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Background: Clonorchiasis is an important foodborne parasitic disease. The

omics-based-techniques could illuminate parasite biology and further make

innovations in the research for parasitic diseases. However, knowledge about

the serummetabolic profiles and relatedmetabolic pathways in clonorchiasis is

very limited.

Methods: A untargeted ultra-high performance liquid tandem chromatography

quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS) was used to

profile the serum metabolites of rats at both 4 and 8 weeks post infection (wpi)

with Clonorchis sinensis (C. sinensis). Additionally, multivariate statistical

analysis methods were employed to identify differential metabolites. Next,

serum amino acids and phosphatidylcholines (PCs) levels were determined

by targeted metabolomics analysis.

Result: A total of 10530 and 6560 ions were identified in ESI+ and ESI−modes.

The levels of phosphatidylcholines, glycerophosphocholine and choline were

significantly changed, with the shift in lipid metabolism. Significant changes

were also observed in amino acids (isoleucine, valine, leucine, threonine,

glutamate and glutamine). Targeted analysis showed that BCAAs (isoleucine,

valine, leucine) levels significantly increased at 4 wpi and decreased at 8 wpi;

threonine was increased at 8 wpi, whereas glutamate and glutamine showed a

decreasing trend at 8 wpi. Additionally, the level of 17 PCs were significantly

changed in infected rats. Marked metabolic pathways were involved in

clonorchiasis, including glycerophospholipid metabolism, alanine, aspartate

and glutamate metabolism, histidine metabolism and pyrimidine metabolism.

Conclusion: These results show that C. sinensis infection can cause significant

changes in the rat serum metabolism, especially in amino acids and lipids. The
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metabolic signature together with perturbations in metabolic pathways could

provide more in depth understanding of clonorchiasis and further make

potential therapeutic interventions.
KEYWORDS

clonorchiasis, serum, metabolic pathway, untargeted metabolomics, targeted
metabolomics
Introduction

Clonorchiasis is an important food-borne and zoonotic

parasitic disease caused by Clornorchis sinensis (C. sinensis)

infection (Han et al., 2012; Dong and Soong, 2021). Humans

get infected by ingesting raw fresh water fish and shrimp that

contain metacercariae (Lun et al., 2005a). Clonorchiasis is

mostly prevalent in Vietnam, Korea and China, as well as 15-

20 million people are estimated to be infected (Na et al., 2020).

Chronic infection with C. sinensis results in chronic

inflammation, which causes periductal fibrosis and even

hepatobil iary diseases (Qian et al . , 2016). Clinical

manifestations of clonorchiasis present asymptomatic,

epithelial hyperplasia, periductal and hepatic fibrosis, and even

cholangiocarcinoma (Keiser and Utzinger, 2005). Significantly,

C. sinensis had been classified as a grade 1 biological

carcinogenic agent (Bouvard et al., 2009). Recently, our

research reported the aberrant expression of hepatic

microRNA, long non-coding RNA and mRNA in clonorchiasis

(Han et al., 2016; Han et al., 2021). We also found hepatocyte

apoptosis and iron overload in the liver of rats with C.sinensis

infection (Han et al., 2017). However, the molecular

pathogenesis underlying clonorchiasis remains unclear.

Therefore , explor ing the molecular mechanism of

clonorchiasis could be helpful for the development of

preventive measures and targeted drugs.

Recently , several “omics” techniques , including

transcriptomics, proteomics, and metabolomics, were used to

explore the intricate relationship between parasites and hosts

(Zhou et al., 2013; Pittman et al., 2014; Zhou et al., 2017). The

omics-based techniques could illuminate parasite biology and

further make innovations in the research of parasitic diseases

(Yu et al., 2020). Notably, metabolomics provides a powerful

tool for phenotypic biology, monitoring therapeutic effectiveness

and exploring biomarkers (Zhou et al., 2017). Metabolomics has

been employed to profile the metabolic alterations of parasitic

diseases, including Schistosoma japonicum (S. japonicum) and

Opisthorchis felineus in rodent models (Kokova et al., 2020; Qian

et al., 2020). Similarly, we also found the changes of spleen

metabolites and regulatory pathways during clonorchiasis
02
(Zhang et al., 2020). Metabolomics contributes to supply

dynamic alteration and explore the molecular mechanisms in

these diseases (Yu et al., 2020).

Considering that serum samples are easy to extract and

analyze, belong to the most accessible body fluids, serum

samples can reflect the dynamic changes of the metabolome of

the whole organism and have been used in most metabolomic

studies (Dunn et al., 2011; Li et al., 2016). For example, Huang

et al. used UHPLC-MS-based metabolomics to detect serum

profiling changes in S. japonicum-infected mice and found some

decreased metabolites were closely correlated with the

progression of schistosomiasis (Huang et al., 2020). Zhou et al.

applied Mass-Spectrometry to investigate systemic serum

metabolic changes in T. gondii-infected mice (Zhou et al.,

2017). The metabolomic analysis of serum samples is widely

used for phenotypic biology and clinical biomarker discovery in

parasitic diseases (Zhou et al., 2017). However, knowledge about

the serum metabolic profiles and related metabolic pathways in

clonorchiasis is very limited.

