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Generation of red blood cells
from stem cells: Achievements,
opportunities and perspectives
for malaria research

Timothy J. Satchwell*

School of Biochemistry, University of Bristol, Bristol, United Kingdom
Parasites of the genus Plasmodium that causemalaria survive within humans by

invasion of, and proliferation within, the most abundant cell type in the body,

the red blood cell. As obligate, intracellular parasites, interactions between

parasite and host red blood cell components are crucial to multiple aspects of

the blood stage malaria parasite lifecycle. The requirement for, and

involvement of, an array of red blood cell proteins in parasite invasion and

intracellular development is well established. Nevertheless, detailed

mechanistic understanding of host cell protein contributions to these

processes are hampered by the genetic intractability of the anucleate red

blood cell. The advent of stem cell technology and more specifically

development of methods that recapitulate in vitro the process of red blood

cell development known as erythropoiesis has enabled the generation of

erythroid cell stages previously inaccessible in large numbers for malaria

studies. What is more, the capacity for genetic manipulation of nucleated

erythroid precursors that can be differentiated to generate modified red blood

cells has opened new horizons for malaria research. This review summarises

current methodologies that harness in vitro erythroid differentiation of stem

cells for generation of cells that are susceptible to malaria parasite invasion;

discusses existing and emerging approaches to generate novel red blood cell

phenotypes and explores the exciting potential of in vitro derived red blood

cells for improved understanding the broad role of host red blood cell proteins

in malaria pathogenesis.
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Introduction

Infection of humans by parasites of the genus Plasmodium that

cause malaria results in approximately 240million clinical cases and

627,000 deaths per year according to recent statistics (WHO, 2021).

Most deaths occur in children under the age of five and more than

90% are concentrated in endemic regions of western and Sub-

Saharan Africa. Plasmodium parasites possess a complex life cycle

that includes stages in both the female Anopholes mosquito and the

human liver; however, all of the symptoms that characterise this

disease occur as a result of the human blood stage in which

successive rounds of invasion, intracellular replication within,

egress and reinvasion of circulating red blood cells enables the

parasites exponential expansion.

Red blood cells, the body’s most abundant cell type and the

host for asexual replication of malaria parasites, are highly

specialised cells, uniquely adapted for their primary function

of delivery of oxygen around the body. They contain no nucleus

or intracellular organelles, have a finite lifespan of approximately

120 days, a cytoplasmic protein component dominated by

abundant haemoglobin and a unique membrane-cytoskeletal

architecture that facilitates deformation and transit through

sub-cellular diameter microcapillaries.

In humans red blood cells are generated through a specific

process of stem cell differentiation known as erythropoiesis.

P roe ry throb la s t s , fi r s t de r i ved f rom mul t ipo t en t

haematopoietic stem cells, undergo a complex process of

differentiation that occurs in contact with macrophages in so-

called erythroblastic islands within the bone marrow niche.

Driven by the actions of the glycoprotein hormone

erythropoietin, erythroblasts undergo a series of cell divisions

in which the cell dramatically transforms both transcriptionally

and morphologically: reducing its volume, haemoglobinising,
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remodelling its membrane properties, degrading intracellular

organelles whilst condensing and ultimately expelling its own

nucleus, which is phagocytosed by the erythroblastic island

macrophage to leave a nascent anucleate reticulocyte

(Figure 1). The reticulocyte exits the bone marrow, entering

the circulation where it completes its maturation to generate the

characteristically familiar biconcave erythrocyte. In healthy

adults, the continuous loss or clearance of the finitely life-

spanned red blood cell is maintained in equilibrium through

the ongoing production of new red blood cells at a rate of around

2 million cells every second (Palis, 2014).

Efforts to recapitulate the process of erythropoiesis ex vivo

with the ultimate goal of producing in vitro derived red blood

cells as a transfusion product have been longstanding and varied.

