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and lactic acid bacteria in
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The nasogastric enteral feeding tubes (NEFTs) used to feed preterm infants are

commonly colonized by bacteria with the ability to form complex biofilms in

their inner surfaces. Among them, staphylococci (mainly Staphylococcus

epidermidis and Staphylococcus aureus) and some species belonging to the

Family Enterobacteriaceae are of special concern since they can cause

nosocomial infections in this population. NETF-associated biofilms can also

include lactic acid bacteria (LAB), with the ability to compete with pathogenic

species for nutrients and space. Ecological interactions among the main

colonizers of these devices have not been explored yet; however, such

approach could guide future strategies involving the pre-coating of the inner

surfaces of NEFTs with well adapted LAB strains in order to reduce the rates of

nosocomial infections in neonatal intensive care units (NICUs). In this context,

this work implied the formation of dual-species biofilms involving one LAB

strain (either Ligilactobacillus salivarius 20SNG2 or Limosilactobacillus reuteri

7SNG3) and one nosocomial strain (either Klebsiella pneumoniae 9SNG3,

Serratia marcescens 10SNG3, Staphylococcus aureus 45SNG3 or

Staphylococcus epidermidis 46SNG3). The six strains used in this study had

been isolated from the inner surface of NEFTs. Changes in adhesion ability of

the pathogens were characterized using a culturomic approach. Species

interactions and structural changes of the resulting biofilms were analyzed

using scanning electron microscopy (SEM) and confocal laser scanning

microscopy (CLSM). No aggregation was observed in dual-species biofilms

between any of the two LAB strains and either K. pneumoniae 9SNG3 or S.

marcescens 10SNG3. In addition, biofilm thickness and volume were reduced,

suggesting that both LAB strains can control the capacity to form biofilms of

these enterobacteria. In contrast, a positive ecological relationship was
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observed in the combination L. reuteri 7SNG3-S. aureus 45SNG3. This

relationship was accompanied by a stimulation of S. aureus matrix

production when compared with its respective monospecies biofilm. The

knowledge provided by this study may guide the selection of potentially

probiotic strains that share the same niche with nosocomial pathogens,

enabling the establishment of a healthier microbial community inside NEFTs.
KEYWORDS

biofilms, nasogastric enteral feeding tubes, lactic acid bacteria, klebsiella
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Introduction

Bacterial biofilms are surface-associated communities

embedded in a matrix of self-producing extracellular

polymeric substances (EPS) (Costerton, 1995; Vert et al., 2012;

Flemming et al., 2016b). Polymicrobial biofilms are behind most

of the persistent infections related to the use of clinical devices

(Høiby et al., 2011; Lamas et al., 2018). Their inner surfaces can

act as a reservoir of nosocomial microorganisms to the host.

Microorganisms are sheltered inside these devices and benefited

from multiple advantages; the close cell-to-cell contact facilitates

gene exchange while the presence of the matrix interferes with

the host immunity mechanisms, increases tolerance to

antimicrobials and provides mechanical stability to the

community (Flemming et al., 2016a; Koo and Yamada, 2016;

Hou et al., 2018; Karygianni et al., 2020; Flemming et al., 2021;

Jara et al., 2021).

The rapid formation of biofilms in the inner surface of the

nasogastric enteral feeding tubes (NEFTs) used for the feeding of

preterm infants seems particularly worrying (Bussy et al., 1992;

Mehall et al., 2002; Liu et al., 2014; Gómez et al., 2016a; Ogrodzki

et al., 2017). Prematurity is the main cause of neonatal deaths in

children under the age of two (WHO, 2022), and nosocomial

infections and sepsis are responsible for a high percentage of

preterm-associated morbidity and mortality (ECDC, 2018).

Although use of NEFTS is critical for the survival of many

preterm infants, the formation of biofilms inside these devices

represents a risk factor for the acquisition of nosocomial

infections as they may allow the entry and replication of

hospital-associated microorganisms (Mehall et al., 2002;

Gómez et al., 2016b; Ogrodzki et al., 2017).

