that tick traits are adaptively altered to improve pathogen fitness,

asserting that, particularly for Lyme disease-causing spirochetes,

this is a neglected area of research that warrants investigation.

There is increasing evidence that tick-B. burgdorferi

association has a beneficial impact on the tick, and in-turn

also influences B. burgdorferi transmission success (summarized

in Figure 1). Ixodes ricinus ticks infected with B. burgdorferi

sensu lato survive longer when exposed to unfavorable

temperature and humidity conditions (Herrmann and Gern,

2010), have higher fat content (Herrmann et al., 2013; Couret

et al., 2017) and increased walking behavior compared to

uninfected ticks (Herrmann and Gern, 2015). Our

observations on I. scapularis -B. burgdorferi also phenocopied

these observations. We found greater and more rapid

engorgement of larval I. scapularis upon successful B

burgdorferi acquisition (Couret et al., 2017). B. burgdorferi-

infection has also been shown to influence I. scapularis gene

expression (Ramamoorthi et al., 2005; Kim et al., 2021; Tang

et al., 2021). For example, the increase in expression of Salp15, a

tick salivary immunomodulator, was shown to enhance B.

burgdorferi transmission to the murine host (Ramamoorthi

et al., 2005). Due to the reduced genome of B. burgdorferi, it
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has to scavenge nutrients such as carbohydrates, amino acids

and lipids from it arthropod or mammalian host (Corona and

Schwartz, 2015; Kerstholt et al., 2020; Gwynne et al., 2022).

Whether the impact of B. burgdorferi on metabolic pathways of

the tick (Corona and Schwartz, 2015) and consequent changes in

nutritional reserves could have consequences on tick survival,

development timing, respiration, locomotion, host-seeking and

fecundity remains to be experimentally verified. A molecular and

mechanistic understanding of how B. burgdorferi increases lipid

and energy reserves in the tick or alters tick gene expressions to

facilitate transmission and survival in the host will be critical to

gain new insights into tick-B. burgdorferi interactions. This

understanding may be exploited to develop strategies

towards tick control measures and to prevent B. burgdorferi

transmission. For example, key genes/pathways modulated by B.

burgdorferi and that allow increased lipid reserves may be

utilized to develop reservoir host-targeted vaccines to impair

tick survival to reduce tick populations. Conceivably, specific

gene functions may also be targeted using small molecule

inhibitors-potentially developing specific and novel acaricides.

Genes that facilitate B. burgdorferi transmission may be similarly

developed as vaccines targeting reservoir host or for human use.
Tick- B. burgdorferi-pathogenic
microbiota interactions

I. scapularis can be coinfected with other human pathogens

including Anaplasma phagocytophilum, Borrelia miyamotoi,

Babesia microti, and Powassan virus (Stafford et al., 1999;

Scoles et al., 2001; Tokarz et al., 2010; Hermance and

Thangamani, 2017). The interactions between the tick and

these pathogens in the context of biotic and abiotic factors

may additionally influence B. burgdorferi survival in the tick

and its transmission to the vertebrate host (Ginsberg, 2008).

Busby et al. (2012) and Villar et al. (2010) showed that A.

phagocytophilum infection of ticks causes the upregulation of

stress response proteins such as heat shock proteins (HSP) and

Subolesin, an Ankyrin-like transcriptional regulator of multiple

cellular functions (de la Fuente et al., 2008). A. phagocytophilum-

infected ticks are therefore protected from heat stress and

demonstrate increased questing speed (Busby et al., 2012), an

adaptation that could increase tick survival by increasing the

chances of finding a host to acquire a bloodmeal. B. burgdorferi

infection also appears to enhance the ability of ticks to survive

desiccation (Herrmann and Gern, 2010; Herrmann et al., 2013),

facilitating host seeking over longer distances (Herrmann and

Gern, 2015). Whether warming climatic conditions would result

in increased survival of ticks coinfected with B. burgdorferi and

A. phagocytophilum would require a deeper understanding of

interactions between the tick, the vertebrate host, and these

pathogens. Neelakanta et al. showed that A. phagocytophilum-

infection of I. scapularis results in increased expression of an
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cold temperatures significantly better than uninfected or B.

burgdorferi-infected ticks. Whether co-infected ticks similarly

survive cold stress has not been examined. It is worth noting that

while B. burgdorferi colonization of the tick gut is enhanced in

the presence of an intact peritrophic matrix (Narasimhan et al.,

2014), A. phagocytopilum infection of the tick is enhanced when

the peritrophic matrix integrity is compromised (Abraham et al.,

2017). These potentially contrasting interactions between tick-B.

burgdorferi and tick-A. phagocytophilum during pathogen

acquisition by the tick may have functional consequences on

the prevalence of coinfected ticks in nature. Consistent with this,

Levine and Fish (Levin and Fish, 2001) showed that when larval

t icks fed on white-footed mice coinfected with A.

