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Molecular docking and
molecular dynamics study
Lianhua Qingwen granules
(LHQW) treats COVID-19 by
inhibiting inflammatory response
and regulating cell survival
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Shengyan Chen1, Haonan Huang1, Xinge Zhou1,
Ying-chun Peng1,3, Xue-fang Shen1,3, Jinyu Qu1,3,
Yi-li Wang1,3* and Xiao Zhang1,2*

1Chengdu Medical College, Chengdu, China, 2Chengdu Medical College of Basic Medical Sciences,
Chengdu, China, 3The First Affifiliated Hospital of Chengdu Medical College, Chengdu, China
Purpose: 2019 Coronavirus disease (COVID-19) is endangering health of

populations worldwide. Latest research has proved that Lianhua Qingwen

granules (LHQW) can reduce tissue damage caused by inflammatory

reactions and relieve patients’ clinical symptoms. However, the mechanism

of LHQW treats COVID-19 is currently lacking. Therefore, we employed

computer simulations to investigate the mechanism of LHQW treats COVID-

19 by modulating inflammatory response.

Methods: We employed bioinformatics to screen active ingredients in LHQW

and intersection gene targets. PPI, GO and KEGG was used to analyze

relationship of intersection gene targets. Molecular dynamics simulations

validated the binding stability of active ingredients and target proteins.

Binding free energy, radius of gyration and the solvent accessible surface

area were analyzed by supercomputer platform.

Results: COVID-19 had 4628 gene targets, LHQW had 1409 gene targets,

intersection gene targets were 415. Bioinformatics analysis showed that

intersect ion targets were closely related to inflammation and

immunomodulatory. Molecular docking suggested that active ingredients

(including: licopyranocoumarin, Glycyrol and 3-3-Oxopropanoic acid) in

LHQW played a role in treating COVID-19 by acting on CSF2, CXCL8, CCR5,

NLRP3, IFNG and TNF. Molecular dynamics was used to prove the binding

stability of active ingredients and protein targets.

Conclusion: The mechanism of active ingredients in LHQW treats COVID-19 was

investigated by computer simulations. We found that active ingredients in LHQW

not only reduce cell damage and tissue destruction by inhibiting the inflammatory
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response throughCSF2, CXCL8, CCR5 and IFNG, but also regulate cell survival and

growth through NLRP3 and TNF thereby reducing apoptosis.
KEYWORDS

COVID-19, lianhua qingwen granules (LHQW), molecular docking, bioinformatics
analysis, molecular dynamics
GRAPHICAL ABSTRACT

The mechanisms analysis of Lianhua Qingwen granules (LHQW) treats COVID-19.
Introduction

SARS-CoV-2 is a single-stranded RNA virus that belongs to

the beta family of coronaviruses (Mahmoudinobar et al., 2021;

Bui et al., 2021). The virus has a spherical lipid bilayer envelope

with a spike (S) protein on its surface responsible for viral

infection (Ilkhani et al., 2021; Qasem et al., 2021). The genome of

SARS-CoV-2 is engaged by two open reading frames, they

encode Nuclear Protein Phosphatase 1 a (PP1A) and

Replicase polyprotein 1ab (pp1ab) (Citarella et al., 2021). The

coronavirus protease Mpro (also known as 3C-like protease

(3CLpro)) is a triple structural domain cysteine protease and

Mpro is involved in the proteolytic processing of pp1a and pp1ab

(Panikar et al., 2021). Numerous studies have suggested a critical

role for the protease Mpro in coronavirus gene expression and

replicase processing (Roe et al., 2021), and Mpro mediates viral

replication and transcription (Sabbah et al., 2021). Study has

been suggested that targeting and inhibiting Mpro activity is an

effective way to prevent SARS-CoV-2 replication and

transmission (Sultan et al., 2021). DasGupta et al., 2022 used

mixed solvent molecular dynamics (MixMD) to simulate and
02
analyze the possible metastable sites of Mpro. Sztain et al., 2020

identified cryptic pocket structures within Mpro of SARS-CoV-2

by Gaussian accelerated molecular dynamics, and these pocket

structures may serve as drug targets to develop protease

inhibitors of COVID-19. Strömich et al., 2022 found by

computer simulation that Mpro has multiple potentially acting

binding sites capable of interfering with viral RNA transcription

and protein translation. Günther et al., 2021 identified two

metastable binding sites of Mpro as possible drug targets

a ga in s t SARS-CoV-2 by h i gh - th roughpu t X - r ay

crystallography analysis.

The clinical presentation of patients with COVID-19 ranges

from mild flu-like symptoms to life-threatening multi-organ

failure. (Sidiq et al., 2020). Studies have found that critically ill

patients may develop acute myocardial injury, renal dysfunction

and coagulation complications (Rello et al., 2020; Shi et al., 2021;

Ciotti et al., 2021). Although relevant vaccines and drugs have

been used clinically, clinical studies have found many adverse

events (such as: fever, headache, muscle pain and joint pain)

after vaccination in some populations (Vitiello et al., 2021; Li Z

et al., 2020). The Ad26.COV2.S vaccine produced by Johnson
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had 34% untreated rate of vaccine efficacy against COVID-19 in

a phase 3 clinical trial. (Hadj Hassine, 2022). Gam-COVID-Vac

(Sputnik V) is a heterologous adenovirus vector vaccine based

on SARS-CoV-2, its phase 3 clinical trial found mild adverse

reactions in 94% of subjects, with a very small number of

subjects experiencing serious adverse events. And there were

four vaccine-related deaths in subjects (Fernandes et al., 2022).