The nosocomial microbes most frequently isolated from

NEFT-associated biofilms include Gram-negative (Klebsiella,

Serratia and related enterobacteria) and Gram-positive

(Staphylococcus, Enterococcus) bacteria. They can arise from a

wide variety of sources including the own host, their relatives,

the feeding (in the case of own mother`s milk) or the hospital
02
staff and environment (Mathus-Vliegen et al., 2006; Moles et al.,

2013; Cong et al., 2016; Gómez et al., 2016a; Petersen et al.,

2016). Staphylococcus epidermidis and Staphylococcus aureus are

the most abundant species isolated from NEFTs (Jara et al.,

2021), and are also frequently implicated in catheter- and

prosthetic devices-associated infections due to their ability to

form biofilms (Cruz et al., 2018; Cassini et al., 2019; Davidson

et al., 2019; Monegro et al., 2020; Kranjec et al., 2021). Previous

studies have shown that their presence in a surface may promote

the adhesion and proliferation of other bacterial species,

including Gram-negative ones (Puga et al., 2018; Jara et al.,

2020). Among the later, the presence of Klebsiella pneumoniae

and Serratia marcescens is specially concerning in neonatal

intensive care units (NICUs) since both species are

opportunistic pathogens and have been related with

respiratory and urinary tract infections and sepsis in preterm

infants (Dessì et al., 2009; Mahlen, 2011; Singhai et al., 2012;

Gonzalez et al., 2013; Vuotto et al., 2014; Shokouhfard et al.,

2015; Satpathy et al., 2016; Srinivasan et al., 2016; Piperaki et al.,

2017; Vuotto et al., 2017; Cristina et al., 2019). Prophylactic and

metaphylactic use of antibiotics is a widespread practice in

neonatal intensive care units (NICUs) in order to prevent

sepsis and infections (ECDC, 2018). However, the burden of

antimicrobial resistance is particularly high among NICUs

isolates belonging to the species cited above and, therefore,

there is a need for alternative strategies to prevent or minimize

the presence of these species in NEFTs-associated biofilms.

Although less frequently, some lactic acid bacteria (LAB),

including strains belonging to species with a “qualified

presumption of safety” (QPS) status (EFSA, 2018), can also be

isolated from NEFTs (Gómez et al., 2016a; Petersen et al., 2016;

Jara et al., 2021), indicating an adaptation to live in these

hospital-related devices. Therefore, such strains would be good

candidates for the pre-coating of NEFTs in order to minimize

the adhesion of nosocomial pathogens. Some studies have

evaluated the efficacy of some LAB and bifidobacterial strains

to compete with potentially pathogenic species that share the
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same niche (Velraeds et al., 2000; Gomaa, 2013; Vuotto et al.,

2014; Bossa et al., 2017; Esaiassen et al., 2018; Jara et al., 2020).

Understanding species interactions in complex microbial

communities would be useful to develop probiotic-based

strategies specifically designed for the requirements of

hospitalized preterm infants. In this context, the main

objective of this study was to evaluate the interspecies

interactions in dual biofilms involving one LAB strain (either

L. salivarius 20SNG2 or L. reuteri 7SNG3) and one nosocomial

strain (either K. pneumoniae 9SNG3, S. marcescens 10SNG3, S.

aureus 45SNG3 or S. epidermidis 46SNG3).
Material and methods

Bacterial strains and growth conditions

Two lactic acid bacteria (LAB), L. salivarius 20SNG2 and L.

reuteri 7SNG3, and four nosocomial pathogens, (K.

pneumoniae 9SNG3, S. marcescens 10SNG3, S. epidermidis

46SNG3 and S. aureus 45SNG3) were used in this study. All

of them were isolated in a previous work from the inner surface

of NEFTs that were inserted into preterm infants for

approximately 48 h (Jara et al., 2021). De Man Rogosa and

Sharpe (MRS, Oxoid, Basingstoke, UK) medium was routinely

used for the growth of the LAB strains and Brain Heart

Infusion (BHI, Oxoid; Basingstone, UK) for the rest of the

strains. For cultivation, an isolated colony of each strain was

transferred into 10 mL of the corresponding culture media and

incubated at 37°C overnight. Then, cells were washed twice by

centrifugation at 17,000 × g for 10 min at 4°C, and suspended

into 10 mL of the same culture medium. The optical density at

600 nm (OD600) of the bacterial suspensions was adjusted to

0.1 (~107 cfu/mL).
Antimicrobial susceptibility testing

The inhibitory capacity of the LAB strains against the four

pathogenic strains was examined by an agar diffusion method.