Myriad approaches that address the key obstacles of efficient

terminal differentiation and enucleation, sustainability, yield,

scalability and cost have been and continue to be developed to

this end (Lim et al., 2021; Pellegrin et al., 2021). For the malaria

research community, enabled access ex vivo to invasion

susceptible erythroid cells of increasing interest such as

reticulocytes and erythroblasts in quantities amenable to study

offers new opportunities for insight. Perhaps most excitingly

however the capacity for derivation of red blood cells from their

nucleated precursors ex vivo has opened the door to genetic

manipulation of red blood cells and the opportunity for targeted

exploration of the role of host red blood cell proteins in multiple

aspects of malaria pathogenesis.

This review will highlight applications of erythroid stem cell

biology to the study of malaria conducted to date, discuss

alternative approaches for the generation of in vitro derived

erythroid and red blood cells, their respective advantages and

disadvantages and highlight challenges and opportunities in the

application and use of such cells for malaria studies.
FIGURE 1

Overview of human bone marrow adult definitive erythropoiesis. Multipotent haematopoietic stem cells with long term self-renewal capacity
differentiate along a continuum of cell stages defined by their expansive capacity, degree of commitment to the erythroid lineage and
morphological characteristics as illustrated. Burst forming units (BFU-E), the earliest committed erythroid cells expand predominantly in
response to stem cell factor with the combined synergistic influence of erythropoietin driving continued proliferation of Colony forming units
(CFU-E). Terminal differentiation of resultant proerythroblasts to enucleated reticulocytes takes place within the bone marrow niche within
erythroblastic islands that consist of multiple differentiating erythroblasts docked to a central macrophage. Terminal differentiation is
characterised by progression through a series of morphologically defined stages (proerythroblast, basophilic erythoblast, polychromatic
erythroblasts, orthochromatic erythroblast and reticulocyte). The process is characterised by loss of cellular volume, haemoglobinisation,
expression of erythroid specific genes, nuclear condensation, organelle degradation and extrusion of the condensed nucleus (pyrenocyte) to
generate a nascent reticulocyte. The pyrenocyte is phagocytosed by the macrophage and the reticulocyte enters the bloodstream, completing
its maturation to definitive biconcave erythrocyte in the circulation over the subsequent 24-48 hours. Figure created with BioRender.com.
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In vitro erythropoiesis – Primary
cell models

Although multiple sources of erythroid precursors have

since been demonstrated, with different degrees of efficiency

and success, to undergo terminal differentiation, the most widely

applied approach thus far utilises primary haematopoietic stem

cells isolated from bone marrow, umbilical cord or peripheral

blood. Expansion of a subset of stem cells, enriched initially

through CD34+ cell isolation (Giarratana et al., 2005; Giarratana

et al., 2011; Griffiths et al., 2012) or expanded directly from

peripheral blood mononuclear cells (Van Den Akker et al., 2010)

using a cocktail of growth factors that include erythropoietin,

interleukin 3 and stem cell factor allows for the expansion of

large numbers of proerythroblasts that can be differentiated to

generate enucleated reticulocytes (young red blood cells).

Reticulocytes generated using this approach exhibit similar

characteristics to in vivo derived reticulocytes (Giarratana

et al., 2011; Griffiths et al., 2012; Moura et al., 2018; Heshusius

et al., 2019), undergo maturation to biconcave erythrocytes upon

transfusion (Giarratana et al., 2011; Kupzig et al., 2017) and

showed favourable circulatory half-life in a proof of principle

human clinical trial (Giarratana et al., 2011).

Crucially, in the context of malaria, reticulocytes derived

through in vitro culture of primary HSCs have been

demonstrated in multiple studies to support invasion by

malaria parasites Plasmodium falciparum (Tamez et al., 2009;