Both the Pfizer and Modena COVID-19 vaccines granted by the

U.S. Food and Drug Administration (FDA) have shown some

associated adverse reactions (Meo et al., 2021; Ng et al., 2021;

Yamamoto, 2022). The antiviral drug raltegravir is the only drug

approved for the treatment of COVID-19. Although there is

little information on the adverse events of raltegravir, studies

have reported that raltegravir use is associated with an increase

in renal disease (Martinez-Lopez et al., 2020; Chouchana et al.,

2021). Famipiravir is one of the anti-SARS-CoV-2 candidates,

clinical trials have found adverse effects such as vomiting chest

pain and elevated serum liver transaminase and uric acid levels

in mild to moderate patients (Hassanipour et al., 2021).

In the treatment for COVID-19, China has always adhered

to the principle of “treating both Chinese and Western

medicine”, and the Chinese herbal medicine Lianhua Qingwen

granules (LHQW) has played an important role in the fight

against the epidemic (Zeng et al., 2020). LHQW is a herbal

formula consisting of 13 herbs, including forsythia, jinyinhua,

ephedra, almonds, gypsum, panax quinquefolium, cotton horse

kanji, fishy grass, patchouli, rhubarb, licorice, rhodiola, and

menthol. LHQW has broad-spectrum antiviral, effective

antibacterial, antipyretic and anti-inflammatory, anti-cough

and cough, and immunomodulatory functions (Zhang X et al.,

2020). Studies have shown that LHQW has good effects on

various influenza virus-induced respiratory diseases (Zeng et al.,

2020). Clinical studies have shown that Lotus Clear can improve

clinical symptoms (such as: fever, fatigue and muscle aches) and

shorten the duration of COVID-19 in patients with COVID-19.

Experimental studies have also shown that lotus seeds can exert

pharmacological effects in the treatment of COVID-19 by

inhibiting viral replication and reducing cytokine release from

host cells (Liu C et al., 2021; Runfeng et al., 2020; Hu et al., 2021).

LHQW is commonly used as an adjuvant to COVID-19, and it is

thought to provide symptomatic relief and shorten the course of

the disease (Wang et al., 2020). Study found that LHQW reduced

D-dimer (prognostic indicator of pneumonia) and erythrocyte

sedimentation rate (marker of inflammation) in patients,

thereby delaying disease progression (Shen et al., 2021).

LHQW was found to improve not only the clinical symptoms

but also the prognosis of patients with COVID-19 (Xiao et al.,

2020; Li L. et al., 2020; Zeng et al., 2020; Zhuang et al., 2021). A

pharmacodynamic study from 284 patients with neocrown

pneumonia in China showed a cure rate of 91.5% in the

LHQW treatment group, which was significantly higher than

the 82.4% cure rate in the conventional group (Wu and Zhong,

2021). And clinical studies have shown that LHQW has
Frontiers in Cellular and Infection Microbiology 03
improved the symptoms of fever, fatigue and cough in

COVID-19 patients (Tong et al., 2020; Wang et al., 2022).

Although LHQW has played a positive role in the treatment of

COVID-19, the complex composition has hindered a more in-

depth study of the pharmacological mechanism of action of lotus

clematis in the treatment of COVID-19.

Therefore, we further investigated the mechanism of LHQW

treats COVID-19 by bioinformatics analysis and computer

simulation. Molecular docking and molecular dynamics can allow

for a comprehensive simulation of the interaction and binding

stability among ligand active ingredients and receptor protein

targets with the help of powerful computational capabilities.

In this study, bioinformatics was used to obtain active

ingredients in LHQW and intersection gene targets. computer

simulations were validated the relationship among active

ingredients and protein targets by supercomputer platform.

Molecular docking was used to validate affinity of ligand active

ingredients and receptor proteins. Molecular dynamics was used

to simulate the stability of binding complex.
Material and methods

Screening active ingredients and
gene targets

Traditional Chinese Medicine Systems Pharmacology

Database (TCMSP) was used to screen and analyse ingredients

in Lianhua Qingwen granules (LHQW) (Mok et al., 2022). And

active ingredients in LHQW were screened by the criterion of

OB≥80% and DL≥0.2. Oral bioavailability (OB) is defined as the

extent to which the active ingredient is utilized by the body, and

OB can determine the impact of a compound on disease (Zhang

Y. et al., 2020). In drug development, drug likeness (DL) is

important to improve the success of drug discovery and

development (Wu et al., 2022). GeneCards database was used

to obtain disease gene targets and drug gene targets (Stelzer et al.,

2016). Disease gene targets and drug gene targets were combined

by Venny website to obtain intersection gene targets.
Protein-protein interaction network and
enrichment analysis

The STRING database was employed to analyze protein-

protein interaction (PPI) of Lianhua Qingwen granules (LHQW)

treats COVID-19 (Szklarczyk et al., 2021). And core interaction

protein targets were screened according to the criteria of nodal

degree value and median centroid value greater than the mean.

DAVID database was employed for gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis (Wu et al., 2020). This study obtained

cellular component (CC), molecular function (MF) and
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biological process (BP) of the gene targets through GO

enrichment. KEGG pathway enrichment analysis was

performed on the relevant signaling pathways involved in

interaction gene targets (Cao et al., 2022a).
Molecular docking

The Pubchem database was used to obtain 3D structures of

small molecules, and the PDB database was used to obtain the

structures of proteins (Jagdish and Marty Ytreberg, 2019; Zhou

et al., 2020; Adegbola et al., 2021; Dela Cruz et al., 2022). Small

molecules and proteins were subjected to energy minimization

under MMFF94 force field. AutoDock Vina 1.1.2 software was

used for molecular docking (Apriyanti et al., 2021). All protein

seat receptors were pre-treated (including the removal of water

molecules, salt ions, and other small molecules from the protein

results) by PyMol 2.5 (Kashyap et al., 2021). The center of the

docking box was defined using PyMol based on the location of

the active site and the box side length was set to 22.5 Å.