In this present study, liquid chromatography tandem mass

spectrometry (LC-MS/MS) based metabolomics analysis was

applied to investigate the rat serum metabolic profiles in

clonorchiasis. These results will offer a new insight from

systematic metabolic aspect into the molecular mechanisms of

host-parasite interactions.
Materials and methods

Ethical approval

The Medical Ethics Review Committee of Harbin Medical

University reviewed and ethically approved this study. All

procedures with animals were carried out based on the

National Guidelines for Experimental Animal Welfare

(Ministry of Science and Technology of the People’s Republic

of China, 2006) and were approved by the Animal Welfare

Committee of Harbin Medical University. Additionally,

significant efforts to reduce animal suffering and the number

of animals were made.
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Rat experiments

Metacercariae of C. sinensis were obtained from infected

Pseudorasbora parva caught from the Songhuajiang River of

Heilongjiang Province. The method of collecting and purifying

metacercariae are showed as below. We placed the fish in an ice

box at 0°C and then transported to the laboratory. Next, we

washed the fish with running water, crushed the tissue with a

Waring Blender, and then digested with artificial gastric juice

(0.5% pepsin in 1% HCl) at 37°C for more than 12 h. At last, the

digested mixture was filtered three times, passed through sieves

of 1000, 300, and 106 µm. Metacercariae were isolated by

centrifugation, collected and preserved at 0.1 M phosphate

buffered saline (PBS, pH = 7.4) at 4°C. A total of 12 wistar rats

(specific pathogen free, SPF), aged about 6-8 weeks were bought

from the Harbin Medical University Laboratory Animal Center.

All rats had free access to standard chow and water to acclimate

to their environment for 1 week before modeling. All rats were

randomly divided into two groups, infected group (n=6) was

individually infected orally with 100 C. sinensis metacercariae,

control group (n=6) was administered with 100 µL of sterile

normal solution as controls. The blood samples were collected

from tail vein at 4 and 8 weeks post infection (wpi) with C.

sinensis, respectively. All animals were weighed and the food

intake of rats was monitored at 4 wpi and 8 wpi.

The Kato-Katz method was used to observe whether the rats

had successfully infected with C. sinensis. A total of 41.7 mg of

feces were collected. The number of eggs per smear was

converted to the eggs per gram of feces with multiplying by 24

(Hong et al., 2003). The rats were sacrificed at 8 wpi, C. sinensis

adults were collected from bile ducts of infected rats and flushed

with saline. Worm recovery rate was determined by dividing the

recovered worm number by number of metacercariae infected.
Detection of biochemical indices and
inflammatory factors

The contents of aspartate aminotransferase (AST) and

alanine aminotransferase (ALT) in serum were measured with

commercial reagent kits (Nanjing Jiancheng Bioengineering

Institute, Jiangsu, China). The experimental procedure was

processed following manufacturer’s instructions. Additionally,

the level of inflammatory factors (IL-1b, IL-6, IL-10 and TNF-a)
were detected by Luminex 200 liquid suspension microarray and

Bio-Plex Pro Rat Cytokine 1 10PLX EXP Kit. The experimental

procedure briefly described as follows: 50 µL diluted mixed

micro-beads was added into wells, then 50 µL standard

products and samples were added to each well (diluted twice

with assay buffer in advance). The plate was incubated with

shaking at room temperature for 60 min and washed three times.

After that, re-incubated with 25 µL of biotin-labeled detection

antibody for 30 min and washed three times. After washing, the
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samples were re-incubated in 50 µL diluted temperature for

10 min at room temperature. Following another washed, the

magnetic beads were re-suspended with 125 µL Assay Buffer.

Each sample was measured in duplicate. Data were analyzed and

statistics calculated with GraphPad Prism 4 software (San Diego,

CA, USA).
Preparation of serum sample and
metabolite extraction

The blood samples obtained at 4 wpi and 8 wpi were

centrifuged at 3,000 g for 10 min at 4°C. The serum samples

were frozen at −80°C until used for metabolite extraction. The

frozen serum samples (50 mL) were placed in an EP tube, and

added 200 mL extract solution (acetonitrile: methanol = 1: 1)

including isotopically-labelled internal standard mixture. The

mixture was vortexed for 30 s, and sonicated in ice water bath

for 10 min. The mixture was kept at -40 °C for 1 h, followed by

centrifugation at 12000 rpm for 15 min at 4 °C. The

supernatant (200 mL) was transferred to a fresh tube and

then dried in a vacuum concentrator at 37 °C. The samples

were dissolved in 100 mL of 50% acetonitrile, vortexed for 30 s,

and sonicated on ice for 10 min. After centrifugation at 13000

rpm for 15 min at 4°C, 75 mL of supernatant was placed in a

fresh glass vial for LC/MS analysis. The quality control (QC)