Bei et al., 2010; Fernandez-Becerra et al., 2013; Egan et al., 2015)

and plasmodium vivax (Panichakul et al., 2007; Noulin et al.,

2012; Roobsoong et al., 2015; Kanjee et al., 2021) with several of

these studies also reporting successful invasion of late stage

nucleated orthochromatic erythroblasts.
Sustainable sources of
erythroid cells

Whilst there are many advantages to the use of primary

HSCs, the finite proliferative capacity of this cell source,

challenges of efficient genetic manipulation and need for

repeated transductions between experimental cultures each

from a new donor source have encouraged the search for more

sustainable sources of erythroblasts.
Induced pluripotent stem cells

The development of methodology allowing for the

reprogramming of somatic cells by expression of four

transcription factors (Oct4, Sox2, c-Myc and Klf4) to

pluripotency was a landmark in stem cell biology (Takahashi

et al., 2007; Yu et al., 2007). The initial promise that
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accompanied the development of induced pluripotent stem

cells (iPSC) that could be directed into the erythroid lineage as

a limitless robust source of in vitro derived red blood cells

however has yet to be fulfilled. Conceptually iPSC cell lines offer

a level of sustainability, versatility and genetic tractability that

makes them a valuable alternative to primary HSCs. However,

difficulties associated with variation between lines, persistence of

embryonic and/or fetal haemoglobin, low rates of expansion,

incomplete differentiation and poor enucleation as well as the

complexity of protocols required to differentiate such cells have

plagued the quest for iPSC generated red blood cells (Dias et al.,

2011; Trakarnsanga et al., 2014; Focosi and Pistello, 2016).

Efforts to improve methodologies for the derivation of such

lines and their subsequent differentiation remain a highly active

area of research (Bernecker et al., 2019; Hansen et al., 2019; Lim

et al., 2021), however application of such lines for generation of

cells suitable for malaria studies so far is extremely limited

(Pance et al., 2021).
Immortalised erythroid cell lines

Generation of immortalised erythroblast cell lines, capable of

infinite proliferation whilst retaining the capacity to undergo

terminal erythroid differentiation and enucleation has presented

a holy grail within the erythroid biology research community.

Such lines could provide a sustainable source of isogenic

erythroid precursors, be readily genetically manipulated,

selected or clonally screened for the derivation of modified

sublines and cryopreserved for long term and repeated

experimentation. Immortalisation at a committed stage of

erythropoiesis also reduces the culture time required to obtain

reticulocytes, which for culture from HSCs takes approximately

18-21 days.

Retention of capacity for complete terminal differentiation

whilst maintaining a state of continuous proliferation is a

significant biological and technological difficulty. Long

established erythroleukemic cell lines such as K562 (Lozzio

and Lozzio, 1975) and HEL cells do not faithfully recapitulate

aspects of normal erythropoiesis including the key step of

enucleation (Kanjee et al., 2017) and thus are not capable of

generating cells suitable for malaria studies. Some such lines are

receptive of chemical induction to haemoglobinise and/or

undertake stunted differentiation. The JK-1 cell line for

example can be induced to generate nucleated erythroblasts

with a polychromatic erythroblast-like morphology that

notably support invasion by P. falciparum (Kanjee et al.,

2017). Readily genetically manipulatable, these cells provide a

means of insight into requirement of host receptors for

successful attachment and invasion and were employed to

investigate a functional association between host receptors

basigin and CD44 during P. falciparum invasion. Nevertheless,

in interpreting effects or excluding contribution of proteins
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using this nucleated cell model it is important to appreciate that

cytoplasmic and membrane composition as well as context and

presentation of proteins differs between cells pre and post

enucleation and care must be taken in extrapolating

mechanisms to circulating red blood cells. JK-1 cells do not

support further parasite development beyond initial invasion

excluding their use to study other aspects of parasite

development and pathology.

In 2017, Trakarnsanga et al. reported the first adult human

immortalised erythroblast cell line capable of undergoing

terminal erythroid differentiation and enucleation to generate

functional adult reticulocytes that express beta globin

(Trakarnsanga et al., 2017). Unlike erythroleukemic cell lines,

BEL-A cells were immortalised by expression of a doxycycline

inducible HPV16 E6/E7 construct in healthy adult bone marrow

CD34+ HSCs using an approach first employed by Kurita et al.

for the generation of HIDEP (iPSC-derived) and HUDEP (cord

blood derived) erythroid progenitor cell lines (Kurita

et al., 2013).