ADFRsuite 1.0 was used to convert all processed small

molecules and receptor proteins into the PDBQT format

required for molecular docking (Song et al., 2019; Kumar

et al., 2020). The highest scoring docked conformations from

the molecular docking output were used for subsequent

molecular dynamics simulations (Cao et al., 2022b). We used

the original crystal ligand of the target protein as a positive

reference, and analyzed and compared the binding posture of the

original crystal ligand and protein, the chemical bond length and

the chemical bond angle by re-docking the original crystal ligand

and protein. Finally, the consistency of the binding mode can

indicate the correctness of the molecular docking protocol.
Molecule dynamics

The highest scoring conformations identified by molecular

docking analysis were further validated by molecular dynamics

simulation. Molecular dynamics (MD) simulation is based on

Newtonian mechanics theory to model the motion of molecular

systems (Jagdish et al., 2014). AMBER 18 software was used to

perform molecular dynamics simulations (Mermelstein et al.,

2018; Lee et al., 2018). GAFF2 small molecule force fields and

ff14SB protein force fields were used to treat ligand small

molecules and receptor proteins (Lee J. et al., 2020). Hydrogen

atoms were added to all complex systems using the LEaP module

and a truncated octahedral TIP3P solvent cassette was added at a

distance of 10 Å from the system. Na+/Cl- was added to balance

the charge of the complex system (Rieloff and Skepö, 2021). The

steepest descent method with 2500 steps and the conjugate

gradient method with 2500 steps were used for the energy

optimization of the complex system (Lee, T. S. et al., 2020).

After the energy optimization of the system was completed, the
Frontiers in Cellular and Infection Microbiology 04
system temperature was steadily increased from 0 K to 298.15 K

at a fixed volume and constant ramp rate. The NVT (Isothermal

isovolume) system simulation of 500 ps was performed to

further uniformly distribute the solvent molecules in the

solvent box at the system maintenance temperature of 298.15

K (Cao et al., 2022c). Finally, the composite system was

subjected to a 100 ns NPT (isothermal isobaric) system

simulation. The truncation distance of the non-bond was set

to 10 Å during the molecular dynamics simulation. Particle

mesh Ewald (PME) was used to calculate electrostatic

interactions. SHAKE method was used to limit the bond

length of hydrogen atoms. Langevin algorithm was used for

temperature control of the simulation, and the collision

frequency was set to 2 ps-1. The simulated system pressure was

1 atm, the integration step was 2 fs, and the traces were saved at

10 ps intervals for subsequent analysis. The binding free energy

can reflect the interaction between the ligand small molecule and

the receptor protein (Wang et al., 2021). The interactions

between ligand and receptor include both covalent and non-

bonded interactions, but only non-bonded interactions (van der

Waals interactions, electrostatic interactions and hydrogen

bonding interactions) are generally present in complex systems

of drug small molecules (ligands) and proteins (receptors)

(Dasmahapatra et al., 2022). Therefore, AMBER 18 was used

to calculate the binding free energy by MM/GBSA method in

this study (Weng et al., 2019; Cao et al., 2022d).
Results

Active ingredientsand intersection
gene targets

1391 ingredients in Lianhua Qingwen granules (LHQW)

were obtained from TCMSP database. 10 active ingredients were

screened by using DL≥0.2 and OB≥80% as the criteria (Table 1).

GeneCards database was used to obtain 4628 COVID-19 gene

targets and 1409 Lianhua Qingwen granules (LHQW) gene

targets. And 415 intersection gene targets were processed by

Venny (Figure 1).
Core intersection target screening
and Protein-protein interaction
network constructing

This study obtained 29 core intersection targets by relevance

score (relevance score≥4). STRING database was used to analysis

core intersection targets of LHQW and COVID-19, 13 core

protein targets (including: NLRP3, TNF, CSF2, IFNG) were

obtained by sett ing confidence degree (confidence

degree>0.95) (Figures 2A, B).
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1044770
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Cao et al. 10.3389/fcimb.2022.1044770
GO and KEGG enrichment analysis

The 29 intersection gene targets were imported into DAVID

database for GO and KEGG enrichment analysis. GO

enrichment analysis yielded a total of 267 GO, including 224

biological processes (BP), 19 cell components (CC) and 24

molecular functions (MF). Biological processes were correlated

with cellular response to lipopolysaccharide and inflammatory

response. Among cell components, extracellular space and

integral component of plasma membrane for a relatively large

amount. In molecular functions, virus receptor activity and virus

receptor activity were relatively high (Figures 3A–F). KEGG

pathway yielded 71 pathways, and enriched pathways involved

rheumatoid arthritis, coronavirus disease - COVID-19 and other

signaling pathways (Figures 3G, H).
Molecular docking

The 10 active ingredients and 13 core intersection protein

targets were used for molecular docking. The stability of protein

receptor-small molecule ligand binding depends on the binding

energy. The lower the binding energy of the complex, the more

stable the receptor-ligand binding conformation (Figure 4).