phagocytophilum and B. burgdorferi the ability of the larval

ticks to efficiently acquire these pathogens is impaired. In

contrast, Levine and Fish (Levin and Fish, 2000) showed that

coinfection of ticks with A. phagocytophilum and B. burgdorferi

did not impact efficiency of transmission of either pathogen to

the murine host. Further, prior infection of nymphal ticks by

either A. phagocytophilum or B. burgdorferi did not impact

acquisition of either pathogen from the murine host

suggesting little interaction between these pathogens in the

tick vector once they are established in the tick. Interestingly,

using a laboratory Mus musculus model of coinfection, Thomas

et al. (2001) demonstrated that larval ticks fed on coinfected

mice acquired both B. burgdorferi and A. phagocytophilum more

effectively when compared to larvae that fed on single-infected

mice. These contrasting observations could be due to differences

in the immune responses of white-footed mice, the reservoir

host, and laboratory mice to infections and co-infections. Ticks

can feed on diverse mammalian hosts (McCoy et al., 2013), and

it is critical to bear in mind that differential host immune

responses may additionally impact infection prevalence

in nature.

Highest prevalence of coinfections in ticks in nature are with

B. burgdorferi and Babesia microti and is suggested to be in the

range of 0-13% in nymphal ticks (Diuk-Wasser et al., 2016;

Sanchez-Vicente et al., 2019). Hersh et al. (2014) suggest that

this increased coinfection of B. burgdorferi and B. microti is

aided in-part due to the reservoir competence of small

mammalian hosts such as Peromyscus leucopus to be infected

simultaneously with these two pathogens. Further, Dunn et al.

(2014) showed that infection of P. leucopus with B. burgdorferi

promotes infection, and transmission of B. microti from the

mammalian host to the tick vector. Using aMus musculusmodel

and a different strain of B. burgdorferi Djockik et al. (Djokic

et al., 2019) showed that B. burgdorferi restricts B. microti in

coinfected mice and exacerbates Lyme disease. Despite the

contrasting observations, these studies underscore potential

interactions between the two pathogens in the mammalian

host. Very little is understood of B. microti-I. scapularis

interactions (Antunes et al., 2017). Given the increased
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prevalence of B. burgdorferi/Babesia microti coinfected ticks and

the concurrent risk of human coinfections (Diuk-Wasser et al.,

2016), it is important to determine how coinfections with B.

burgdorferi and B. microti might influence the transmission of

these pathogens to and from the tick. Although co-infections of

B. burgdorferi with Powassan virus and Borrelia miyamotoi are

less frequent (Tokarz et al., 2010; Diuk-Wasser et al., 2016), the

gap in our understanding of the interactions of these pathogens

in the tick vector and in the mammalian host needs to

be addressed.

In addition to the interplay of different tick-borne

pathogens, we must be aware that several genospecies of B.

burgdorferi (B. burgdorferi sensu lato species) are maintained in

nature enzootically (Swanson and Norris, 2008), including B.

burgdorferi in the North America (Derdakova et al., 2004), and

B. burgdorferi, B. garinii and B. afzeli in Eurasia (Misonne et al.,

1998). There is also significant diversity within these genospecies

(Rogovskyy and Bankhead, 2014) and this diversity is stably

maintained in reservoir host populations ( (Swanson and Norris,

2008; Walter et al., 2016). Using two distinct Borrelia

genospecies, B. burgdorferi and B. afzelii, Bhatia et al. (2018)

showed that when infected nymphs feed on seropositive Mus

musculus, the infectivity of the homologous spirochete strain is

significantly attenuated within the tick gut facilitating the

transmission of only the heterologous Borrelia strain to the

animals. These observations highlight the seamless interaction

between the host-vector and pathogen in the maintenance of B.

burgdorferi diversity by ensuring the selection of rare variants of

polymorphic surface antigens of the spirochete critical for

spirochete fitness in natural hosts.
Tick-B. burgdorferi-commensal
microbiota interactions

The life cycle of I. scapularis offers ample opportunity for

interaction with environmental microbiota that potentially

include virus, protozoa, fungi and bacteria represented in soil

and leaf litter (during their off-host phase) or on the skin of the

mammalian host (during their on-host phase) (Narasimhan

et al., 2021). de la Fuente et al. (2017) and Cabezas-Cruz et al.

(2017) highlight the need to investigate the influence of non-

pathogenic microbiota in ticks on the tick and B burgdorferi.

Since the environment of the tick (be it lab colonies or field

samples) is diverse, there is significant disparity among studies

on the tick microbiome composition (Narasimhan et al., 2021).

