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Vaginal flora plays a vital role in human papillomavirus (HPV) infection and

progression to cancer. To reveal a role of the vaginal flora in HPV persistence

and clearance, 90 patients with HPV infection and 45 healthy individuals were

enrolled in this study and their vaginal flora were analyzed. Women with HPV

infection were treated with Lactobacillus in the vaginal environment as a

supplement to interferon therapy. Our results indicated that patients with high

risk HPV (Hr-HPV) 16/18 infection had a significantly higher alpha diversity

compared with the healthy control (p < 0.01), while there was no significant

difference between the non-Hr-HPV16/18 group and the controls (p > 0.05).

Patients with multiple HPV infection had insignificantly higher alpha diversity

compared with single HPV infection (p > 0.05). The vaginal flora of patients with

HPV infection exhibited different compositions when compared to the healthy

controls. The dominant bacteria with the highest prevalence in HPV-positive

group were Lactobacillus iners (n = 49, 54.44%), and the top 3 dominant bacteria

in the HPV-persistent group were Lactobacillus iners (n = 34, 53.13%), Sneathia

amnii (n = 9, 14.06%), and Lactobacillus delbrueckii (n = 3, 4.69%). Patients with

HPV clearance had significantly lower alpha diversity, and the flora pattern was

also different between groups displaying HPV clearance vs. persistence. The

patients with persistent HPV infection had significantly higher levels of

Bacteroidaceae, Erysipelotrichaceae, Helicobacteraceae, Neisseriaceae,

Streptococcaceae (family level), and Fusobacterium, Bacteroides, Neisseria,

and Helicobacter (genus level) than patients who had cleared HPV (p < 0.05).

Importance: Our study revealed differences in vaginal flora patterns are

associated with HPV persistence and its clearance. Interferon plus probiotics

can greatly improve virus clearance in some patients. Distinguishing bacterial

features associated with HPV clearance in patients would be helpful for early

intervention and reverse persistent infection.

KEYWORDS

human papillomavirus, vaginal microbiota, lactobacillus, 16S ribosomal DNA
sequencing, probiotics
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Introduction

Human papillomavirus (HPV) infection is one of the most

common sexually transmitted infections, and is also the leading

cause of cervical cancers (Lehtinen et al., 2019). Up to now, 396

distinct HPV subtypes have been reported (Bzhalava et al.,

2014). Genital HPVs can be subdivided into high- and low-

risk types, with 13 being identified as high-risk HPVs (Hr-

HPVs) (Walboomers et al., 1999), and the two most common

cervical Hr-HPVs are HPV16 and 18. Most low-risk types of

HPV infections resolve over time. However, persistent cervical

Hr-HPV infections play a crucial role in the development of

cervical cancer (Schiffman et al., 2016). HPV infection is actively

involved in cervical epithelial transformation (Wilkinson et al.,

2015; Curty et al., 2017). Although approximately 70% of

cervical cancer cases worldwide are caused by HR-HPV

(Clifford et al., 2003; Oliveira and Schirger, 2003; Du et al.,

2011; Chan et al., 2019), not all people with HPV infection

actually end up developing cancer and only a small percentage of

Hr-HPV infections develop into cervical cancer, indicating that

virus infection is not sufficient for cancer development,

additional factors may involve in HPV inducing cervical

cancer (Usyk et al., 2020).

Recent studies have shown factors, including integrity of

epithelial surface, mucosal secretions, immune regulation, and

the local microbiota, play a part in the development of HPV

infection to cancer (Pyeon et al., 2009; Fernandes et al., 2015;

Schiffman et al., 2016). More than 200 bacterial species comprise

the vaginal flora of healthy women, which are mainly dominated

by one of the four most prevalent Lactobacillus species:

Lactobacillus crispatus (L. crispatus), Lactobacillus iners (L. iners),

Lactobacillus gasseri (L. gasseri), and Lactobacillus jensenii (L.

jensenii). Lactobacillus spp. form barriers against colonization of

bacterial vaginosis (BV)-associated bacteria by maintaining a low

pH (Mastromarino et al., 2014; Breshears et al., 2015). It is essential

for maintaining cervical epithelial barrier function which inhibits

infection of basal keratinocytes by HPV (Borgdorff et al., 2016). BV

is also connected with an increase in the production of epithelial

lining-degrading enzymes that can allow the initiation of HPV

infection (Kabuki et al., 1997; Gillet et al., 2012; Stoyancheva et al.,

2014). Therefore, vaginal Lactobacillus spp. play a significant

impact in the persistence or regression of the virus and

subsequent disease (Petrova et al., 2013; Brotman et al., 2014;