Molecular docking indicated that CCR5/Licopyranocoumarin

was mainly maintained by hydrogen bonding and hydrophobic

interactions. Licopyranocoumarin interacted with Arg-184, Tyr-

232, Gln-41, Gly-44, Gly-46 and Ser-245 on the CCR5 protein by

hydrogen bonding and with Val-230 and Pro-149 by

hydrophobic interactions (Figure 5A). The binding of CSF2/3-

3-Oxopropanoic acid was maintained mainly by hydrophobic
Frontiers in Cellular and Infection Microbiology 05
interactions. 3-3-Oxopropanoic acid interacted with His-15 on

the CSF2 protein by hydrogen bonding and with Leu-55, Leu-59,

Phe-47, Ile-117 and Ile-19 by hydrophobic interactions

(Figure 5B). In the CXCL8/Glycyrol, Glycyrol interacted with

Glu-29 and Val-27 on CXCL8 by hydrogen bonding and with

Val-58, Ile-61, Leu-25 and Val-27 by hydrophobic interactions

(Figure 5C). The binding of IFNG/Glycyrol indicated that

Glycyrol hydrogen bonds with Ala-8 and Leu-28 on the

protein, hydrophobic interaction with Leu-11, Phe-15, Phe-57,

Leu-57 and Leu-30 (Figure 5D). Licopyranocoumarin could

form hydrogen bonding with Ser-626 and Arg-578 on NLRP3

protein, and also with Val-353, Pro-352, Tyr-632, Ile-411, Phe-

575 and Thr-439 formed a hydrophobic interaction (Figure 5E).

The binding of TNF/Glycyrol was mainly through hydrophobic

interaction, Glycyrol interacted with Phe-144, Ala-145, Asp-143,

Gln-67 and Tyr-141 on TNF protein by hydrophobic

interactions and with Glu-23 by hydrogen bonding (Figure 5F).
Molecular dynamics and binding
free energy

The root mean square deviation (RMSD) was used to reflect

the fluctuating processes of the complexes. Higher RMSD values

and fluctuations of the complexes indicate more intense motions

of protein receptors and small molecule ligands. The MMGBSA

method was used to calculate the binding free energy of the

complexes, and the binding free energy can more accurately

reflect the magnitude of the binding stability of the ligand small

molecule to the receptor protein (Procacci, 2020). The binding

free energy reflects the energy released by the binding of the
TABLE 1 The active ingredients in Lianhua Qingwen granules (LHQW).

The active ingredients in Lianhua Qingwen granules (LHQW)

Mol ID Molecule Name MW AlogP OB
(%)

BBB DL HL

MOL003330 Phillygenin 372.45 2.38 95.04 0.07 0.57 1.97

MOL002311 Glycyrol 366.39 4.85 90.78 -0.2 0.67 9.85

MOL003006 (3R,8S,9R,9aS,10aS)-9-ethenyl-8-(beta-D-glucopyranosyloxy)-2,3,9,9a,10,10a-hexahydro-5-oxo-5H,8H-
pyrano-pyridine-3-carboxylic acid

281.29 -0.96 87.47 -0.89 0.23 5.5

MOL012922 I-SPD 327.41 3.1 87.35 0.21 0.54 1.68

MOL001734 3-3-oxopropanoic acid 379.35 0.36 85.87 -1.25 0.47 3.58

MOL003306 Pinoresinol monomethyl ether 372.45 2.38 85.12 0 0.57 2.12

MOL004990 7,2’,4’-trihydroxy-5-methoxy-3-arylcoumarin 300.28 2.56 83.71 -0.59 0.27 0.99

MOL000471 Aloe-emodin 270.25 1.67 83.38 -1.07 0.24 31.49

MOL003322 Forsythinol 372.45 2.38 81.25 -0.08 0.57 2.72

MOL004904 Licopyranocoumarin 384.41 3.04 80.36 -0.62 0.65 0.08
fron
tiersi
MW, molecular weight.
AlogP, partition coefficient between octanol and water.
OB, oral bioavailability.
BBB, blood brain barrier.
DL, drug similarity.
HL, drug half-life.
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FIGURE 1

The venny of intersection gene targets. Targets of the intersection of Lianhua Qingwen granules (LHQW) and COVID-19.
A B

FIGURE 2

Protein-protein interaction (PPI) network. (A) PPI network of protein targets, (B) PPI network of core protein targets (confidence>0.95).
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ligand and receptor into the complex (Al-Khafaji and Taskin

Tok, 2020). The higher the value of the binding free energy, the

more stable the structure of the complex. Except for CSF2/3-3-

Oxopropanoic acid, the remaining five complexes gradually

converged within the first 5 ns of the simulation and remained

stable in the subsequent simulations. In particular, RMSD values

of three complexes (CCR5/Licopyranocoumarin, NLRP3/

Licopyranocoumarin and TNF/Glycyrol) were small (values

below 3.5 Å) and fluctuated very stably. CSF2/3-3-

Oxopropanoic acid and IFNG/Glycyrol both showed
Frontiers in Cellular and Infection Microbiology 07
significant fluctuations in the first 50 ns, but they rapidly

stabilized after 50 ns. CXCL8/Glycyrol was never in a stable

fluctuation throughout the simulation, indicating the relatively

poor stability of CXCL8/Glycyrol (Figure 6). The binding free

energies of CCR5/Licopyranocoumarin , CSF2/3-3-

Oxopropanoic acid, CXCL8/Glycyrol, IFNG/Glycyrol, NLRP3/

Licopyranocoumarin and TNF/Glycyrol were -25.52 ± 2.86 kcal/

mol, -6.98 ± 5.02 kcal/mol, -39.15 ± 1.96 kcal/mol, -34.16 ± 4.59

kcal/mol, -38.17 ± 1.51 kcal/mol and -16.84 ± 1.92 kcal/mol

(Table 2). The stability of CCR5/Licopyranocoumarin, CXCL8/
E

D

A B

F

G H

C

FIGURE 3

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of related genes. (A) The top 10 terms in biological
processes (BP) were greatly enriched. (B) The subnetwork displayed the top 10 BP terms and related genes. (C) The top 10 terms in cellular
components (CC) were greatly enriched. (D) The subnetwork displayed the first 10 CC terms and related genes. (E) The top 10 terms in
molecular function (MF) were greatly enriched. (F) The subnetwork displayed the top 10 MF terms and related genes. (G) The top 20 KEGG
pathways were showed. (H) The subnetworks displayed the top 20 KEGG pathways and related.
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FIGURE 4