The emerging understanding is that there is no core tick

microbiome, and that it is transient and variable (Ross et al.,

2018). In addition to microbiota acquired from the environment,

the tick also harbors endosymbionts that are transovarially

transmitted and stably maintained in the tick (Kurtti et al.,

2015). Since I. scapularis is an obligate hematophagous
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arthropod, its diet is lacking in essential B-vitamins including

thiamine, pyridoxine, and folate (Duron et al., 2018) and the tick

is likely dependent on its microbiota to provide these vitamins. It

has been suggested that Rickettsia buchneri, the predominant

endosymbiont of I. scapularis, provides the essential vitamins

and is critical for tick fitness (Hunter et al., 2015). However, a

recent study by Oliver et al. (2021) generated R. buchneri-free

ticks by antibiotic treatment and showed that the absence of

R.buchneri does not impact development or fecundity. It is likely

that antibiotic treatment may not completely cure the ticks of R.

buchneri in one cycle of antibiotic feeding. It is likely that a

“stress” test might be more revealing of the role R. buchneri in

tick biology. It is not known whether R. buchneri impacts B.

burgdorferi acquisition ot transmission. Since R. buchneri is an

intracellular bacterium and B. burgdorferi is an extracellular

bacterium, a direct interaction is unlikely. An earlier study by

Zhang et al. (2016) demonstrated that B. burgdorferi does not

require thiamine or Vitamin B1, a key cofactor for most living

organisms, for its growth and replication and that it may have

evolved to live in a Vitamin B-constrained environment of the

tick. Sonenshine and Stewart (2021) also raise the possibility that

environmental bacteria that form the bulk of the ectosymbionts

found in the midgut milieu are also capable of providing

essential aminoacids, metabolites and vitamins to the tick and

hence influence tick fitness and in-turn the vectorial capacity of

the tick. Narasimhan et al. (2014) have shown that changes in

the environmental microbiota composition influence larval

engorgement and B. burgdorferi colonization of the tick. If so,

changes in the composition of environmental microbiota in

different regions of the USA would also influence infection

prevalence in natural settings. Further, there is mounting

evidence that the tick salivary transcriptome and proteome

may be differentially expressed on different host species

(Tirloni et al., 2017; Narasimhan et al., 2019). Whether this

differential expression is signaled by host-specifc immune

components in the bloodmeal or by the host skin microbiome

and its metabolites at the skin-host interface remains to be

investigated. This also underscores the impact of the host species

on tick fitness and ultimately success of pathogen transmission.

To fully understand how specific environmental microbiota

manipulate the tick, approaches to generate aposymbiotic, and

gnotobiotic ticks must be developed. Additionally, while tick

microbiome studies have been largely bacteriocentric, it is

important to examine other potentially key players including

fungi, and viruses.
Conclusions and future perspective

With the understanding that tick saliva contains several

immunomodulators that facilitate tick feeding-a process

essential for tick-borne pathogens to enter or exit the tick
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(Francischetti et al., 2009), the concept of saliva assisted

transmission or SAT (Nuttall, 2019) has been at the centre

stage of research on tick transmission of human pathogens. The

availability of the genome sequence of I. scapularis (Gulia-Nuss

et al., 2016) has allowed comprehensive cataloging of the salivary

and midgut transcriptomes and proteomes and revealed new

insights into tick biology and tick-host-pathogen interactions

(Chmelar et al., 2016; de la Fuente et al., 2017; Wikel, 2018; Nuss

et al., 2021). The last decade has brought into focus the role of

the commensal and symbiotic microbiota associated with the

tick in the context of tick-pathogen interactions (Bonnet et al.,

2017; Narasimhan et al., 2021; Sonenshine and Stewart, 2021).

Importantly, the geographic expansion of tick populations,

potentially enhanced by climate change (Ogden et al., 2021),

has signaled the need to understand how changes in abiotic

factors influence the tick, and its pathogenic and commensal

microbes. Thus, these multiples factors are entwined and

together orchestrate pathogen movement to and from the

mammalian host.

As we acknowledge that tick-pathogen interactions are

orchestrated by biotic and abiotic factors, it also draws

attention to the limitations of laboratory studies. Almost all

data published on the influence of tick and B. burgdorferi gene

expression have been performed with tick colonies raised

under laboratory conditions. Ticks are routinely maintained

at constant light cycling, humidity, and temperature

conditions. The vast amount of knowledge gathered from

controlled laboratory conditions indeed provide critical and

foundational insights into tick-host-pathogen interactions. It

is not feasible for laboratory studies to attempt to mimic field

conditions that include diversity in host species and seasonal

variations in abiotic factors and in biotic factors. Nevertheless,

we must bear in mind that data collected from tick

experiments performed in the laboratory may not fully

recapitulate what ensues in ticks collected from the field.

Future efforts may benefit from conducting “translational’
Frontiers in Cellular and Infection Microbiology 07
studies to calibrate and fine tune laboratory observations to

address this limitation.
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