sample was collected by Mixing an equal aliquot of the

supernatants from all samples.
Untargeted serum metabolomics analysis

LC-MS/MS analyses were carried out using a ExionLC

Infinity series UHPLC System (AB Sciex). Compounds were

separated by HPLC on a Waters ACQUITY UPLC BEH Amide

(2.1 * 100 mm, 1.7 mm, Waters). The mobile phase consisted of

solvent A (25 mmol/L ammonium acetate and 25 mmol/L

ammonia hydroxide in water, pH = 9.75) and solvent B

(acetonitrile). The column temperature was maintained at

25°C, and the auto-sampler temperature was 4°C. The gradient

elution procedure was run as below: 0~0.5 min, 95% B; 0.5~7.0

min, 95%~65% B; 7.0~8.0 min, 65%~40% B; 8.0~9.0 min, 40% B;

9.0~9.1 min, 40%~95% B; 9.1~12.0 min, 95% B. The injection

volume was 2 mL (pos) or 2 mL (neg), respectively, and the flow

rate was set at 0.5 mL/min.

The TripleTOF 5600 mass spectrometry (AB Sciex) was

applied to acquire MS/MS spectra based on information-

dependent acquisition (IDA) in LC/MS analyses. The data

acquisition software (Analyst TF 1.7, AB Sciex) automatically

the complete scan survey MS data as it collects and triggers the

acquisition of MS/MS spectra according to preselected criteria.

For each cycle, 12 precursor ions with the strongest intensity

and greater than 100 were selected for MS/MS. The collision
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energy (CE) was 30 eV, and the cycle time was 0.56 s. ESI source

parameters were set as below: Gas 1: 60 psi, Gas 2: 60 psi, Curtain

Gas: 35 psi, Source Temperature: 600 °C, Declustering potential:

60 V, Ion Spray Voltage Floating (ISVF): 5000 V in positive

modes or -4000 V in negative modes.
Metabolite identification and multivariate
statistical analysis

The raw data (.wiff) files generated by MS were converted

into mzXML format using ProteoWizard. Following conversion,

data was processed with R package XCMS(version 3.2) to obtain

peak deconvolution, alignment and integration. Minfrac and cut

off were set as 0.5 and 0.3 respectively. Metabolites were

identified using an internal MS2 database (m/z and retention).

Before multivariate statistical analyses, the data were normalized

by total area normalization, and the raw peak area for each

metabolite was divided by the total peak area of all metabolites to

calculate the relative abundance. Then the data were mean-

centered and scaled using UV scaling or pareto scaling. After

that, the data was imported to SIMCA-P (version 13.0, Umetrics,

Umea, Sweden) for multivariate statistical analyses, including

principal component analysis (PCA) and orthogonal partial

least-square discriminant analysis (OPLS-DA). PCA and

OPLS-DA were performed to distinguish infected from control

group. The quality of the models was assessed based on the value

of R2 and Q2. The variable importance in the projection (VIP)

value of OPLA-DA mode was used to illustrate its contribution

to the classification.

Student’s t test was used to test the statistical significance

differences, and P-values (q-value) < 0.05 was considered as

statistically significant. In order to observe the distinctions in

metabolic state between infected group and control group, log2
transformation was performed for cluster analysis. Log2 fold

change (FC) was used to assess the changes in the abundance of

metabolites between different groups. In this study, based on

other studies (Zhou et al., 2017; Liu et al., 2019; Zheng et al.,

2019), VIP > 1, P < 0.05 and FC ≥ 1.2 and < 0.833 were used to

select differential metabolites. Heatmaps were used to depict

the relatively disorder and unbalanced metabolic profile of C.

sinensis-infected rats compared to control rats. On the basic of

abundance of differentially expressed metabolites data (log2-

scaled), MultiExperiment Viewer (MeV) v. 4.9 software (http://

mev.tm4.org/) was used to generate heatmaps. Metabolite

pathways of the differentially expressed metabolites in both

ion modes were analyzed using KEGG database (http://www.

genome.jp/kegg/) and MetaboAnalyst 3.0. The pathways

influenced after infection were obtained, based on the p-

values from the pathway enrichment analysis (y-axis) and

pathway impact values from pathway topology analysis

(x-axis).
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Targeted serum amino acids
profiles analysis

A total of 25 amino acids in serum samples were determined

by targeted UPLC-MS/MS method, due to their significant

differential abundance from the untargeted metabolomics

analysis. Almost 50 mL serum sample was employed for

metabolite extraction, then 250 mL acetonitrile/methanol/

formic acid (74.9:24.9:0.2,v/v/v) was added to the serum,

which contained additional stable isotope labeled internal

standards of valine-d8 and phenylalanine-d8. The mixture was

vortexed for 1 min and kept at room temperature for 10 min,

and then centrifuged at 14,000 g for 10 min at 4 °C. After that,

the supernatant was placed into the sampling vial pending

UPLC-MS/MS analysis.