The result of molecular docking.
E

D

A B

F

C

FIGURE 5

Binding conformation of active ingredients and protein targets. (A) CCR5/Licopyranocoumarin, (B) CSF2/3-3-Oxopropanoic acid, (C) CXCL8/
Glycyrol, (D) IFNG/Glycyrol, (E) NLRP3/Licopyranocoumarin, (F) TNF/Glycyrol.
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Glycyrol and IFNG/Glycyrol was good and their values of

binding free energy were greater than -30.0 kcal/mol. We

found that the binding free energies of all complexes were

mainly Van der Waals and electrostatic energies.
Analysis of root mean
square fluctuations

In this study, root mean square fluctuations (RMSF) were used

to model the vibrations of each residue after ligand and receptor

binding to explore the fluctuating changes of macromolecular

proteins at the residue level. Typically, the flexibility of a protein

decreases upon binding of a ligand small molecule drug to a

receptor protein, thereby modulating the active site of the protein.
Frontiers in Cellular and Infection Microbiology 09
The simulation results show that all proteins except the ends of the

protein have low RMSF after binding different small molecules,

indicating that the core structure of the protein possesses good

rigidity. Notably, the overall RMSFs of CCR5/Licopyranocoumarin,

CSF2/3-3-Oxopropanoic acid, IFNG/Glycyrol, NLRP3/

Licopyranocoumarin and TNF/Glycyrol were all less than 2.5 Å,

indicating that the rigidity of the proteins increased significantly

after the binding of proteins to small molecules (Figure 7).
Analysis of hydrogen bond

Hydrogen bonding is one of the strongest non-covalent

binding interactions between receptor and ligand, and the

higher the number of hydrogen bonds, the better the binding
FIGURE 6

The result of root mean square deviation (RMSD).
TABLE 2 Binding free energies and energy components predicted by MM/GBSA (kcal/mol).

Results of binding free energies

System
name

CCR5/
Licopyranocoumarin

CSF2/3-3-
Oxopropanoic acid

CXCL8/
Glycyrol

IFNG/
Glycyrol

NLRP3/
Licopyranocoumarin

TNF/
Glycyrol

DEvdw -31.41 ± 2.76 -11.53 ± 6.29 -46.22 ± 1.20 -41.36 ± 1.57 -43.33 ± 2.46 -26.13 ± 2.16

DEelec -25.44 ± 5.08 -12.81 ± 38.54 -8.04 ± 2.37 -18.88 ± 9.99 -35.40 ± 2.72 -13.98 ± 5.68

DGGB 5.62 ± 3.49 19.08 ± 40.98 20.90 ± 1.70 31.88 ± 5.76 46.01 ± 3.84 25.71 ± 5.40

DGSA -4.29 ± 0.24 -1.72 ± 1.01 -5.78 ± 0.16 -5.80 ± 0.17 -6.44 ± 0.10 -2.44 ± 0.31

DGbind -25.52 ± 2.86 -6.98 ± 5.02 -39.15 ± 1.96 -34.16 ± 4.59 -38.17 ± 1.51 -16.84 ± 1.92
f

DEvdW, van der Waals energy.
DEelec, electrostatic energy.
DGGB, electrostatic contribution to solvation.
DGSA, non-polar contribution to solvation.
DGbind, binding free energy.
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stability. CCR5/Licopyranocoumarin with a stable number of

hydrogen bonds of about 3 throughout; followed by NLRP3/

Licopyranocoumarin and CXCL8/Glycyrol with the number of

hydrogen bonds remaining at 2-3 at the late stage of the

simulation. We found that CSF2/3-3-Oxopropanoic acid and

CXCL8/Glycyrol showed a significant decrease in hydrogen

bonding in the early stage of the simulation, and this result

further explains the anomalous fluctuations of CSF2/3-3-

Oxopropanoic acid and CXCL8/Glycyrol in the early stage of

RSMD (Figure 8).
Analysis of the radius of gyration

The radius of rotation (Rog) can be used to reflect the

tightness of the bonding of the complex system. The

fluctuation size can very intuitively reflect the denseness of the

composite or the system convergence. The values of Rog were

TNF/Glycyrol , CCR5/Licopyranocoumarin, NLRP3/

Licopyranocoumarin, CXCL8/Glycyrol, IFNG/Glycyrol and

CSF2/3-3-Oxopropanoic acid from the largest to the smallest.