BEL-A cells can be maintained in continuous expansive

culture through supplementation with erythropoietin, stem cell

factor, dexamethasone and doxycycline and can be induced to

undergo differentiation by transition to a differentiation media

that includes erythropoietin, human serum and holotransferrin

and through the removal of doxycycline yielding a mixed culture

comprising apoptosed cells, orthochromatic erythroblasts and

enucleated reticulocytes (Trakarnsanga et al., 2017; Hawksworth

et al., 2018). Reticulocytes derived through BEL-A cell

differentiation can be purified by leukofiltration and are

proteomically equivalent to reticulocytes derived from primary

HSCs (Trakarnsanga et al., 2017).

Whilst an obsession with ‘enucleation percentages’ that do

not incorporate variations in cell expansion during

differentiation, viability and lineage purity between different

systems and cell lines is often unhelpful (Daniels et al., 2020),

current literature suggests this adult bone marrow derived

erythroblast line to give the greatest reticulocyte yield amongst

similar equivalents (Kurita et al., 2013; Kurita et al., 2019; Scully

et al., 2019; Daniels et al., 2020).

Unquestionably rates of conversion of orthochromatic

erythroblasts derived from cell lines to reticulocytes at present

fail to match those observed in primary HSC derived cells. This is

perhaps unsurprising given the tight regulation of cell cycle

involved in both cell replication and enucleation (Daniels et al.,

2021; Wang et al., 2022) and the requirement for its dysregulation

in order to facilitate erythroblast immortalisation (Daniels et al.,

2021). However, despite this, the sustainable nature of this

erythroblast source and the opportunity for sophisticated

genetic manipulation that it enables allows several advantages as

an alternative for generation of novel host cell models as

discussed below.
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A route to the inaccessible

New insight into the role of
erythroblast infection

The capacity for malaria parasites to infect cells within the

erythroid lineage that are not definitive circulating erythrocytes

has long been recognised (Marchiafava and Bigmani, 1894;

Craik, 1920; Shushan and Adams, 1937). Increased tropism for

(in the case of P. falciparum (Wilson et al., 1977; Pasvol et al.,

1980)) and restricted infection of (in the case of P. vivax (Craik,

1920; Hegner, 1938)) reticulocytes has been accepted for

decades. Observations of parasitised erythroblasts in bone

marrow was reported as early as 1894 (Marchiafava and

Bigmani, 1894; Feldman and Egan, 2022). Only more recently

however have questions been raised as to the possible reasons for

and implications behind infection of more immature erythroid

cells. One reason for this is the difficulties associated with

obtaining immature erythroid cells in quantities amenable to

controlled invasion studies ex vivo.

In vitro culture of erythroid cells has allowed for the

generation of proerythroblasts and subsequent intermediately

differentiated erythroblasts that can be exposed to malaria

parasites for tracking of both host and parasite cellular

development. In 2009 Tamez and colleagues used in vitro

derived erythroid cells to assess stage specific susceptibility of

human erythroblasts to P. falciparum infection, reporting

efficient invasion and intracellular development of parasites

within orthochromatic erythroblasts (Tamez et al., 2009).

More recently, Neveu et al. employed the same approach to

investigate the reported presence of sexual stage gametocytes in

bone marrow and the prospective role of erythroblast infection

as an enabler of gametocytogenesis (Neveu et al., 2020). In their

study, Neveu and colleagues demonstrate that nucleated

polychromatic erythroblasts support immature (sexual stage)

gametocyte development from stage I to IV for 8 days leading to

the production of mature gametocytes within reticulocytes as

both parasite and host cell continue to differentiate. Gametocyte

development was observed to slow the differentiation of the host

erythroid cell, increasing the period in which the cell remains

nucleated to complete its development prior to enucleation and

the release of mature gametocyte containing reticulocytes into

the circulation for subsequent transmission.