The targeted analysis was performed on aWaters ACQUITY

UPLC system (Waters Corporation, Milford, MA, USA) coupled

with a Waters Xevo TQD Mass Spectrometer (Waters

Corporation, Manchester, UK). The separation was performed

on ACQUITY UPLCTMHILIC column (100 mm × 2.1 mm i.d.,

1.7 mm; Waters Corporation, Milford, MA, USA). The UHPLC/

MS-MS program was performed as follows. Briefly, the sample

injection volume was 2 mL, and the flow rate was 300 mL/min.

Substances were recovered from the column by gradient elution

(Liu et al., 2015). ESI and Selected Reaction Monitoring (SRM)

scans in the positive ion mode were used for mass spectrometric

detection. In each transition, cone voltage and collision energies

were optimized, with the ion spray voltage 3.2 kV, and the source

temperature 150 °C. Internal standard peak areas (valine-d8 and

phenylalanine-d8) were monitored for quality control and

individual samples with peak areas differing from the group

mean by more than two standard deviations were reanalyzed

(Additional Files: Table S1). MarkerLynx Application Manager

software (Version 4.1; Waters Corporation, Milford, MA, USA)

was used for automated peak integration. The metabolite peaks

were manually checked for the quality of integration.
Targeted serum lipidomics
(phosphatidylcholines) analysis

For phosphatidylcholines analysis, 10 mL serum sample was

mixed with 190 mL water and 480 mL extract solution (MTBE:

MeOH = 5: 1) containing internal standards. The mixture was

vortexed for 60s, and sonicated for 10 min. Then the mixtures

were centrifuged at 3000 rpm for 15 min at 4°C. A total of 250 mL
supernatant was transferred to a fresh tube. The remaining

sample was mixed with 250 mL MTBE, followed by vortex,

sonication and centrifugation. After that, another 250 mL
supernatant was taken out and repeated the above steps once.

Subsequently, supernatants were collected and combined and

dried in a vacuum concentrator at 37 °C. The dried samples were
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reconstituted with 100 mL of resuspension buffer (DCM: MeOH:

H2O = 60: 30: 4.5), then vortexed (30 s), sonicated (10 min), and

centrifuged (12000 rpm for 15 min at 4°C). Finally, 30 mL
supernatant was taken out for LC/MS analysis using a UHPLC

system (1290, Agilent Technologies) with a Phenomen Kinetex

C18 column (2.1 × 100 mm, 1.7 mm) coupled to TripleTOF 6600

mass spectrometry (AB Sciex). The quality control (QC) sample

was prepared by mixing the same volume of supernatants from

all samples.

Targeted serum lipidomics analysis was performed by a

SCIEX ExionLC series UHPLC System (ACQUITY UPLC HSS

T3, 1.8 mm, 2.1 × 100 mm) coupled with AB Sciex Trap 6500+

mass spectrometer (AB Sciex). The mobile phase consisted of

solvent A (40% water, 60% acetonitrile, and 10 mmol/L

ammonium formate) and solvent B (10% acetonitrile, 90%

isopropanol, and 10 mmol/L ammonium formate). The

column temperature was maintained at 45°C, the auto-sampler

temperature was 6°C, and the injection volume was 2 mL. Ion
source parameters were set as below: ISVF: +5500/-4500 V,

Curtain Gas: 40 psi, Temperature: 350°C, Ion Source Gas1:

50 psi, Ion Source Gas2: 50 psi, DP: ± 80V. The target

compounds were quantitatively analyzed by Biobud-v2.1.4.1

software. Based on the peak area and the actual concentration

of the same lipid internal standard (IS), the absolute

concentration of lipids was calculated.
Statistical analysis

For the data obtained by targeted analysis, the results were

expressed as means ± standard deviation (SD), SPSS Statistics

software version 22 (IBM, Armonk, NY, USA) was used for

statistical analysis, and Prism version 8.0.1 (GraphPad Software,

San Diego, CA) was used to generate box-plots (*P < 0.05, **P <

0.01). To identify the important metabolites of C. sinensis

infection, the area under the curve was assessed in receiver

operating characteristic analyses.
Results

Animal infection and assessment of
biochemistry and inflammatory factors

Infection was identified by the detection of C. sinensis eggs in

rat feces from all infected rats (Figure S1). Rats were sacrificed at

8 wpi, the mean worm recovery rate in the infected group was

over 50%. No worms were recovered from the control group. At

4 wpi, the food intake of rats in infection group was 8.64 ± 0.39 g,

the control group was 8.99 ± 0.48 g; at 8 wpi, the food intake of

rats in infection group was 24.02 ± 0.36 g; the control group was

25.30 ± 0.95 g. There was no significant difference between two

groups at the two time points, respectively. Additionally, the
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mean body weight did not significantly differ between infected (4

wpi 294.64 ± 12.09 g and 8 wpi 395.67 ± 13.83 g) and control rats

(4 con 298.5 ± 11.95 g and 8 con 403.03 ± 13.56 g), respectively.