The results of Rog were similar to the RMSD results, and the

r e s u l t s i n d i c a t e d t h a t TN F /G l y c y r o l , C CR 5 /

Licopyranocoumarin and NLRP3/Licopyranocoumarin could

maintain very stable binding state (Figure 9).
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Analysis of solvent accessible surface
area

The solvent accessible surface area (SASA) is used to

calculate the interface at which the complex is surrounded by

the solvent. Because solvents behave differently under different

conditions, SASA is a useful parameter for studying protein

conformational dynamics in solvent environments. Based on the

results of SASA fluctuation analysis, we could find that the

fluctuation of CSF2/3-3-Oxopropanoic acid and NLRP3/

Licopyranocoumarin were larger, which indicated that the

exposure and burial area of the surface of this two proteins

occur more changes (Figure 10).
Discussion

We explored the mechanism of Lianhua Qingwen granules

(LHQW) treats COVID-19 by computer simulations. This study

found that active ingredients in Lianhua Qingwen granules

(LHQW) may reduce cell damage and tissue destruction

composed of COVID-19 by inhibiting the inflammatory

response and regulating cell survival. Firstly, Glycyrol may

inhibit activation of the inflammatory response and

chemotaxis of inflammatory cells through IFNG and CXCL8
E

D

A B

F

C

FIGURE 7

The result of root mean square fluctuations (RMSF). (A) CCR5/Licopyranocoumarin, (B) CSF2/3-3-Oxopropanoic acid, (C) CXCL8/Glycyrol,
(D) IFNG/Glycyrol, (E) NLRP3/Licopyranocoumarin, (F) TNF/Glycyrol.
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FIGURE 8

Analysis of hydrogen bonds. (A) CCR5/Licopyranocoumarin, (B) CSF2/3-3-Oxopropanoic acid, (C) CXCL8/Glycyrol, (D) IFNG/Glycyrol,
(E) NLRP3/Licopyranocoumarin, (F) TNF/Glycyrol.
FIGURE 9

Analysis of radius of rotation (Rog).
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thereby reducing the inflammatory response. Glycyrol may also

regulate TNF to reduce cell damage and death thereby alleviating

damage from the inflammatory response caused by infection.

Secondly, Licopyranocoumarin may impede release of

inflammatory factors and spread of inflammatory response

through CCR5 and NLRP3 thereby controlling the extent of

inflammatory effects and the degree of tissue damage. Finally, 3-

3-Oxopropanoic acid may regulate the differentiation of

inflammatory cells and cell survival through CSF2 thereby

reducing apoptosis.

Therefore, these results demonstrate that active ingredients

in Lianhua Qingwen granules (LHQW) treats COVID-19 by

regulating cell survival and inhibiting inflammatory response

from multiple targets.
Analysis of molecular docking and
molecular dynamics

Molecular docking could be used to revealed strong affinity

of active ingredients in Lianhua Qingwen granules (LHQW)

(such as: Glycyrol Licopyranocoumarin and 3-3-Oxopropanoic

acid) to protein targets (such as: IFNG, CXCL8, TNF, CCR5,

NLRP3 and CSF2). And molecular dynamics results suggested

that active ingredients in Lianhua Qingwen granules (LHQW)

and protein could maintain a very stable binding state and thus

exert effects in the treatment of COVID-19.

The binding of IFNG/Glycyrol indicated that the Glycyrol

hydrogen bonds with Ala-8 and Leu-28 on IFNG, hydrophobic

interaction with Leu-11, Phe-15, Phe-57, Leu-57 and Leu-30. In

the CXCL8/Glycyrol, Glycyrol interacted with Glu-29 and Val-
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27 on CXCL8 protein by hydrogen bonding and with Val-58, Ile-

61, Leu-25 and Val-27 by hydrophobic interactions. The binding

of TNF/Glycyrol was mainly through hydrophobic interaction,

Glycyrol interacted with Phe-144, Ala-145, Asp-143, Gln-67 and

Tyr-141 on the TNF protein by hydrophobic interactions and

with Glu-23 by hydrogen bonding. The binding free energies of

CXCL8/Glycyrol, IFNG/Glycyrol, TNF/Glycyrol were -39.15 ±

1.96 kcal/mol, -34.16 ± 4.59 kcal/mol and -16.84 ± 1.92 kcal/mol.

The number of CXCL8/Glycyrol, IFNG/Glycyrol and TNF/

Glycyrol hydrogen bonds remained around 2 in the late

simulation period.

Licopyranocoumarin bound to CCR5 and NLRP3 could

form very stable complex. Licopyranocoumarin interacted with

Arg-184, Tyr-232, Gln-41, Gly-44, Gly-46 and Ser-245 on CCR5

by hydrogen bonding and with Val-230 and Pro-149 by

hydrophobic interactions. Licopyranocoumarin could form

hydrogen bonding with Ser-626 and Arg-578 on NLRP3

protein, and also with Val-353, Pro-352, Tyr-632, Ile-411, Phe-

575 and Thr-439 formed a hydrophobic interaction. The binding

free energy of CCR5/Licopyranocoumarin and NLRP3/

Licopyranocoumarin were -25.52 ± 2.86 kcal/mol and -38.17 ±

1.51 kcal/mol. The RMSD values of CCR5/Licopyranocoumarin

and NLRP3/Licopyranocoumarin were small (values below 3.5

Å) and fluctuated very steadily.

The binding of the CSF2/3-3-Oxopropanoic acid was

maintained mainly by hydrophobic interactions. The binding

of the CSF2/3-3-Oxopropanoic acid was maintained by

hydrophobic interactions. The small molecule 3-3-

Oxopropanoic acid interacted with His-15 on the CSF2

protein by hydrogen bonding and with Leu-55, Leu-59, Phe-

47, Ile-117 and Ile-19 by hydrophobic interactions. The binding
FIGURE 10

Analysis of solvent accessible surface area (SASA).
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free energies of CSF2/3-3-Oxopropanoic acid was -6.98 ± 5.02

kcal/mol. And the overall RMSF of CSF2/3-3-Oxopropanoic

acid was less than 2.5 Å.
Glycyrol may inhibit activation of the
inflammatory response and chemotaxis
of inflammatory cells through IFNG
and CXCL8

Interferon-gamma (IFNG) is essential for immune and

tumor control of intracellular pathogens. However, abnormal

IFNG expression is associated with many auto-inflammatory

and autoimmune diseases. GO enrichment analysis includes

interferon-g receptor binding and cytokine activity. KEGG

enrichment analysis includes IL27-mediated signaling

pathways. C-X-C Motif Chemokine Ligand 8 (CXCL8) is a

major mediator of the inflammatory response, CXCL8 clears

pathogens and protects the host from infection by attracting

neutrophils and T cells. GO enrichment includes interleukin 8

receptor binding and chemokine activity. KEGG enrichment

analysis includes GPCR downstream signaling and bacterial

infection in the airway.