First, an isolated colony of each LAB strain was inoculated into

tubes containing 10 mL of MRS and incubated overnight at

37°C. Then, 5 µL drops of these exponential phase LAB

suspensions were deposited on the surface of MRS agar plates

and incubated 24 h at 37°C. Finally, 9 mL tubes of soft BHI agar

[0.75% (w/v) agar] at 55°C were inoculated with 100 µL of a

bacterial suspension (~105 cfu/mL) of each pathogen and poured

into the plates previously seeded with the LAB drops. Once this

agar layer was cooled down, plates were incubated overnight at

37°C. Finally, the inhibition halos were measured. Experiments

were carried out in triplicate.
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Experimental system for
biofilm development

Biofilms were growing in a batch system called carousel

described by Orgaz et al. (2011). In this system, sixteen 22 x

22 mm microscope glass coverslips (Thermo Scientific,

Germany) were inserted vertically into the narrow radial slits

of a Teflon platform (6.6 cm diameter). The platform and its lid

were assembled by an axial stainless steel rod for handling and

placed into a 600 mL glass beaker (Figure S1). The whole system

was heat-sterilized as a unit. Sixty mL of the corresponding

culture medium were inoculated with 1 mL of the previously

obtained cellular suspensions (107 cfu/mL) to achieve a

calibrated starting concentration of ~105 cfu/mL. Monospecies

LAB biofilms were developed in MRS culture medium (in

parallel, LAB were grown in BHI to verify they reached similar

numbers in both media) and BHI was used for monospecies

biofilms of the four above mentioned pathogens. For dual

species biofilms, 1 mL of each microbial suspension was

inoculated to achieve a 1:1 proportion of both strains. In this

case, BHI was used as culture medium. The system was

incubated in aerobic conditions at 37°C for 48 h. Under these

conditions, the developed biofilms have a submerged area and an

air-liquid interphase (Figure S1).
Biofilm cell recovery and counting

During incubation, two diametrically opposed coverslips

were aseptically extracted from the platform with sterile

tweezers and washed into 0.85% (w/v) saline to remove weakly

attached cells. Both sides of the coverslip surface were

thoroughly scraped using a sterile swab that was finally

introduced into 1.5 mL of sterile peptone water. No adherent

cells were removed after 1 min by vortexing the tubes at high

speed. The resulting cellular suspension was decimally diluted in

sterile peptone water and 50 µL of each dilution were plated onto

MRS agar (selective counts of the LAB strains), MacConkey agar

(MCK, Oxoid; Basingstone, UK) (selective counts of either K.

pneumoniae 9SNG3 or S. marcescens 10SNG3-20) and/or Baird

Parker agar (BP, Pronadisa, Spain) (staphylococcal counts), and

incubated at 37°C for 24 h for enumeration.
Biomass determination

For the quantification of attached biomass (cells plus

matrix), biofilms were stained by immersion of the coverslips

into 4 mL of a crystal violet solution (1% w/v) (Sigma Aldrich,

Spain) for 2 min. This process was repeated twice, and the excess

of the colorant was removed with sterile MilliQ water before

drying. For image acquisition, coverslips were scanned using a
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HP Scanjet 300 at a resolution of 600 dpi. These samples were

afterward immersed into 4 mL of ethanol for removing the

stained biomass. The whole biomass was scraped from the

surfaces with a sterile cell scraper (APTACA, Italy) and

homogenized in ethanol. For biomass quantification, OD595nm

was measured in a spectrophotometer DIGILAB U-2800

(Hitachi, United Kingdom).
Visualization of biofilms by Scanning
Electron Microscopy

Scanning electron microscopy (SEM) images of the

developed biofilms were acquired at the facilities of the

Microscopy Center of the Complutense University of Madrid

(Spain). For this purpose, biofilms grown in coverslips

were firstly washed in 50 mL of saline solution 0.85% (w/v)

and then fixed by immersion in a solution containing

4% paraformaldehyde (Sigma Aldrich, Spain) and 3%

glutaraldehyde (Sigma Aldrich, Spain) in 0.1 M phosphate

buffer solution (PBS) (pH 7.2) for 12 h at 4°C. After this step,

samples were washed with MilliQ water and progressively

dehydrated by passage through a graded series of ethanol

solutions from 40% to 100%. Finally, the samples were critical

point dehydrated in a Leica CPD300 (Leica, Germany) using

carbon dioxide as the transition fluid and coated with gold-

palladium in an automated sputter coater Leica EM ACE200

(Leica, Germany). Samples were examined under a JEOL 6400

JSM electron microscope.
Visualization of biofilms by confocal laser
scanning microscopy