Gametocytogenesis is known to involve extensive

remodelling of host cell properties and co-option of host

protein components (Tiburcio et al., 2012; Tiburcio et al.,

2015; Neveu and Lavazec, 2019). The nucleated erythroid cells

in which this newly identified aspect of gametocytogenesis takes

place however exist only within the experimentally inaccessible

bone marrow in humans. The demonstration that in vitro

derived erythroblasts recapitulate this intriguing process thus
frontiersin.org
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provides a window to study this complex aspect of malaria

pathogenesis by application of stem cell biology to malaria as

well as a potential ex vivo model for putative drug screening

approaches. Exploitation of new tools that allow for genetic

manipulation of these host cells in addition to cellular resources

and lines generated in other areas offers much potential for

future insight in this area (Figure 2).
The much-sought reticulocyte

The widely accepted endpoint of most successful in vitro

erythroid culture systems is the youngest class of circulating red

blood cells, otherwise known as reticulocytes (Giarratana et al.,

2011; Griffiths et al., 2012; Shah et al., 2014; Heshusius et al.,

2019; Pellegrin et al., 2021; Bernecker et al., 2022). The

immediate precursor to the mature biconcave erythrocyte, the

term reticulocyte describes enucleated cells (of evolving

maturity) that are generated following extrusion of the

erythroblast condensed nucleus (pyrenocyte) and in vivo exit

the bone marrow to enter the bloodstream and circulate the

body, remodelling their membrane to achieve biconcavity as

they do so. Although able to effectively function in the same way

as the slightly more mature definitive erythrocyte, reticulocytes

are larger in size, contain residual RNA (classically detectable

with nucleic acid binding dyes such as thiazole orange) and

retain expression of the transferrin receptor CD71 (at varying

levels) that is lost progressively during maturation (Malleret

et al., 2013; Ovchynnikova et al., 2018; Stevens-Hernandez and

Bruce, 2022).

Reticulocytes can be successfully invaded by a broad range of

malaria parasites including P. falciparum, knowlesi, ovale and

vivax (Mcqueen and Mckenzie, 2004). P. falciparum, which is

responsible for the most severe form of malaria exhibits a

variably reported preference for reticulocytes (Wilson et al.,

1977; Pasvol et al., 1980; Lim et al., 2013), this may reflect the

increased surface area for attachment, differences in membrane

tension or energetic state of these newly generated cells. P. vivax

invasion in contrast is restricted to these more immature red

blood cells, which account for just 0.5-1% of circulating red

blood cells. Since reticulocytes can be invaded by multiple

species of Plasmodium (even where essential host surface

receptors required differs), they provide an extremely valuable

model to generate insight into surface receptor independent, or

downstream aspects of malaria parasite invasion and host

protein co-option that may be conserved across species.

For the study of P. vivax invasion, access to reticulocytes in

sufficient quantity and of sufficient levels of purity to be useful

for invasion studies has proved a major obstacle for many years.

The capacity for in vitro stem cell differentiation to derive

relatively large, pure populations of these cells from a

single donor without the need to pool samples (e.g. from

multiple cord blood units) has already recently yielded insight
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into variation in receptor reliance that exists between strains

(Kanjee et al., 2021).

Famously, the study of P. vivax has been hampered by the

absence of the kind of in vitro system for continuous maintenance

of parasites in culture with which Trager and Jensen

revolutionised P. falciparum research (Trager and Jensen, 1976).

The recent demonstration of sustained P. vivax blood stage

infection and transmission in a humanised mouse model with

human HSPC transplantation is an exciting development (Luiza-

Batista et al., 2022b). The observation that much of the parasite

biomass (comprising asexual and in particular sexual parasite

stages) occurred in the bone and thus the prospective importance

of nucleated erythroblast infection adds further intrigue and

potential for in vivo insights. Similarities between P. knowlesi

and vivax have also been exploited as a means for screening P.

vivax blood stage malaria candidates (Ndegwa et al., 2021).