DiGiulio et al., 2015; Mitra et al., 2016). Invasive cervical cancer

patients exhibit decreased Lactobacillus spp., increased

Fusobacterium spp., and increased overall bacterial diversity and

richness (Lin et al., 2020). Fusobacterium predominance is more

prevalent in individuals with invasive cervical cancer, where it is

found to be related with elevated levels of IL-4 and transforming

growth factor (TGF)-b1 mRNA, indicating its immunosuppressive

effect in the microenvironment of the invasive cervical cancer

(Audirac-Chalifour et al., 2016). Microbiota dysbacteriosis might

increase the apoptosis of cancer cells or might activate
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immunosuppressive cells, such as dendritic and Treg cells, and

cytokines (Nami et al., 2014; Nami et al., 2014; Eslami et al., 2016;

Wang et al., 2018). Therefore, dysbacteriosis has lately been

associated with cancer progression and treatment responses

(Chang and Parsonnet, 2010).

The function of the vaginal flora in HPV-driven disease has

been intensively explored. A previous study has found changes

in the female genital tract microbial flora to be related to HPV

infection and cervical cancer (Nieves-Ramıŕez et al., 2021).

Sneathia and Prevotella enrichment is highly related to HPV

infection and contributes to HPV persistent infection (Di Paola

et al., 2017; Łaniewski et al., 2018; Brusselaers et al., 2019). Both

BV and cervical intraepithelial neoplasia (CIN) show a similar

characteristics of vaginal flora, which present a decrease in

Lactobacilli abundance, increased diversity and an increase in

the predominance of abnormal anaerobic bacteria (Gillet et al.,

2012). Disruption of protective microbiota colonization can lead

to a weakening of defense mechanisms. Although the field of

microbiome about HPV-driven cancers is emerging rapidly,

with most studies focusing on characterizing bacterial profiles,

a possible association between vaginal flora composition and

HPV clearance or progression to cervical dysplasia and cancer

has yet to be shown (Mitra et al., 2016; Shannon et al., 2017;

Godoy-Vitorino et al., 2018; Lin et al., 2020; Norenhag et al.,

2020; Mitra et al., 2020). Given the part of low Lactobacillus

cases, more detailed community state types (CSTs) of bacteria in

addition to Lactobacillimight be helpful for vaginal microbiome

studies (Cheng et al., 2020).

It has been reported that a vaginal flora dominated by non-

Lactobacillus species is connected with the risk of HPV infection

and persistence (Lee et al., 2013; Mitra et al., 2016; Shannon et al.,

2017; Norenhag et al., 2020). Some Lactobacillus species like L.

gasseri, might be helpful for the clearance of HPV (Brotman et al.,

2014; Brusselaers et al., 2019). The probiotic can alter the tumor

microenvironment. When Lactobacillus casei-containing probiotics

were administered to HPV-positive women, enhanced HPV

clearance were observed (Verhoeven et al., 2013). Oral probiotics

might be helpful to preserve normal vaginal flora during antibiotic

therapy (Macklaim et al., 2015), but its efficacy varies widely, and

may be influenced bymany factors, including interruption from the

gut local microenvironment and colonization of bacteria. At the

very beginning, limited data are available (Li et al., 2020). Probiotics

directly applied to the vaginal environment may play a more direct

role in vaginal flora, but little information has been obtained in this

field. A deeper understanding of vaginal flora will eventually aid in

the development of practical and low-cost treatments to reduce the

HPV infection (Li et al., 2020). Given the lack of research in this

area, more studies are required to elucidate the effect of probiotic

therapy on specific microbiota in patients with HPV infection. In

this study, vaginal probiotics (mainly lactobacilli) were used to treat

the patients with HPV infection, and the entire composition of

vaginal microbiota was studied. We also discuss the impact of

vaginal flora on HPV clearance.
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Methods