Developed biofilms were washed into a tube containing 50

mL of sterile saline solution 0.85% (w/v) and stained using

SYTO13 (Invitrogen™, Massachusetts, USA). Series of xy

images with a z-step of 1 µm when then acquired using a

Nikon ECLIPSE Ti microscope (Software NIS Elements,

4.5.1.01 edition) equipped with a Nikon C2 confocal scanning

module, 488 and 561 nm continuous lasers, emission bandpass

filters and an oil immersion 60X objective. Three-dimensional

reconstructions from z-stacks were carried out using IMARIS 8.0

software (Bitplane, Zürich, Switzerland). To calculate the

biovolume (mm3), the MeasurementPro module of this

software was used. For this, four images of two coupons of

each type of biofilm were analyzed.
Statistical analysis

At least four independent experiments were performed to

obtain mean values. Data were analyzed with Statgraphics
Frontiers in Cellular and Infection Microbiology 04
Centurion software (Statistical Graphics Corporation,

Rockville, Md., USA). One-way analysis of variance (ANOVA)

was carried out to determine whether samples were different or

not at a 95% confidence level (p< 0.05).
Results

Antimicrobial activity and structure of
LAB monostrain biofilms

Both LAB strains inhibited the growth of the four tested

pathogens. The antimicrobial activity of L. salivarius 20SNG2

was significantly greater than that of L. reuteri 7SNG3 (Figure 1).

Structural features of the biofilms formed independently by

each LAB strain after 48 h were analyzed by SEM and CLSM

(Figure 2). SEM images of L. reuteri 7SNG3 biofilms showed

densely packed cellular structures forming a multilayer network

that covered most of the surface (Figures 2A, B), whereas L.

salivarius 20SNG2 biofilms were characterized by the presence

of big clusters scattered all over the surface (Figures 2C, D). High

cellular density was accumulated in the liquid-air interphase

observing in some cases mucous aggregates. Biovolume values

for each strain were calculated from CLSM images, being on

average 3.41 (± 1.21) × 105 µm3 and 1.39 (± 0.27) × 105 µm3 for

L. reuteri 7SNG3 and L. salivarius 20SNG2, respectively

(Table 1). The maximum width values of L. reuteri 7SNG3

and L. salivarius 20SNG2 biofilms were 12 µm and 9

µm, respectively.
Formation of dual
LAB-pathogen biofilms

Figure 3 shows differential biofilm formation when K.

pneumoniae 9SNG3, S. marcescens 10SNG3, S. aureus 45SNG3

and S. epidermidis 46SNG3 were co-cultivated with either L.

salivarius 20SNG3 or L. reuteri 7SNG3. In general, the ecological

relationships in dual species biofilms were neutral or negative for

the four pathogenic strains, although the impact was different

depending on the LAB strain. In mixed biofilms with L.

salivarius 20SNG2, S. marcescens 10SNG3 and S. epidermidis

46SNG3 were slightly (but not significantly) inhibited whereas

there were statistically significant decreases (p<0.001) in the

attached viable population of K. pneumoniae 9SNG3 and S.

aureus 45SNG3 (log reductions of 1.32 and 1.52, respectively, at

24 h and 1.52 and 1.20, respectively, at 48 h) (Figure 3). In the

case of L. reuteri 7SNG3, the population of attached

K. pneumoniae 9SNG3 was also significantly decreased

(p<0.001) and, additionally, there was a strong reduction of

the attached population of S. epidermidis 46SNG3 (log

reductions of 3.83 after 24 h and 2.8 after 48 h, when

compared with its corresponding monospecies biofilm). In
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contrast, the ability of biofilm formation of S. marcescens

10SNG3 and S. aureus 45SNG3 was not affected by the

presence of L. reuteri 7SNG3 (Figure 3).

The biomass (cells + matrix) produced as a consequence of

the assayed interactions was also measured (Figure 4). Mixed

biofilms of both enterobacterial strains with L. salivarius

20SNG2 revealed a significant decrease in biomass values

compared with their respective monospecies biofilms, reaching

up to a 95% reduction in the case of S. marcescens 10SNG3

(p<0.001) and a 74% reduction in that of K. pneumoniae 9SNG3

(p<0.01). In contrast, significantly higher biomass values

(p<0.001) were observed in mixed biofilms of L. reuteri

7SNG3 with S. aureus 45SNG3.
Structure of dual LAB-pathogen biofilms

SEM and CLSM images of the biofilms formed by the four

pathogens, either when growing alone or when co-cultured with

one of the LAB strains are displayed in Figures 5 and 6,

respectively. SEM images of K. pneumoniae 9SNG3 and

S. marcescens 10SNG3 biofilms revealed the presence of small

aggregates (Figures 5A, D) whereas the cells in the

staphylococcal biofilms were glued in a mucoid matrix

forming grape-like structures, especially in the case of S.