As shown in Figure S2, ALT and AST increased both at 4 wpi

and 8 wpi in the infected group (P < 0.05). The level of IL-6, IL-

10 and TNF-a were significantly increased both at 4 wpi and 8

wpi (P < 0.05), while there was no significant change in IL-1b at

two time points (P > 0.05).
Metabolic profiles of serum after C.
sinensis infection

We characterized serummetabolomic changes in C. sinensis-

infected and control groups using UHPLC-QTOF-MS. A total of

10530 and 6560 ions were identified in the positive electrospray

ionization (ESI+) mode and negative electrospray ionization

(ESI−) mode, respectively (Additional Files: Table S2 and S3).

Next, PCA score plots were first employed to depict the

clustering behavior of serum metabolic profiles in different

infection times. Although the PCA score plots showed a clear

separation at 8 wpi, it could not clearly separate the 4 wpi group

from the control (Figure S3). Next, the OPLS-DA analysis was

performed and showed good discrimination among different

infected rats groups in both ESI+ and ESI− modes (Figure 1).

Additionally, the PCA and OPLS-DA model parameters are

present in Table S4. These results suggest that the metabolic

patterns of C. sinensis-infected rats are different from

control rats.
Differential metabolites in serum
following C. sinensis infection

Based on the VIP > 1, P < 0.05 and FC ≥ 1.2 and < 0.833, 522

and 3190 metabolites of serum were significantly altered at 4 and

8 wpi in the ESI+ mode, respectively. In addition, a total of 364

and 2332 metabolites were altered at 4 and 8 wpi in the ESI−

mode, respectively. The volcano and heat map plots of these

metabolites are present in Figure 2. As shown in heat map, the

serum metalites of C.sinensis-infected rats significantly deviated

from corresponding controls in ESI+ and ESI− mode.

Meanwhile, the concentration of differential metabolites from

8 wpi group changed more significantly than those from 4

wpi group.

After removing the unannotated metabolites, differential

metabolites in each group are shown in Table S5. The common

and unique differential metabolites among four groups are shown

by Venn diagrams (Figure S4). A total of 10 different metabolites

were shared in the two infected groups in ESI+mode, while only 5

metabolites were shared in ESI− mode. Both in the ESI+ mode

and ESI− mode, the number of differential metabolites identified

between the 8 wpi and 8 con group was larger. These results
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B C

D E F

A

FIGURE 1

Orthogonal partial least-squares discriminant analysis (OPLS-DA) score plots showing the separation between C. sinensis-infected and control
groups at 4 and 8 wpi in ESI+ mode (A-C) and ESI− mode (D-F). The ellipses enclose the 95% confidence intervals estimated by the sample
means and covariances of each group.
B

A

FIGURE 2

Differential metabolites were identified among different groups in ESI+ and ESI− modes. (A) Volcano plots showed significant differences among
different groups. Each point in the map represents a metabolite. The size of the scatter represents the VIP value of the OPLS-DA model, and the
larger the scatter, the larger the VIP value. (Red plot, up-regulated; Blue plot, down-regulated; Black plot, non-significant). (B) Heat maps
representing the significantly changed metabolites between infected groups and the corresponding control groups. Each row represents data
for a specific metabolite, and each column represents a rat (C. sinensis-infected or healthy control). Different colors correspond to the different
intensity levels of metabolites. Red and blue colors represent increased and decreased levels of metabolites, respectively.
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showed that the number of differential metabolites increased

during the infection progresses.
Amino acids profiles detected by
targeted metabolomics

In order to validate the untargeted metabolomics analysis, 25

amino acids in serum samples were further quantitatively

analyzed by targeted UPLC-MS/MS. Among them, 14 amino

acids were significantly changed during C. sinensis infection

(Figure 3). For example, aminobutyric acid, dimethylglycine,

glutamate, and 4-Hydroxy-L-proline decreased at 4 wpi and 8

wpi. The branched-chain amino acids (BCAAs, including

isoleucine, leucine and valine), citrulline and creatine increased

at 4 wpi and decreased at 8 wpi. We compared the results

between targeted and untargeted amino acids in Table S6. It was

shown that glutamate and glutamine decreased at 8 wpi, and

threonine increased at 8 wpi in both methods. Then metabolic

pathway analysis of these amino acid metabolites was

subsequently performed (Additional Files: Table S7). Based on

P value < 0.05 and impact value > 0.1 (Wang et al., 2021), the

main enrichment pathways included glycine, serine and
Frontiers in Cellular and Infection Microbiology 07
threonine metabolism, arginine biosynthesis, D-glutamine and