Patients

A participant was eligible if she (a) was 18-60 years old without

HPV vaccination, (b) had not undergone a gynecological

reproductive surgery such as cervical conization, hysterectomy,

appendectomy, hysteroscopy, etc, (c) had no vaginal flushing and

had abstained from sex for at least 72 h, (d) had no history of vaginal

medication within 3 days, and no systematic use of antibiotics or

antifungal drugs, probiotics, antibiotics or glucocorticoids within 1

month, and (e) was HPV-positive upon initial screening. The 21

HPV GenoArray Diagnostic Kit (Chaozhou Hybribio Biochemistry

Ltd, China) was used to conducted HPV typing. Genotypes of 21

HPV genotypes (6, 11, 16, 18, 31, 33, 35, 39, 42, 43, 44, 45, 51, 52, 53,

56, 58, 59, 66, 68 and CP8304 (81)) were detected. Healthy women

were enrolled from the physical examination center of Chenghai

district people’s hospital; all were HPV-negative. Exclusion criteria:

(a) had a vaginal lavage or had sexual activity within 72 hours, (b)

used probiotic bacteria, antibiotics, or corticosteroids within the past

30 days, (c) with cancer, diabetes, autoimmune diseases and other

serious diseases that may affect the results of this study, (d)

was pregnant.

A total of 135 participants were included on the basis of the

inclusion and exclusion criteria. All procedures for this study

were approved by the Research Ethics Committee of the First

Affiliated Hospital of Shantou University Medical College

(No. 201561).
Sample collection, DNA extraction, and
16S sequencing

Cervical specimens were collected from female patients

between January 2016 and June 2018.

Genomic DNA was extracted from the samples by using the

CTAB (Cetyltrimethylammonium Bromide) method. After the

detection of purity and concentration of genomic DNA, using

genomic DNA diluted with sterile water to 1 ng/mL, specific
primers with barcode, New England Biolabs Phusion® High

Fidelity PCR Master Mix with GC Buffer (New England Biolabs,

USA) and Phusion® High-Fidelity DNA polymerase (New

England Biolabs, USA) were used for PCR. After mixing in

equal amounts according to the PCR product concentration,

electrophoresis purification was performed on a 1× TAE 2%

agarose gel, shearing to obtain the band of interest, and the

sheared target bands were recovered using a DNA purification

kit (DP214, Tiangen, China). The construction of library was

performed using Ion Plus Fragment Library Kit 48 (Thermo

Fisher, USA), which was sequenced using an Ion S5™XL

(Thermo Fisher, USA) after Qubit quantification and

library detection.
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Bioinformatics analyses

Low-quality data was removed by using Cutadapt (V1.9.1)

(Langille et al., 2013). Then barcode and primer sequences were

trimmed. Clean reads were obtained after detecting and

removing chimeric sequences (Rognes et al., 2016) from raw

data by using VSEARCH (Martin, 2011). All clean reads of all

samples were clustered as Operational Taxonomic Units (OTUs)

using the UPARSE algorithm (UPARSE v7.0.1001) (Haas et al.,

2011) by default with 97% identity. The annotation of OTUs

representative sequences were performed by using Mothur

method and SSUrRNA database (Wang et al., 2007) of

SILVA132 (Edgar, 2013) (threshold was set at 0.8~1) obtain

species information and species abundance at each taxonomic

level. MUSCLE (Quast et al., 2013) (Version 3.8.31), software

was used to do fast sequence alignment and then the process of

homogenization was conducted. ALPHA diversity indices and

the UniFrac distance were calculated by using QIIME software

(Version 1.9.1) (Caporaso et al., 2010).
Statistical analyses

Alpha diversities were visualized in the box plot using the

package “ggplot2” in R software (Version 4.3.0). Principal co-

ordinates analysis (PCoA) was conducted on basis of the

unweighted UniFrac distance matrix using “vegan”, “Parseq”, and

“ggplot2” packages. PERMANOVA analysis was conducted using

the “vegan” package. Linear discriminant analysis Effect Size (LEfSe)

analysis was done by using LEfSe software, with the default value of

the linear discriminant analysis (LDA) score being 2. The Chord

diagram was performed using the “circlize” package in R. Kruskal-

Wallis tests were employed to analyze differences in microbial a
diversity among multiple groups. If p < 0.05, Dunn’s Test was used

to perform pairwise comparisons between each independent group.