aureus 45SNG3 (Figures 5G, J). Structural parameters of these

biofilms were obtained by CLSM imaging. Although both

enterobacterial strains shared a structural pattern, the biofilms

formed by K. pneumoniae 9SNG3 were three times denser and

thicker (maximum thickness: 20 µm; biovolume: 4.56 [± 0.53] ×

105 µm3) than those formed by S. marcescens 10SNG3

(maximum thickness: 6 µm; biovolume: 1.43 [± 0.07] × 105
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µm3) (Table 1). In contrast, the biofilms formed by the two

staphylococcal strains achieved much lower densities (4.37 [±

0.74] × 104 µm3 and 2.32 ± [0.21] × 104 µm3, for S. aureus

45SNG3 and S. epidermidis 46SNG3, respectively) and were

thinner (maximum width of 7 µm for S. aureus 45SNG3 and 3

µm for S. epidermidis 46SNG3) (Table 1). Structural differences

between these two species were also observed by CLSM imaging

(Figure 6). While S. epidermidis 46SNG3 colonized the surface

homogenously (Figure 6J), S. aureus 45SNG3 (Figure 6G)

tended to form dense clusters all over the surface.

When the four nosocomial strains were co-cultured with

one of the LAB strains, the structure of the dual-species

biofilms was deeply modified with respect to their respective

monospecies biofilms. In the presence of L. salivarius 20SNG2,

the cells of K. pneumoniae 9SNG3 and S. marcescens 10SNG3

lost their capacity to spread all over the surface (Figures 6C, F).

Indeed, the biofilm landscape changed from a rather

homogeneous cell tapestry to the presence of areas with

scattered cells or small cell clusters (Figure 5). The maximum

width of K. pneumoniae 9SNG3-L. salivarius 20SNG2 biofilms

(20 µm) was almost half reduced compared to the monospecies

biofilm of K. pneumoniae 10SNG3 (13 µm) (Table 1). This

phenomenon was also observed when these two pathogens

were co-cultured with L. reuteri 7SNG3. In L. reuteri 7SNG3-K.

pneumoniae 9SNG3 biofilms (Figure 5B), the ability of

K. pneumoniae 9SNG3 to colonize the surface in a

homogeneous manner was lost. Instead, areas with chains of

lactobacilli segregated from scattered K. pneumoniae 9SNG3

cells were observed. A similar pattern was observed in the case

of L. reuteri 7SNG3-S. marcescens 10SNG3 biofilms (Figure 5E)

although in this case S. marcescens cells remained closer. In

general, co-cultured of these enterobacterial strains with L.
FIGURE 1

Antimicrobial activity (mm) of L. salivarius 20SNG2 (black bars) and L. reuteri 7SNG3 (grey bars) against the selected strains of S. marcescens,
K. pneumoniae, S. aureus and S. epidermidis. Asterisks show statistical differences between the LAB effect on these strains: * (p < 0.05), and
*** (p < 0.001).
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reuteri 7SNG3 reduced the thickness of the observed

structures, with a maximum width average of 12 µm for the

L. reuteri 7SNG3-K. pneumoniae 9SNG3 mix and 6 µm for the

L. reuteri 7SNG3-S. marcescens 10SNG3 one (Table 1).

S. aureus 45SNG3 and L. salivarius 20SNG2 cells were close

to each other when these two strains were co-cultured. In some

areas, small cocci aggregates were connected to elongated

lactobacilli cells through short mucoid threads of matrix. This

phenomenon did not happen with S. epidermidis 46SNG3

(Figures 5L, 6L), whose ability to colonize the surface was

drastically reduced in the presence of L. salivarius 20SNG2.

Both L. reuteri 7SNG3 and S. aureus 45SNG3 cells formed
Frontiers in Cellular and Infection Microbiology 06
aggregates when they were co-cultured (Figure 5H). Due to