D-glutamate, glyoxylate and dicarboxylate metabolism,

glutathione metabolism, and alanine, aspartate and glutamate

metabolism. Additionally, the ROC analysis showed the

AUC values for glutamate, dimethylglycine, g-aminobutyric

acid and glutamine of 0.938, 0.813, 0.715 and 0.694,

respectively (Figure 4A).
Quantification of phosphatidylcholines
by targeted metabolomics

Some lipids were also identified as the differential

metabolites in untargeted metabolomics. Thus, we

further analyzed the changes in the concentration of

phosphatidylcholines (PCs) in serum. A total of 40 PCs were

identified and 17 PCs were found differentially expressed at 4

wpi and 8 wpi (Figure 5). The levels of PC(16:0/20:1), PC(16:0/

22:4), PC(16:0/22:5), PC(18:0/16:1), PC(18:0/20:3), PC(18:0/

22:4), PC(18:0/22:5), PC(18:1/20:3), and PC(18:2/20:1) showed

increased at two time points, whereas the levels of PC(16:0/18:3),

PC(18:0/18:2) and PC(18:2/18:2) were increased at 4 wpi, but

decreased at 8 wpi. Moreover, PC(16:0/20:2), PC(16:0/20:3), PC

(18:0/20:2), and PC(18:1/18:2) showed increased only at 4 wpi,
FIGURE 3

The concentrations of 14 significantly changed amino acids in serum of different groups. *P < 0.05, **P < 0.01, t-test. ns, no significant change.
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while PC(18:0/20:1) increased only at 8 wpi. According to AUC

analysis, PC(18:2/20:1), PC(18:0/22:5), PC(16:0/20:1), PC(16:0/

20:3), PC(18:0/16:1) and PC(18:0/20:3) had high AUC values

(AUC > 0.7), which indicated that these PCs had good predictive

ability for disease (Figure 4B).
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Metabolic pathways affected by
C.sinensis infection

The biological metabolic pathways of the differentially expressed

metabolites were determined by enrichment analysis using KEGG
BA

FIGURE 4

ROC analysis of amino acids metabolites (A) and phosphatidylcholines (B) in infected and control groups.
FIGURE 5

The concentrations of 17 phosphatidylcholines in serum of different groups. *P < 0.05, **P < 0.01, t-test. ns, no significant change.
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annotation and MetaboAnalyst. Based on P value < 0.05 and impact

value > 0.1, the most significant differential metabolic pathways at 4

wpi were glycerophospholipid metabolism and taurine and

hypotaurine metabolism; while, glycerophospholipid metabolism,

histidine metabolism, arginine biosynthesis, alanine, aspartate and

glutamate metabolism, and pyrimidine metabolism were

significantly changed at 8 wpi, as shown in Figure 6 and Table S8.

We further made the pathway analysis of up-regulated and

down-regulated metabolites (Additional Files: Table S9),

respectively. At 4 wpi, up-regulated metabolites were enriched in

glycerophospholipid metabolism and taurine and hypotaurine

metabolism, while at 8 wpi, up-regulated metabolites were

enriched in fructose and mannose metabolism. Down-regulated

metabolites were enriched in glycerophospholipid metabolism at 4

wpi, and down-regulated metabolites were enriched in arginine

metabolism, histidine metabolism, D-glutamine and D-glutamate

metabolism, nicotinate and nicotinamide metabolism, pyrimidine

metabolism, alanine, aspartate and glutamate metabolism,

glycerophospholipid metabolism at 8 wpi. It seems that both up-

regulated and down-regulated metabolites are enriched in

glycerophospholipid metabolism. Finally, alanine, aspartate and

glutamate metabolism, histidine metabolism, glycerophospholipid

metabolism, and pyrimidine metabolism were used to construct

integrated metabolic networks (Figure 7).

Discussion

In this study, the serum metabolism of C. sinensis-infected

rats at 4 and 8 wpi was analyzed by untargeted and targeted
Frontiers in Cellular and Infection Microbiology 09
metabolomics. Because C. sinensis adults develop matured and

start producing eggs at 4 wpi (Lun et al., 2005b), it could cause

obvious inflammatory cell infiltration, fibrocyte accumulation,

hepatocyte apoptosis and serious collagen deposition from 4 wpi

(Zhang et al., 2008; Xu et al., 2016; Han et al., 2017). Thus, based

on these important features of the worm growth, disease

progress and pathologic changes, 4 and 8 wpi were selected for

metabolomics analysis. Multivariate analyses demonstrated

significant separation between C. sinensis-infected and control

rats at two time points in ESI+ mode and ESI− mode,

respectively. Most of these metabolites belonged to amino

acids, lipids, and products of amino acid metabolism. These

results suggested systemic serum metabolic perturbations

in clonorchiasis.