Measurement data for demographic and clinical characteristics

were analyzed using the Kruskal-Wallis test, while the ordinal

categorical variable was analyzed using the Wilcoxon rank-sum

test. The association between HPV and age, cleaning degree of the

vagina, menopause, contraception, non-menstrual bleeding, the

number of pregnancies, births, miscarriages, and the number of

white blood cells were analyzed by Spearman rank correlation

analysis in SPSS 26.0.
Results

Patient’s characteristics

In total, 135 participants were included in the research (Figure

S1), including 45 normal controls and 90 patients with HPV

infection, in which the HPV subtypes with the highest
frontiersin.org
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frequencies were HPV16 (22.22%, n = 20), HPV51 (16.67%, n =

15), HPV53 (16.67%, n = 15), and HPV52 (15.56%, n = 14). The

samples were divided into two groups based on whether the

infected HPV type was HPV16/18 (Hr-HPV16/18, n = 28) or

was non-HPV16/18 (non-Hr-HPV16/18, n = 62). The morbidity of

HPV16 was 71.43% (n = 20), and for HPV18 was 28.57% (n = 8) in

the Hr-HPV16/18 group, while in the non-Hr-HPV16/18 group,

the main types were HPV51, HPV52, and HPV53, and their

morbidities were 22.58% (n = 14), 19.35% (n = 12), and 20.97%

(n = 13), respectively (Figure 1). The difference in age among the

three groups (controls, 36 (IQR = 17); Hr-HPV16/18, 37 (IQR =

18); non-Hr-HPV16/18, 41.5 (IQR = 10.75), p > 0.05) was not

statistically significant. Only a small number of women in the three

groups were in menopause; the ratio of women in menopause was

13.33% (n = 6) in the controls, 7.14% (n = 2) in Hr-HPV16/18, and

17.74% (n = 11) in non-Hr-HPV16/18 patients, respectively. But

patients with non-menstrual bleeding had significant differences

among the Hr-HPV16/18, non-Hr-HPV16/18, and the controls (p

< 0.01). No positive cases of BVwere found, but some cases (n = 14)

have tested positive for Ureaplasma urealyticum, M. hominis, and

Chlamydia trachomatis, and only one positive case of

trichomoniasis. Other parameters, including squamous

intraepithelial disease (SIL) grade, menopause, and IUD/tubal

ligation/condom, the number of pregnancies, births, miscarriages,

and white blood cells, were measured and showed no significant

difference (p > 0.05). Detailed demographics and clinical

characteristics of participants were showed in Table 1.
Vaginal bacterial diversity in patients with
HPV and non-HPV infection

High-quality classifiable 16S ribosomal DNA sequences were

acquired, with 77,391 clean reads per sample. Bacterial

communities and their alpha diversity were measured. Our results

showed that there was a significantly higher observed species, and

ACE and Chao1 scores in the Hr-HPV16/18 groups than those in

controls (Figure 2), while there was no significant difference in

Shannon and Simpson indices between the two groups (p > 0.05),

and there was no significant difference between the non-Hr-
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HPV16/18 groups and the controls (p > 0.05). These results show

a higher microbial diversity in the Hr-HPV16/18 groups. No clear

separation of samples between the HPV-uninfected and infected

groups was showed in PCoA analysis, indicating there were no

significant similarity differences in microbial composition among

the three groups (Figure 3).
Comparison of bacteria at the phylum,
genus, and species levels between the
HPV-infected group and controls

In vaginal flora, Firmicutes was the most predominant phylum in

the healthy individuals and HPV-infected patients, followed by

Proteobacteria, Actinobacteria, Fusobacteria, and Bacteroidetes. There

was no significant difference between the HPV-infected group and

control. Then, we characterized the differences in vaginal flora among

the three groups at the genus level. The top 10 bacteria in the three

groups (Hr-HPV16/18 vs. non-Hr-HPV16/18 vs. controls) were:

Lactobacillus spp. (46.47% vs. 43.46% vs. 39.04%, p > 0.05);

Gardnerella spp. (6.60% vs. 12.69% vs. 17.07%, p > 0.05); Sneathia

spp. (6.15% vs. 7.59% vs. 5.94%, p > 0.05); Prevotella spp. (2.61% vs.