IFNG is selectively produced by immune cells (such as: T

lymphocytes and NKT cells). And the receptor for IFNG

(IFNGR) is present in almost all cell types. IFNG can induce

antiviral, antiproliferative and immunomodulatory effects in the

direction of inflammation (Schoenborn and Wilson, 2007; Nöst

et al., 2019; Ozger et al., 2021). IFNG encodes soluble cytokines

secreted by the innate and adaptive immune systems. Elevated

IFNG levels have been found in COVID-19 patients, and

elevated IFNG levels are thought to exacerbate cytokine storms

(Xu et al., 2022). IFNG is mainly produced by CD4 T cells. IFNG

secretion enhances macrophage microbicidal mechanisms and

regulates Th17 cell and tissue damage (Petrone et al., 2021). CD4

+ T cells have two inflammatory subpopulations, Th1 and Th17

cells. Th1 and Th17 perform their effector functions by

producing inflammatory cytokines (including IFNG and IL-

17). Melgaço et al. showed that stinging viral proteins lead to

activation of CD4 T helper cell and CD8 T to produce IFNG

(Melgaço et al., 2021). Therefore, inhibition of IFNG or IL-17

seems to improve clinical status of critically ill patients. Shahbazi

et al. showed an overall reduction in pro-inflammatory Th1 and

Th17 lymphocytes in critically ill patients with COVID-19. The

reduced frequency of these lymphocytes may be due to their

migration to the lungs of critically ill patients and this increases

lung inflammation (Shahbazi et al., 2021; Mele et al., 2021).

Some studies have shown that the active ingredients of LHQW

(such as: lonicerae and glycyrrhizin) can exert inhibitory effects

on IFNG and reduce IFNG expression (Nöst et al., 2019; Liu P

et al., 2021).
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CXCL8 can be rapidly induced by pro-inflammatory

cytokines (such as: TNF and IL-1b) (Liu et al., 2016). Kaiser

et al. showed that neutrophils were recruited to express CXCL8

in the lung, which in turn activates and enhances CXCL8 release

from peripheral neutrophils (Ha et al., 2017). Kaiser et al. found

high concentrations of CXCL8 in bronchoalveolar lavage (BAL)

fluid from patients with COVID-19 (Kaiser et al., 2021). Studies

have shown that LHQW can reduce the gene level of interleukin

8 (CXCL8) (Dong et al., 2014).

Therefore, Glycyrol may inhibit activation of the inflammatory

response and chemotaxis of inflammatory cells through IFNG and

CXCL8 thereby reducing the inflammatory response.
Glycyrol may regulate TNF to reduce cell
damage and death

Tumor necrosis factor alpha is a member of the TNF/TNFR

cytokine superfamily (Balkwill, 2006). TNF-a can be released

from the cell membrane by extracellular protein hydrolysis

cleavage and functions as a cytokine. GO enrichment analysis

includes cytokine activity and protein binding. KEGG

enrichment analysis includes the regulation of dendritic cell

developmental lineage pathways and cell survival.

TNF-a is an inflammatory cytokine produced by

macrophages/monocytes during acute inflammation, and

TNF-a is responsible for various intracellular signaling events

(mediating the gene expression of growth factors, cytokines and

transcription factors). TNF-a is also important in the fight

against infection and cancer (Idriss and Naismith, 2000;

Ramasamy and Subbian, 2021). And TNF-a affects different

aspects of the immune system and regulates various pathological

and physiological processes (Choudhary et al., 2021). TNF-a is

also a major activator of IL-6 expression (Pons et al., 2020).

Study found that TNF-a was a prominent feature of patient

deterioration (Fara et al., 2020). The severity of COVID-19 is

associated with damage produced by cytokine storm and type I

IFN (IFN-a and IFN-b) (Ramasamy and Subbian, 2021; Krämer

et al., 2021). Interestingly, the numbers of total T cells, CD4 T

and CD8 T cells were negatively correlated with TNF-a, IL-6
levels, respectively. This leads to the conclusion that T cells are

reduced and depleted in COVID-19 patients. Cytokines (such as

IL-6 and TNF-a) may be involved in T-cell reduction (Diao

et al., 2020). Study has been shown that most patients suffer from

lymphocytopenia with elevated serum pro-inflammatory

cytokine levels (such as: TNF-a, IL-6) (Khanmohammadi and

Rezaei, 2021). In addition, Norooznezhad et al. found that NF-

kB, a very critical transcription factor in inflammation

(especially cytokine storm) may lead to the expression of IL-6

and TNF-a (Pons et al., 2020; Norooznezhad and Mansouri,

2021; Attiq et al., 2021). Study has been shown that LHQW can
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inhibit virus-induced NF-kB activation and alleviate virus-

induced gene expression of IL-6, TNF-a (Shen and Yin, 2021).