Notably, our study observed that C. sinensis infection could

cause significant perturbation in some amino acids. Similarly,

the alteration of amino acid metabolism was observed in mice

serum infected with S. japonicum (Huang et al., 2020). And

serum amino acids levels were also found abnormal in

nonalcoholic fatty liver disease patients and alcoholic liver

disease rat models (Shi et al., 2020; Wang et al., 2022). The

liver could synthesize a variety of amino acids, including

glutamate and glutamine and plays a critical role in amino

acids metabolism (Hou et al., 2020). Liver injury could cause

the disturbance of serum amino acid metabolism. As basic

metabolites and metabolic regulators, amino acids play

significant roles in the synthesis of many cytokines and/or

antibodies (Li et al., 2007), and are also involved in important

metabolic pathways for growth, reproduction and immunity
B C

D E F

A

FIGURE 6

Pathway analysis of the identified differential metabolites in ESI+ mode and ESI− mode. Plots depict the pathway impacts of the key metabolites
(x-axis) and the computed metabolic pathway as a function of –log (P) (y-axis) that different among 4 wpi vs. 4 con (A, D), 8 wpi vs. 8 con
(B, E), and 8 wpi vs. 4 wpi (C, F).
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(Meijer, 2003; Kim and Wu, 2009; Wu, 2009). Previous studies

also reported that amino acids provided important energy

source for C. sinensis adults (Li et al., 2020). Thus, amino acid

profiles might help elucidate the impact and underlying

mechanisms of clonorchiasis.

The BCAAs including isoleucine, valine and leucine were

found significantly increased at 4 wpi, and decreased at 8 wpi in

targeted analysis (P < 0.05). High concentrations of BCAAs are

associated with oxidative stress and inflammation under

different pathological conditions (Zhenyukh et al., 2017).

Elevated BCAAs levels also can activate the NF-kB signaling

pathway, promoting the release of pro-inflammatory molecules,

such as IL-6 and TNF-a (Zhenyukh et al., 2017). Meanwhile, the

level of IL-6 and TNF-a in serum of the infected group were also

identified significantly increased in our study. Increased levels of

IL-6 and TNF-a may lead to liver inflammation and fibrosis

(Yan et al., 2015; Higashi et al., 2017; Kang et al., 2020). Except

that, during the disease progresses, BCAAs levels showed down

trend at 8 wpi, which might be related to the increased utilization

of these animo acids. Besides, BCAAs are important in

supporting immune cell function, the deficiency of BCAAs,

especially isoleucine, could impair the innate immune function

in cells or organisms (Powell et al., 2012). Altogether, the

changes of BCAAs may contribute to the inflammation and

oxidative stress during clonorchiasis.

Threonine was another differentially expressed metabolite,

increased at 8 wpi in untargeted and targeted metabolomics.

Similarly, increased level of threonine was also found in C.
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sinensis-infected bile (Dalton et al., 2020). Threonine is an

important component of intestinal mucin and plasma g-

globulin in animals (Li et al., 2007). Therefore, the increased

threonine may contribute to the maintenance of host intestinal

mucosal integrity and barrier function after C. sinensis infection.

Both untargeted and targeted metabolomics detected

glutamate and glutamine significantly decreased in infected

group at 8 wpi, this is similar to previous research on serum

metabolites profiles of C. sinensis-infected rabbits (Qiu et al.,

2022). Glutamate is obtained from the catabolism of other

amino acids, such as BCAAs (Cruzat et al., 2018; Holecek,

2018). Moreover, glutamate, as an immediate precursor for the

synthesis of glutathione, is an important component of defense

against oxidative stress (Amores-Sanchez and Medina, 1999;

Johnson et al., 2003). Except that, glutamate is also an important

immunomodulatory, and several glutamate receptors have been

reported to be expressed on immune system cells (Pacheco et al.,

2007). Therefore, it is suggested that glutamate levels may be

associated with host antioxidant and immune responses during

clonorchiasis. Furthermore, glutamine can be synthesized from

glutamate by glutamine synthetase (Tan et al., 2017). During

infection and/or high catabolism, the increased demand use for

glutamine by immune system cells and other tissues (liver)

(Cruzat et al., 2018), which might lead to a decrease in serum

glutamine level during C. sinensis infection. However, it is

unclear to what extent the observed changes in the abundance

of these amino acids metabolites may be the result of loss of

appetite, transient local inflammation, or other processes in the
FIGURE 7

Integrated metabolic networks of significantly altered metabolic pathways during C. sinensis infection. The black arrows indicate up-regulation
and down-regulation. Horizontal lines indicate that the metabolites are no changed.
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host, so the specific functional mechanisms of these amino acids

metabolites in clonorchiasis require further investigation.