this association, S. aureus 45SNG3 cells lost its ability to spread

all over the surface, being entrapped into mucoid matrix lumps

and part ia l ly surrounded by lactobaci l l i ce l l s . In

L. reuteri 7SNG3-S. epidermidis 46SNG3 biofilms, both species

formed large aggregates surrounded by a large amount of matrix

(Figure 5K). Some of the cells seemed to be damaged as they

showed a distorted morphology (Figure 5K). Biovolume values

of L. reuteri 7SNG3-S. aureus 45SNG3 and L. reuteri 7SNG3-

S. epidermidis 46SNG3 biofilms were approximately two and six

times higher, respectively, when compared with their

corresponding monospecies biofilms (Table 1).
B

C D

E F

A

FIGURE 2

Representative images of biofilms (48 h) of L. reuteri 7SNG3 obtained by SEM at 1,000× (A) and 3,000× (B), and by CLSM (E). Representative
images of biofilms (48 h) of L. salivarius 20SNG2 biofilms obtained by SEM at 1,000× (C) and 3,000× (D), and by CLSM (F). For CLSM image
acquisition, cells (in green) were stained with SYTO 13. CLSM scale bar: 50 µm.
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Discussion

Biofilms can be found colonizing a plethora of ecological

niches forming multispecies communities. Interactions among

species and strains in these communities can be neutral,

antagonistic or synergistic, and they can control the

composition and spatial distribution of the species inside the
Frontiers in Cellular and Infection Microbiology 07
biofilm (Makovcova et al., 2017; Guéneau et al., 2022). In

previous works, we showed that the inner surface of NEFTs

used for preterm feeding are mostly colonized by some species of

the genus Staphylococcus and others belonging to the Family

Enterobacteriaceae while some LABmay also appear, although at

a much lower frequency and abundance (Gómez et al., 2016a;

Jara et al., 2021). LAB strains well adapted to the inner NEFT
TABLE 1 Biovolume (µm3) and maximum thickness (µm) of monospecies and dual-species biofilms of the microbial strains combinations used in
this work.

Type of biofilm Strains Biovolume (µm3) Maximun thickness (µm)

Monospecies L. reuteri 7SNG3 3.41 ± [1.21] × 105 12 ± 2

L. salivarius 20SNG2 1.39 ± [0.27] × 105 9 ± 1

K. pneumoniae 9SNG3 4.56 ± [0.52] × 105 20 ± 1

S. marcescens 10SNG3 1.43 ± [0.07] × 105 6 ± 0

S. aureus 45SNG3 4.63 ± [2.47] × 104 7 ± 3

S. epidermidis 46SNG3 2.32 ± [2.09] × 104 3 ± 1

Dual-species L. reuteri 7SNG3 + K. pneumoniae 9SNG3 5.83 ± [2.27] × 105 12 ± 2

L. reuteri 7SNG3 + S. marcescens 10SNG3 1.33 ± [0.56] × 105 6 ± 2

L. reuteri 7SNG3 + S. aureus 45SNG3 1.11 ± [1.06] × 105 10 ± 5

L. reuteri 7SNG3 + S. epidermidis 46SNG3 1.36 ± [0.12] × 105 10 ± 0

L. salivarius 20SNG2 + K. pneumoniae 9SNG3 4.37 ± [5.91] × 105 13 ± 3

L. salivarius 20SNG2 + S. marcescens 10SNG3 1.24 ± [0.51] × 105 8 ± 3

L. salivarius 20SNG2 + S. aureus 45SNG3 2.94 ± [1.64] × 104 4 ± 1

L. salivarius 20SNG2 + S. epidermidis 46SNG3 5.66 ± [5.93] × 104 6 ± 3
Both parameters are means ± SD of data from 8 images obtained after reconstructing z-stacks (4 image stacks from 2 independent biofilm samples).
FIGURE 3

Changes in viable attached cell population (log10 cfu/cm2) in dual-species biofilms. Red and green bars mean log reduction or increase
compared with monospecies biofilms of the respective pathogenic strains. Filled and lined bars represent 24 h and 48 h samples, respectively.
Asterisks show statistical differences between monospecies pathogenic biofilms and dual-species biofilms with one of the LAB strains: * (p <
0.05) and *** (p < 0.001). † indicates statistical differences between 24 h and 48 h samples (n=4).
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environment may be good candidates for coating of these

devices in order to minimize the risks associated to the

presence and proliferation of relevant nosocomial pathogens.