4.73% vs. 4.17%, p > 0.05); Klebsiella spp. (2.83% vs. 2.93% vs. 3.62%, p

> 0.05); Streptococcus spp. (3.38% vs. 1.48% vs. 3.94%, p > 0.05);

Enterococcus spp. (4.56% vs.1.49% vs. 1.48%, p > 0.05); Staphylococcus

spp. (3.43% vs. 0.83% vs. 1.39%, p > 0.05); Atopobium spp. (0.59% vs.

1.51%, vs. 0.89%, p < 0.05), and Sphingomonas spp. (3.36%, vs. 0.01%

vs.0.02%, p < 0.05) (Figures 4, 5).

At the bacterial species level, the top 10 species in three

groups (Hr-HPV16/18 vs. non-Hr-HPV16/18 vs. controls) were:

L. iners (26.29% vs. 30.16% vs. 23.27%, p > 0.05); Sneathia amnii

(S. amnii) (5.08% vs. 4.69% vs. 2.11%, p < 0.05); Enterococcus

faecalis (E. faecalis) (3.37% vs. 1.34%, vs. 1.38%, p > 0.05);

Sneathia sanguinegens (S. sanguinegens) (0.46% vs. 1.29% vs.

1.56%, p > 0.05); L. gasseri (0.09% vs. 1.33% vs. 1.72%, p < 0.05);

Staphylococcus haemolyticus (S. haemolyticus) (2.38% vs. 0.71%

vs. 0.91%, p > 0.05); Atopobium vaginae (A. vaginae) (0.59% vs.

1.51% vs. 0.88%, p < 0.05); Prevotella amnii (P. amnii) (0.06% vs.

1.34% vs.1.34%, p>0.05); Acinetobacter nosocomialis (A.

nosocomialis) (0.02%; vs. 0.67% vs. 2.08%, p > 0.05), and
FIGURE 1

Prevalence of different HPV subtypes in infected groups. Hr-HPV16/18 (n = 28): HPV16/18 high-risk infection group; non-Hr-HPV16/18 (n = 62):
non-HPV16/18 high-risk infection group; HPV: HPV-infected group (n = 90).
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Prevotella bivia (P. bivia) (0.23% vs.0.64% vs.1.79%, p <

0.05) (Figure 6).
Features of vaginal microflora in
individuals infected with single, dual,
or multiple HPVs

We divided patients into three groups: infected by a single

HPV type (n = 56), infected by two HPV types (n = 26), and
Frontiers in Cellular and Infection Microbiology 05
infected by multiple HPV types (n = 8). We further analyzed

whether vaginal microbial diversity would be influenced by the

number of infected HPV types. Women infected with multiple

HPV types tended to have higher alpha diversity than those

infected with a single HPV type, but the difference was not

statistically significant (p > 0.05) (Figures 7, 8). To identify

bacteria specifically linked with HPV infection status, LDA with

effect size (LEfSe) modeling was conducted (Figure 9). The larger

LDA indicated the greater difference of the species. In the single

HPV type group, the predominant species was Klebsiella (p <
TABLE 1 Descriptive characteristics of all samples included in the study.

Variable Subcategory Controls (n = 45) Hr-HPV16/18 (n = 28) Non-Hr-HPV16/18 (n = 62) p

Age, yrs 36 (IQR = 17) 37 (IQR = 18) 41.5 (IQR = 10.75) 0.134

SIL grade Low grade 2 (4.44%) 1 (3.57%) 9 (14.52%) 0.119

High grade 1 (2.22%) 4 (14.29%) 6 (9.68%)

ASC-US 2 (4.44%) 10 (35.71%) 23 (37.10%)

ASC-H 1 (2.22%) 4 (14.29%) 0 (0.00%)

Menopause YES 6 (13.33%) 2 (7.14%) 11 (17.74%) 0.405

NO 39 (86.67%) 26 (92.86%) 51 (82.26%)

Non-menstrual bleeding YES 30 (66.67%) 9 (32.14%) 20 (32.26%) <0.001

NO 15 (33.33%) 19 (67.86%) 42 (67.74%)

IUD/Tubal ligation/condom YES 20 (44.44%) 10 (35.71%) 24 (38.71%) 0.318

NO 25 (55.56%) 18 (64.29%) 38 (61.29%)

Trichomonad YES 1 (2.22%) 0 (0.00%) 0 (0.00%)

NO 44 (97.78%) 28 (100.00%) 62 (100.00%)