Despite these advances, the drive for a continuous culture

system to propagate P. vivax remains. The complexities and

obstacles to establishment of such a system are manifold, likely

extending beyond solely the requirement for large numbers of

permissive reticulocytes (elegantly reviewed elsewhere (Bermudez

et al., 2018; Gunalan et al., 2020; Thomson-Luque and Bautista,

2021)). Success in continuous propagation of P. vivax ex vivo in

reticulocytes of any source has been minimal. Clearly however, in

the ability to generate reticulocytes (and earlier erythroid cells)

that are susceptible, at least to invasion, by P. vivax, stem cell

biology has an important role to play whether directly or

indirectly in any future development of such a system (Figure 2).
Manipulating host
protein expression

Historically, studies of malaria parasite invasion of the red

blood cell have focused predominantly upon identification of the

proteins on the surface of the host red blood cell (Salinas and

Tolia, 2016; Satchwell, 2016) and more fervently, the merozoite

itself, that mediate attachment, potentially providing targets for

vaccine design (Beeson et al., 2016). Elegant use of proteases,

blocking antibodies and the identification and study of rare

naturally occurring red blood cell phenotypes with receptor

mutations or null phenotypes have provided valuable

information regarding the requirements for and functional

redundancy of individual receptors and recent years have seen

the reporting of a new swathe of receptors with implied or

demonstrated roles in merozoite attachment and invasion

(Tham et al., 2010; Crosnier et al., 2011; Bhalla et al., 2015;

Egan et al., 2015; Egan et al., 2018; Olivieri et al., 2021). However,

there remains much that we do not understand regarding the

contribution of host proteins both at and beneath the surface of

the red blood cell to this process.

Perhaps the biggest obstacle to elucidation of the function

and contribution of red blood cell proteins in malaria infection is
frontiersin.org
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the inability to manipulate protein expression in the genetically

intractable anucleate erythrocyte. Previous reliance upon the

identification of often vanishingly rare naturally occurring

phenotypes to provide insight is inefficient and precludes

hypothesis driven investigation of host protein involvement in

invasion. The capacity to derive reticulocytes (young red blood

cells) that are susceptible to invasion by malaria parasites

through in vitro culture and differentiation of haematopoietic

stem cells (Tamez et al., 2009; Bei et al., 2010; Fernandez-Becerra

et al., 2013; Noulin et al., 2014; Egan et al., 2015) unlocks new

possibilities previously inaccessible to red blood cell biologists.

Ex vivo access to nucleated erythroid progenitor cells (from

various sources as outlined in this review) allows for the genetic

manipulation of cells, inducing alterations to protein expression

that can be retained during subsequent terminal erythroid

differentiation to produce enucleated red blood cells with novel

phenotypes. As improvements in erythroid culture methodology
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approaches have boomed over the last decade, so the level of

sophistication of this approach has, and continues to increase.
Primary cell successes so far

In 2010 Bei et al. exploited lentiviral transduction of primary

CD34+ HSCs to express shRNA for specific depletion of the host

EBA175 binding receptor Glycophorin A (Bei et al., 2010). By

differentiating these transduced cells, the authors were able to

derive reticulocytes with an 80% reduction in expression of GPA

that exhibited substantially reduced invasion compared to

control by P. falciparum, confirming the important role played

by this protein and validating the approach for host focused

studies of invasion receptor requirements. The same approach

was used as part of the seminal identification of basigin as the
FIGURE 2

Summary of applications and potential opportunities for erythroid stem cell biology to study of malaria pathogenesis. Illustrative summary of
applications and opportunities which include generation of novel in vitro derived red blood cell phenotypes for exploration of host protein
contribution to invasion, host cell remodelling and other aspects of pathogenesis of blood stage Plasmodium falciparum and Plasmodium vivax
infection. CRISPR-mediated NHEJ mediated knock outs, lentiviral rescue experiments and HDR mediated site-specific editing of endogenous
loci are each applicable to in vitro erythroid cultures. Emerging and future opportunities include exploration of nucleated erythroblasts as a
preferential host environment for gametocytogenesis and the long-standing enigma and quest for a means of continuous ex vivo propagation
of Plasmodium vivax. Figure created with BioRender.com.
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essential PfRh5 binding receptor necessary for successful P.

falciparum invasion (Crosnier et al., 2011), by Niang and

colleagues to explore GPC-STEVOR binding and rosetting

(Niang et al., 2014) and was further expanded by Egan et al.

who employed an shRNA library screen to identify roles for

CD55 and CD44 in invasion (Egan et al., 2015).