Therefore, Glycyrol may also regulate TNF to reduce cell

damage and death thereby alleviating damage from the

inflammatory response caused by infection.
Licopyranocoumarin may impede the
release of inflammatory factors and the
spread of the inflammatory response
through CCR5 and NLRP3

C Motif Chemokine Receptor 5 (CCR5, also known as

CD195) is a G protein-coupled receptor (GPCR) (Zeng et al.,

2022). CCR5 is expressed on the surface of leukocytes, especially

T-CD4+ cells. CCR5 mediates the migration of macrophages to

inflammatory areas facilitating the release of inflammatory

cytokines and the amplification of immune responses

(Iannaccone et al., 2020). GO enrichment analysis includes G

protein-coupled receptor activity. KEGG enrichment analysis

includes selective expression of chemokine receptors and

autophagic pathways during T cell polarization. Activation of

NLRP3 as a key component of the innate immune system plays a

critical role in host defense against bacteria, fungi and viruses,

and NLRP3 is also associated with metabolic and inflammatory

conditions. GO enrichment includes peptidoglycan binding.

KEGG enrichment analysis includes activation of NF-KappaB

by PKR and inflammatory vesicles.

CCR5 may play a role in the inflammatory response to

coronavirus infection. Study has been suggested that the CCR5

pathway is a suppressor of immune hyperactivation in severe

COVID-19 (Cuesta-Llavona et al., 2021; Dieter et al., 2022).

Lungs infected with SARS-COV-2 show upregulation of

chemokines (including CCL4, CCL8, and CCL11), and all of

these factors share CCR5 as their receptor (Hachim et al., 2020;

Zeng et al., 2022). The active ingredient of LHQW can inhibit

the secretion of CCL5 thereby inhibiting the interaction between

CCL5 and CCR5, and suppressing the inflammatory response

(Ko et al., 2006).

NLR Family Pyrin Domain Containing 3 (NLRP3)

inflammatory vesicles are one of the most important

components of the innate immune system and NLRP3

significantly enhances inflammation by increasing the

production of IL-18 and gasdermin D (GSDMD) (López-Reyes

et al., 2020; Freeman and Swartz, 2020; Saeedi-Boroujeni et al.,

2021). The immune overreaction and cytokine storm in SARS-

CoV-2 infection may be associated with NLRP3 inflammatory

vesicle activation. In SARS-CoV-2 infection, NLRP3

inflammatory vesicle activation leads to the stimulation and

synthesis of natural killer cells (NKs), NF-kB and interferon g
(INF-g) (Batiha et al., 2021; Rodrigues et al., 2021). The active

ingredient of LHQW inhibits NLRP3 inflammatory vesicles (Liu

et al., 2019), and LHQW blocks the onset of apoptosis and
Frontiers in Cellular and Infection Microbiology 14
inflammatory response by inhibiting the activation of NLRP3

(Chao et al., 2022).

Therefore, Licopyranocoumarin may impede release of

inflammatory factors and spread of inflammatory response

through CCR5 and NLRP3 thereby controlling the extent of

inflammatory effects and the degree of tissue damage.
3-3-Oxopropanoic acid may regulate the
differentiation of inflammatory cells and
cell survival through CSF2

Granulocyte macrophage colony-stimulating factor 2 (CSF2)

is a key cytokine. CSF2 affects the survival, proliferation and

differentiation of dendritic cells and macrophages by stimulating

myeloid cells (Sielska et al., 2020; Saita et al., 2022). GO

enrichment analysis includes inflammatory factor activity.

KEGG enrichment analysis includes selective expression of

chemokine receptors during T cell polarization and dendritic

cell developmental lineage pathways.

Study has been shown that blockade of CSF2 signaling

reduces airway inflammation and hyperresponsiveness in

mouse models of environmentally induced lung injury and

asthma (Burkhardt et al., 2012; Gilchrist et al., 2021). Lung

tissue-resident memory-like TH17 cells are predominant

immune cell type in bronchoalveolar lavage fluid (BAL)

expressing the cytokine GM-CSF. GM-CSF were significantly

elevated in the serum of patients with severe COVID-19

compared to patients with normal COVID19. Study has been

shown that an enhanced frequency of GM-CSF/IFNG

replicating T cells was found in the blood of COVID-19

patients and appeared to correlate with disease activity. Zhao

et al. suggested that CSF2/GM-CSF expressing cells were present

in the lung and co-express IL17A. Lung T+RM17 cells are a

potential coordinating factor for excessive inflammation in

severe COVID-19 (Schett et al., 2020; Zhao et al., 2021). Li

et al. identified enhanced Th17 cell differentiation and cytokine

responses in COVID-19 (Li et al., 2021). Some studies have

analyzed and identified genes specifically expressed by SARS-

CoV-2 infection, as well as genes altered due to coronavirus-2

and/or other respiratory viral infections. In particular, CSF2

expression appears to be associated with neo-coronavirus disease

(Chandrashekar et al., 2021; Ferrarini et al., 2021). Cheng et al.

determined that the cytokine gene CSF2 was upregulated after

SARS-CoV-2 infection (Cheng et al., 2021). SARS-CoV-2

infection can activate T cells. Activated T cells rapidly

proliferate and secrete granulocyte-macrophage colony-

stimulating factor (GM-CSF) and interleukin-16 (IL-16) (Shen

and Yin, 2021).

Therefore, 3-3-Oxopropanoic acid may regulate the

differentiation of inflammatory cells and cell survival through

CSF2 thereby reducing apoptosis.
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Conclusion

We explored the mechanism of Lianhua Qingwen granules

(LHQW) treats COVID-19 by molecular docking and molecular

dynamics. We found that the active ingredients in LHQW not

only reduce cell damage and tissue destruction by inhibiting the

inflammatory response through CSF2, CXCL8, CCR5 and IFNG,

but also regulate cell survival and growth through NLRP3

and TNF.

Therefore, the active ingredients in Lianhua Qingwen

granules (LHQW) treats COVID-19 by regulating cell survival

and inhibiting inflammatory response from multiple targets.
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