No. of pregnancies 4 (IQR = 2) 3 (IQR = 2) 3 (IQR = 2) 0.596

No. of births 2 (IQR = 1.5) 2 (IQR = 1) 2 (IQR = 1) 0.913

No. of miscarriages 1 (IQR = 2) 0 (IQR = 1) 0 (IQR = 2) 0.786

No. of white blood cells 6.11 (IQR = 4.36) 7.34 (IQR = 1.75) 5.60 (IQR = 2.62) 0.076

Cleaning degree of vagina I 4 (8.89%) 4 (14.29%) 9 (14.52%) 0.101

II 25 (55.56%) 22 (78.57%) 40 (64.52%)

III 6 (13.33%) 1 (3.57%) 3 (4.84%)

IV 3 (6.67%) 0 (0.00%) 2 (3.23%)

UU (Ureaplasma urealyticum) + 1 (2.22%) 3 (10.71%) 6 (9.68%)

– 0 (0.00%) 1 (3.57%) 3 (4.84%)

MH (M. hominis) + 1 (2.22%) 2 (7.14%) 4 (6.45%)

– 0 (0.00%) 2 (7.14%) 5 (8.06%)

CT (Chlamydia trachomatis) + 0 (0.00%) 1 (3.57%) 2 (3.23%)

– 1 (4.44%) 3 (10.71%) 7 (11.29%)

Cervical intraepithelial neoplasm 3 (6.67%) 2 (7.14%) 6 (9.68%)

Hr-HPV16/18, HPV16/18 high-risk infection group; Non-Hr-HPV16/18, non-HPV16/18 high-risk infection group; SIL, squamous intraepithelial lesion; ASC-US, atypical squamous
cells of undetermined significance; ASC-H, atypical squamous cells: cannot exclude high-grade squamous intraepithelial lesion; IUD, intrauterine device.
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0.05). In the dual HPV type group, the predominant species were

Parvimonas, unidentified Christensenellacea, Candidatus

competibacter, unidentified Gammaproteobacteria, Terrimonas,

Leisingera , Hyphomicrobium , Terrabacter , unidentified
Frontiers in Cellular and Infection Microbiology 06
Alphaproteobacteria and Enhydrobacter (p < 0.05). In the

multiple HPV type group, the predominant species were

Ferrug in ibac ter , Haloact inopo lyspora , unident ified

Rhizobiaceae, Blastochloris, Vibrio, Ornithinimicrobium,

Tetragenococcus, and Castellaniella.
Vaginal flora features in patients with
HPV clearance

We further analyzed whether vaginal flora affects HPV

clearance. There were 26 patients who had HPV clearance

within a year, with most turning negative within six months.

Analysis of vaginal flora characteristics showed the women with

HPV clearance had significantly lower bacterial diversity, with

scores of 0.046 for Chao1, and 0.04 for ACE diversity,

respectively (Figure 10).

The top 20 bacteria were analyzed by heat mapping

(Figure 11). At the phylum level, no significant changes were

indicated between patients with HPV clearance and HPV

persistence, for Firmicutes (53.53% vs. 57.55%, p > 0.05),

Proteobacteria (21.90% vs. 15.24%, p > 0.05), Actinobacteria

(13.59% vs. 12.09%, p > 0.05), Fusobacteria (4.76% vs. 8.33%, p >

0.05), and Bacteroidetes (5.40% vs. 5.51%, p > 0.05). At the genus
FIGURE 3

Principal coordinates analysis (PCoA) of variation in beta diversity
of human vaginal bacterial communities in infected and healthy
individuals based on unweighted UniFrac phylogenetic distance.
Hr-HPV16/18 (n = 28): HPV16/18 high-risk infection group; Non-
Hr-HPV16/18 (n = 62): non-HPV16/18 high-risk infection group;
controls (n = 45): non-HPV infection group.
FIGURE 2

Comparison of vaginal microbial alpha diversity index (observed - species, Shannon, Simpson, Chao1, ACE, good - coverage) in infected and
healthy individuals. The p-value on the top indicates the overall difference among three groups calculated using the Kruskal-Wallis
nonparametric test method, and the asterisks on the top indicate a statistically significant difference between the two groups calculated using
Dunn’s test (*p < 0.05, * *p < 0.01).
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level, no significant changes were observed for Lactobacillus