Both LAB strains, L. salivarius 20SNG2 and L. reuteri

7SNG3, developed well-structured biofilms as revealed by SEM

and CLSM imaging. Although heterogeneous structures in LAB

biofilms have been reported (Boles et al., 2004; Neu and

Lawrence, 2017; Jara et al., 2020), our strains showed a rather

homogenous colonization pattern and were able to cover almost

all the surfaces used as adhesion substrates. This colonization

was particularly intense at the liquid-air interphase, where

desiccation phenomena occur, and it was accompanied by an

increase of OD values, suggesting a large production of

extracellular matrix that helps cells to stay firmly attached to

the surface (Bowen et al., 2018; Karygianni et al., 2020). Such

interphases are common in the inner surfaces of NEFTs since the

food circulation is discontinuous. In these cases, the feeds (milk

or formula) are pumped through the NEFTs and, although most

of them reach the stomach, some food residues remain inside the

tubes. As preterm are in a supine position, residual food is

generally blanketing the bottom part of the NEFT whereas its top

part remains empty. This fact can promote adhesion and

growing of either the beneficial or pathogenic strains that may

contact with these devices.

In order to gain insight into the ecological relationships that

prevail when LAB strains share the same niche with nosocomial

pathogens, we developed dual-species biofilms combining one of

our two LAB strains with one of the four pathogenic strains
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selected in this study. In terms of cellular density, LAB strains

had a neutral or negative impact on the Gram-negative species.

Several studies have demonstrated the inhibitory effect of some

LAB strains against a wide variety of Gram-negative bacteria,

including Pseudomonas aeruginosa, Escherichia coli, Klebsiella

spp. and Enterobacter spp. (Rybalchenko et al., 2015; Kang et al.,

2017; Shokri et al., 2018; Merino et al., 2019; Wu et al., 2022).

LAB have developed numerous strategies for competing with

other bacteria in natural environments. Among them, the

synthesis of antimicrobial compounds with a wide

antimicrobial spectrum (organic acids, biosurfactants and

bacteriocins, among others) must be highlighted (Salas-Jara

et al., 2016; Kang et al., 2017; Englerová et al., 2018; Merino

et al., 2019; Guéneau et al., 2022). Competition between LAB and

pathogenic species for receptor and nutrients has also been

described (Guillier et al., 2008). However, these studies were

carried out in liquid media where species interactions are not

necessarily similar to those observed in a biofilm model. For

in s t ance , Kang e t a l . ( 2017 ) demons t r a t ed tha t

Limosilactobacillus fermentum and L. salivarius strains had

antimicrobial activity towards methicillin-resistant S. aureus

(MRSA) strains in a planktonic co-culture assay whereas only

L. salivarius retained antimicrobial activity in a dual species

biofilm simulation. Similar studies have shown that the use of

certain strains of Lacticaseibacillus casei, L. reuteri ,

Lactiplantibacillus plantarum or Lentilactobacillus kefiri can

reduce the colonization ability of Streptococcus mutants,

Staphylococcus spp., E. coli and Salmonella spp. to the surface
FIGURE 4

Percentage of biomass variation in dual-species biofilms. Red and green bars mean biomass reduction and biomass increasing compared with
monospecies biofilms of the respective pathogenic strains. Filled and lined bars represent 24 h and 48 h samples, respectively. Asterisks show
statistical differences between monospecies pathogenic biofilms and dual-species biofilms with both LAB: * (p < 0.05), ** (p < 0.005) and
*** (p < 0.001). † indicate statistical differences between 24 h and 48 h samples (n=4).
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of teeth, food-contact surfaces and medical devices

(Rybalchenko et al., 2015; Wu et al., 2015; Kang et al., 2017;

Shokri et al., 2018; Wasfi et al., 2018; Merino et al., 2019; Wu

et al., 2022).

Loss in attached cell density due to interspecies interaction

when the enterobacterial strains were forming dual biofilms

with the LAB strains was confirmed by a significant reduction

in biomass (cells + EPS) compared with their respective

monospecies biofilms. Such reduction may be the result of a

lower cell density and/or a lower synthesis of EPS, which is

considered as a virulence factor when produced by pathogenic

bacteria (Lepargneur and Rousseau, 2002; Salas-Jara et al.,

2016; Jara et al., 2020). It has been already reported that S.

mutans produced less EPS when forming biofilms with two

strains of L. salivarius (Wu et al., 2015). In fact, the expression

of some virulence factors can be modulated due to interspecies

interactions (Høiby et al., 2011; Karygianni et al., 2020). In this
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sense, it has been described that biofilm formation by S.

mutants ATCC 25175 and Gardenella vaginalis ATCC49145

are impaired in the presence of LAB strains because of the

downregulation of the genes gtfs and ftf (glucosyltransferase

and fructosyltransferase-related genes) (Wasfi et al., 2018; Qian

et al., 2021). Similarly, the genes gtfB, gtfC and ftf of S. mutans

22 and S. mutans ATCC 35668 were downregulated by

biosurfactants produced by Lacticaseibacillus rhamnosus

(Tahmourespour et al., 2019). Moreover, L. casei and L.