Meanwhile, this study reported that phosphatidylcholines were

significantly altered in the infected group, suggesting that the

glycerophospholipid metabolism was perturbed after C. sinensis

infection. Although untargeted metabolomics could detect some

lipids, there are still some limitations in the extraction and

determination of lipids. Thus more PCs were further determined

by targeted analysis. Lipids are important in the life cycle of the

parasite and the promotion of membrane fusion in the host (Huang

et al., 2020). PCs are themost abundant phospholipids in eukaryotic

membranes and the main component of the tegumental outer-

surface of Schistosomain (Van Hellemond et al., 2006). The

formation of tegument plays a critical role in the uptake of

nutrients and immune evasion by the parasite (Fripp, 1967;

Uglem and Read, 1975; Xu and Caulfield, 1992; Van Hellemond

et al., 2006). PCs also promote the proliferation and growth of

cancer cells (Fagone and Jackowski, 2013; Ridgway, 2013). Elevated

PCs levels have been observed in primary sclerosing cholangitis

(PSC) and cholangiocarcinoma (Banales et al., 2019). Based on the

previous studies, we speculate that abnormal PCs levels during

clonorchiasis not only regulate the host response and parasite

survival, but also is associated with the development of CCA.

Additionally, dysregulation of lipids has also been found in

experimental models of liver diseases in rat or mice. For example,

Li et al. showed that serum levels of PCs, lysophosphatidylcholines

(LPCs), and lysophosphatidylethanolamines (LPEs) were

significantly increased in liver injury and hepatocellular

carcinoma (Li et al., 2011). And the changes in the levels of PCs

and LPCs were also detected during liver fibrosis in rats (Zhang

et al., 2016). Therefore, dysregulation of lipids play important roles

in both the development and the progression of liver diseases.

In addition, we also found the metabolites associated with

pyrimidine metabolism were increased in the infected rats.

Pyrimidine metabolism was involved in DNA and RNA

biosynthesis (Tian et al., 2018; Zhao et al., 2018). The changes

in pyrimidine metabolism might suggest the potential effects on

DNA and RNA biosynthesis caused by C. sinensis infection.

Overall, we successfully identified the alteration of serum

metabolome in C. sinensis-infected rats. These data may provide

another layer of information about the molecular mechanisms of

clonorchiasis. There were some potential limitations of this study.

Firstly, our sample size was small, the changes in serum metabolic

profiling needed to be validated by large scale samples. And further

analysis of dysregulated metabolism in humans is important to

estimate the specificity of the altered metabolites in humans.

Second, in argeted lipidomic analysis, we only concentrated on

phosphatidylcholines, while other metabolites, such as LPCs, LPEs,

phosphatidylethanolamines (PEs) and phosphatidylserines (PSs),

were also involved in glycerophospholipid metabolism, future
Frontiers in Cellular and Infection Microbiology 11
research needs to explore the relationship between these lipids

and the pathogenesis mechanism of clonorchiasis.
Conclusion

In conclusion, based on LC-MS/MS-based metabolomics, we

found that differential serum metabolites including amino acids

(isoleucine, valine, leucine, threonine, glutamate and glutamine)

and lipids (phosphatidylcholines) changed significantly in C.

sinensis-infected rats. Some altered metabolic pathways were

involved in the pathogenesis of clonorchiasis, such as

glycerophospholipid metabolism, alanine, aspartate and

glutamate metabolism, histidine metabolism and pyrimidine

metabolism. The dysregulated metabolites, together with

perturbations in metabolic pathways may provide new insights

into the mechanistic understanding of pathogenesis and

potential therapeutic interventions for clonorchiasis.
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SUPPLEMENTARY FIGURE 1

C. sinensis eggs in feces of infected rats.

SUPPLEMENTARY FIGURE 2

The level of serum ALT, AST and inflammatory factors in rat infected with
Clonorchis sinensis. ALT, alanine aminotransferase; AST, aspartate

transaminase; 4 wpi, 4 weeks post infection; 4 con, 4 weeks control; 8
wpi, 8 weeks post infection; 8 con, 8 weeks control. *P<0.05,

**P<0.01, ***P<0.001.

SUPPLEMENTARY FIGURE 3

PCA score scatter plots of metabolites obtained from UHPLC-QTOF-MS
in ESI+ mode (A-C) and ESI− mode (D-F). Each color represents a group,

and each point represents a sample. 4 wpi, 4 weeks post infection; 4 con,
4 weeks control; 8 wpi, 8 weeks post infection; 8 con, 8 weeks control.

SUPPLEMENTARY FIGURE 4

Venn diagrams displaying (comparatively) the differentially expressed

metabolites. Differential metabolites across comparison groups showing
unique and common metabolites in ESI+ mode (A) and ESI− mode (B).
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