(45.79% vs. 43.83%, p > 0.05), Gardnerella (12.67% vs. 10.03%, p

> 0.05), Sneathia (4.75% vs. 8.11%, p > 0.05), Prevotella (4.55%

vs. 3.87%, p > 0.05), Klebsiella (5.16% vs. 1.99%, p > 0.05),

Enterococcus (3.22% vs. 2.12%, p > 0.05), Streptococcus (0.50%

vs. 2.71%, p > 0.05), Staphylococcus (0.28%, vs. 2.19%, p > 0.05),

Atopobium (0.77% vs. 1.40%, p > 0.05), and Sphingomonas

(0.01% vs. 1.48%, p > 0.05) (Figure 12). At the species level,

between patients who had cleared HPV vs. patients with
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persistent HPV, no changes were observed for L. iners (32.44%

vs. 27.54%, p > 0.05), S. amnii (2.73% vs. 5.65%, p > 0.05), E.

faecalis (2.87% vs. 1.61%, p > 0.05), S haemolyticus (0.26% vs.

1.62%, p > 0.05), A. vaginae (0.77% vs.1.40%, p > 0.05),

Streptococcus intermedius (S. intermedius) (0.31% vs. 1.33%, p

> 0.05), S. sanguinegens (0.84% vs. 1.11%, p > 0.05), Prevotella

timonensis (P. timonensis) (1.61% vs. 0.70%, p > 0.05), P. amnii

(0.13% vs. 1.27%, p > 0.05), and L. gasseri (0.67% vs. 1.05%, p

> 0.05).

To identify bacteria specifically linked with HPV clearance,

LEfSe modeling was conducted (Figure 13). Our results showed

that patients who had developed a persistent HPV infection had

significantly higher levels of Erysipelotrichia (class level),

Bacteroidaceae, Erysipelotrichaceae, Helicobacteraceae,

Neisseriaceae, Streptococcaceae (family level), Erysipelotrichales,

Flavobacteriales (order level), and Fusobacterium, Bacteroides,

Neisseria, and Helicobacter (genus level) than patients who had

cleared HPV (p < 0.05).
Factors associated with HPV infection

Spearman correlation analysis was exploited to analyze the

correlation between HPV infection and clinical biomarkers.

Our results showed that vaginal cleanliness and non-menstrual

bleeding were two related factors, with correlation coefficients

of r = 0.195 (p < 0.05) and r = 0.327 (p < 0.05), respectively.

The main HPV subtypes and the dominant bacteria detected in

all patient samples were selected for a chord diagram

(Figure 14). Each HPV subtype was linked to a dominant

bacterium. The wider the link was, the larger the number of

dominant bacteria in patients of this subtype. L. iners was the

bacterial species most connected with HPV subtypes. The

second was the S. amnii, and the third was the Prevotella. In
FIGURE 5

Comparison of relative abundance of the top 10 vaginal
microflora genera between the Hr-HPV16/18 (n = 28), non-Hr-
HPV16/18 (n = 62), and healthy (n = 45) individuals. p - values of
0.05 indicate a statistically significant difference, **p < 0.01, ***p
< 0.001.
FIGURE 4

Vaginal flora at the genus level in infected and healthy individuals.
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addition, we found that the dominant bacteria with the highest

prevalence in HPV-positive samples were L. iners – dominant

(n = 49, 54.44%) and S. amnii-dominant (n = 10, 11.11%). The
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top 3 dominant bacteria in the HPV-persistent group were L.

iners (n = 34, 53.13%), S. amnii (n = 9, 14.06%), and L.

delbrueckii (n = 3, 4.69%).
FIGURE 7

Comparison between alpha diversity index (observed - species, Shannon, Simpson, Chao1, ACE, good-coverage) of infected and healthy
individuals. The p-value on the top indicates the overall difference among three groups calculated using the Kruskal-Wallis nonparametric test
method, and the asterisks on the top indicate a statistically significant difference between the two groups calculated using Dunn’s test (* p <
0.05, ** p < 0.01). Single (n = 56): infected with a single HPV subtype; dual (n = 26): infected with two HPV subtypes; Multiple (n = 8): infected
with three or more HPV subtypes.
FIGURE 6

Vaginal flora at the species level of Hr-HPV16/18 (n = 28), non-Hr-HPV16/18 (n = 62), and controls (n = 45).
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Discussion