acidophilus can modulate the expression of luxS, a gene

related to biofilm formation and matrix production in a

large number of microorganisms (Lemos et al., 2004; Ahmed

et al., 2014). Therefore, our LAB strains and/or their

metabolites could have interfered with the ability of K.

pneumoniae 9SNG3 and S. marcescens 10SNG3 to form

dense biofilms by reducing the amount of matrix that they

produce when they are alone.
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FIGURE 5

Representative SEM images (3,000×) of monospecies biofilms (48 h) of K. pneumoniae 9SNG3 (A), S. marcescens 10SNG3 (D), S. aureus
45SNG3 (G) and S. epidermidis 46SNG3 (J). Representative SEM images of dual-species biofilms of K. pneumoniae 9SNG3 (B), S. marcescens
10SNG3 (E), S. aureus 45SNG3 (H) and S. epidermidis 46SNG3 (K) with L. reuteri 7SNG3. Representative SEM images of dual-species biofilms of
K. pneumoniae 9SNG3 (C), S. marcescens 10SNG3 (F), S. aureus 45SNG3 (I) and S. epidermidis 46SNG3 (L) with L. salivarius 20SNG2.
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These results were confirmed by SEM imaging. The dual

species biofilms of K. pneumoniae 9SNG3 and S. marcescens

10SNG3 with any of the LAB strains showed that both species

were sharing the same niche but did not tend to aggregate. In

addition, the biofilm thickness and biovolume of the biofilms

formed by the enterobacterial strains in pure monocultures

decreased when they interacted with the LAB strains.

Competition between microorganisms that are sharing the
Frontiers in Cellular and Infection Microbiology 10
same surface can lead to structural changes that favored one

species over others (Graver and Wade, 2011; Makovcova et al.,

2017). SEM images showed that the cells of some of the

pathogenic strains displayed an abnormal morphology,

suggesting the ability of the LAB strains to damage and/or kill

potential competitors. This finding has already been described

for the interactions between L. salivarius CGMCC207 and S.

aureus (Li et al., 2021).
B C

D E F

G H I

J K L

A

FIGURE 6

Representative CLSM images of monospecies biofilms (48 h) of K. pneumoniae 9SNG3 (A), S. marcescens 10SNG3 (D), S. aureus 45SNG3 (G) and
S. epidermidis 46SNG3 (J). Representative CLSM images of dual-species biofilms of K. pneumoniae 9SNG3 (B), S. marcescens 10SNG3 (E), S.
aureus 45SNG3 (H) and S. epidermidis 46SNG3 (K) with L. reuteri 7SNG3. Representative CLSM images of dual-species biofilms of K. pneumoniae
9SNG3 (C), S. marcescens 10SNG3 (F), S. aureus 45SNG3 (I) and S. epidermidis 46SNG3 (L) with L. salivarius 20SNG2. Scale bar: 50 µm.
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It must be highlighted that we observed a positive

relationship between L. reuteri 7SNG3 and S. aureus 45SNG3

(accompanied by a stimulation of matrix production by the

staphylococcal strain) and, also, between L. salivarius 20SNG3

and S. epidermidis 46SNG3. This phenomenon has been

previously described and it must be taken into account when

selecting strains for practical applications. Jara et al. (2020)

demonstrated that a surface conditioned by a preformed

probiotic biofilm improved Listeria monocytogenes Scott A

adhesion. Moreover, SEM images showed these species were

totally interconnected to each other (forming aggregates) and

trapped into an amorphous matrix. This type of amorphous

matrix has been previously described in S. aureus biofilms that

are enriched in exopolysaccharides (Wang et al., 2015;

Makovcova et al., 2017).

Currently, the use of some LAB strains to minimize the

colonization of surfaces by potentially pathogenic species is

gaining attention (Stone et al., 2020; D’Accolti et al., 2022).

The colonization of clinical devices, as NEFTs, by strains of K.

pneumoniae and S. marcescens is especially relevant as these

microorganisms are frequently associated with outbreaks in

NICUs (Marchant et al., 2013; Escribano et al., 2019; Moles

et al., 2019; Chen et al., 2020; Hassuna et al., 2020; Joubert et al.,

2022). The knowledge provided by this study would guide the

selection of potentially probiotic strains that are already sharing

the same niche with the pathogens for future applications in

Neonatology. These strains would be supplied together with the

food enabling the establishment of a healthier microbial

community inside NEFTs.
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