Derivation of in vitro cultured reticulocytes from CD34+

cells in combination with shRNA provides a powerful system for

the identification of candidate receptors important in invasion

(Egan et al., 2015). However, the finite proliferative capacity of

primary haematopoietic stem cells, necessitating repeat

transduction between experiments and limiting selection time,

together with the incomplete depletion of receptor expression by

shRNA, imposes limitations to the complexity of experiments

that can be performed using this approach. Development of

sustainable enucleation competent immortalised sources of

erythroid cells accompanied by the explosion in CRISPR-Cas9

mediated gene editing advancements have gone a long way

toward overcoming some of these issues, though challenges

do remain.
Modified cell lines

One of the major benefits of cell lines over primary cells is

the relative ease with which such cells can be manipulated at the

genetic level. Expanding BEL-A cells can be lentivirally

transduced with high efficiency (Trakarnsanga et al., 2017), are

amenable to CRISPR-Cas9 mediated gene editing for the

generation of stable clonal cell lines [evidenced through the

generation of reticulocytes with knock out of individual and

multiple blood groups (Hawksworth et al., 2018; Satchwell et al.,

2019)]. Whilst the karyotypic abnormalities and possibility of

genetic drift intrinsic to immortalised cell lines is a consideration

in gene editing of such cells, the fact that both edited and

unedited sublines derive from the same donor eliminating the

impact of donor variability and polymorphisms between

experiments is an additional advantage. Leukofiltered purified

BEL-A derived reticulocytes were demonstrated to support both

invasion by and complete intracellular development and egress

of P. falciparum at rates equivalent to that of primary CD34+

HSC derived reticulocytes (Satchwell et al., 2019). CRISPR

mediated knockout of basigin and lentiviral complementation

studies were further employed by Satchwell et al. (Satchwell

et al., 2019), validating this cell system as a means for

interrogation of host protein requirements for successful P.

falciparum invasion and excluding a requirement for the

basigin cytoplasmic domain in invasion. Orthochromatic

erythroblasts derived from a similarly immortalised line (EJ)

were found to support invasion by both P. falciparum and P.
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vivax, albeit less permissively than primary erythrocytes and

reticulocytes respectively (likely a reflection of differences in host

membrane-cytoskeletal protein context and membrane

properties of these more immature cells). DARC (Duffy)

knockout and re-expression abrogated and rescued invasion by

P. vivax respectively (Scully et al., 2019).
Future opportunities

To date, most insight derived through genetic manipulation

of in vitro derived red blood cells has come through depletion of

expression of host cell surface receptors, first by shRNA (Bei

et al., 2010; Egan et al., 2015) and more recently through

CRISPR-Cas9 non homologous end joining (NHEJ) mediated

gene knockout (Kanjee et al., 2017; Satchwell et al., 2019; Scully

et al., 2019; Shakya et al., 2021). In facilitating the knock-down

or knockout of receptors for which naturally occurring null

phenotypes do not exist or are extremely rare this approach has

tremendous value. For studies of P. vivax, the ability to generate

invasion susceptible reticulocytes (and erythroblasts) and to

knock out candidate receptors should increase our

understanding of the repertoire of host cell proteins that may

be involved in invasion by this species.

As technology and methodologies advance however, so too

do the possibilities for further insight using stem cell derived red

blood cells. By complementing a BSG knockout (KO) line with a

wild type and truncated BSG open reading frame Satchwell and

colleagues were able to expand upon the use of KOs alone to

interrogate the requirement for a specific intracellular receptor

domain for the first time (Satchwell et al., 2019). Expansion of

this knock out and mutant rescue approach for dissection of the

requirements of different host protein components required for

successful invasion will be of future interest. Further, active

development of successful protocols for homology directed

repair based ‘knock ins’, enabled by the ability to screen

immortalised erythroblast clones for site specific edits is an

exciting new frontier that paves the way for a more refined

dissection of the role played by red blood cell proteins in

Plasmodium invasion and development.

Site specific requirements of host cell proteins in malaria

parasite invasion, development and host remodelling have been

widely documented and postulated, with many as yet

unidentified contributions undoubtedly still to be uncovered.

These range from single nucleotide polymorphisms, sites of

glycosylation (Goerdeler et al., 2021) and palmitoylation

(Kumari et al., 2022) of receptors to phosphorylation sites

within membrane and cytoskeletal adaptor proteins. By

enabling their alteration (deletion, disruption or replacement

with phospho-modification incompetent residues for example),
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immortalised erythroid cell lines allow for the role of such sites

to be dissected within a true cellular context, providing a

powerful tool for new mechanistic insight. Interrogation of the

role of specific domains, regulatory sites and residues on

endogenously expressed host membrane and cytoskeletal

proteins (including exploration of the role of the swathe of

reported post-translational modifications associated with

invasion (Bouyer et al., 2016; Zuccala et al., 2016; Aniweh

et al., 2017; Sisquella et al., 2017) and their relevance to the

induction of transient host cytoskeletal clearance (Zuccala and

Baum, 2011)) can inform our understanding of malaria

pathogenesis and contribute to the increased acceptance of

and search for potential host directed therapeutic

opportunities (Adderley et al., 2020; Chien et al., 2021; Wei

et al., 2021) (Figure 2).
Challenges

For all the exciting opportunities for novel insight use of in

vitro derived red blood cells present for malaria research, their

application to such studies is not without its practical challenges.

Manipulating erythroblasts with a view to generation of

enucleated red blood cells must consider the need to ensure

that the programme of differentiation and enucleation is not

compromised, and pleiotropic effects of alterations carefully

assessed and considered.

Where donor red blood cells are plentiful and easily

accessible, derivation of in vitro derived red blood cells,

particularly those that have undergone genetic manipulation

represents a considerable investment of labour and resource. It is

not always possible (or rather, feasible) to replicate assays that

may be considered routine using donor red blood cells. Where

flow cytometry assays of parasitemia using nucleic acid staining

dyes is routine for donor erythrocytes, the confounding nuclear

signal where orthochromatic erythroblasts are studied prohibits

this means of assessment and in the ideal situation where

purified reticulocytes are studied residual RNA in reticulocytes

necessitates careful controls (Satchwell et al., 2019).

Miniaturisation of assays and manual inspection of cytospin

preparations (Bei et al., 2010; Egan et al., 2015; Satchwell et al.,

2019; Kanjee et al., 2021) have been powerful enablers of in vitro

red blood cell use however efforts to adapt and improve flow

cytometry based assessment through robust, nucleic acid

labelling, use of fluorescent parasite lines (Neveu et al., 2020),

label free assessment of parasitemia (Frita et al., 2011; Pance

et al., 2021) or via advanced technologies such as Imaging Flow

Cytometry (Luiza-Batista et al., 2022a) represent important

endeavours. Ongoing efforts within the community of

researchers seeking to improve and optimise in vitro erythroid

culture enucleation rates, scalability and purification methods

are of continued importance to improve accessibility (Lim et al.,

2021; Pellegrin et al., 2021; Gallego-Murillo et al., 2022).
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Conclusions

Malaria is a complex and multi-faceted disease, caused as it

is, by a parasite that transitions between multiple forms, residing

in multiple host cells throughout its lifecycle, each presenting

their own unique difficulties for study. In the case of the red

blood cell host, genetic intractability of the mature cell and

inaccessibility of its increasingly interesting precursors have

presented major historical obstacles to detailed understanding

of the ways in which host proteins resist, contribute or are co-

opted during malaria invasion and pathogenesis. Stem cell

biology and the more recent use of immortalised erythroid

cells has already demonstrated its value to malaria research,

identifying new and overlooked host protein requirements for

invasion and opening up new areas for investigation. We look

forward to the exciting new avenues, insights and opportunities

for interventions that it may uncover in the coming years.
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