The vaginal flora is an important factor in modulating the

vaginal mucosa microenvironment against viral infections

(Nieves-Ramıŕez et al., 2021). Viral infection may also disturb

the normal structure and composition of the vaginal flora. In this

study, we found that bacterial components vary between the

HPV infectious subgroups and healthy controls. The dominant

bacteria with the highest prevalence in HPV-positive group were

L. iners, S. amnii, and Prevotella. Particularly, S. amnii was

significantly higher, L. gasseri, P. bivia, and A. vaginae were

significantly lower in the Hr-HPV 16/18 group than those in

healthy individuals. This decrease in the predominating

protective bacteria leads to the increase of vaginal pH levels,

the weakening of pathogenic defense ability and the damage of

mucosal barriers (Gillet et al., 2012; Łaniewski et al., 2018). The

differences in the composition of vaginal flora may be the basis

for dysbiotic patterns associated with HPV infection and cervical

cancer in different female populations (Bychkovsky et al., 2016;

Curty et al., 2017; Romero-Morelos et al., 2019; Nieves-Ramıŕez

et al., 2021).
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The vaginal flora is a complicated ecosystem affected by a

variety of factors, including environment, host, and ethnicity

(Serrano et al., 2019; Moosa et al., 2020). It has also been

reported that different ethnic groups have different

characteristics of the cervicovaginal microbiota (Casey et al.,

2012). The prevalence of Lactobacillus spp. as the dominant

microbiota is higher in Caucasian and Asian women compared

to Hispanic and Black women (Ravel et al., 2011; Anahtar et al.,

2015). These differences may be resulted from genetic factors

affecting mucosal immunity or metabolic pathways, leading to

preferred conditions for specific species, or they may the

consequence of differences in different hygiene practices (Mitra

et al., 2016). In this study, all participants are from Chinese,

which allows us to limit confounders due to race-ethnic diversity

that may affect the vaginal flora (Serrano et al., 2019). Co-

variates that may impact on the vaginal flora include smoking

status, time within the menstrual cycle, sexual behavior, use of

hormonal contraceptives or copper intrauterine devices, as well

as ethnic background (Cherpes et al., 2008; Srinivasan et al.,

2010; Gajer et al., 2012; Romero et al., 2014). Our results show

that vaginal flora is dominated by Lactobacillus, followed by
FIGURE 9

LEfSe analysis comparing microbial variations at the genus level in patients infected with one, two, or multiple HPV subtypes. LEfSe cladogram
representing differentially abundant taxa (p < 0.05). LDA scores as calculated by LEfSe of taxa are differentially abundant among groups. Only
taxa with LDA scores of >2 were presented.
FIGURE 8

Principal-coordinates analysis (PCoA) of variation in beta diversity of human vaginal bacterial communities in infected and healthy individuals,
based on unweighted UniFrac phylogenetic distance.
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Gardnerella, Sneathia, Prevotella, Klebsiella, Streptococcus,

Enterococcus, and Staphylococcus, either in HPV-infected or in

healthy individuals. Several vaginal microbes, such as increased

Gardnerella, Fusobacteria, Bacillus cohnii, Dialister, Prevotella,

and Mycoplasma, are associated with dysbiosis that would lead

to instability in the microenvironment, which in turn may allow

key risk factors to have an impact on cervical cancer (Gao et al.,

2013; Ritu et al., 2019; Usyk et al., 2020; Kovachev, 2020).. In our

study, the bacterial genera Sphingomonas showed a significant

difference between the Hr-HPV16/18 group and the healthy

controls. In the top 10 bacterial species, the abundance of S.

amnii, E. faecalis, and S. haemolyticus were two-fold higher, and

P. amnii, A. nosocomialis, S. sanguinegens, L. gasseri were two-

fold lower in the Hr-HPV 16/18 group than in the controls. L.

gasseri, rather than L. iners, was significantly different among the

three groups. Sneathia spp. has frequently been associated with

HPV positivity (Lee et al., 2013), but its different species varied

in HPV-infected subgroups. Therefore, the pattern of flora

associated with HPV infection may be unique in different

populations. Identifying changes in bacterial composition of
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HPV-associated cervical cancers may offer new ideas into

potential target populations and potential biomarkers of

disease and disease-state (Lin et al., 2020).

The local cervical microenvironment can also affect the

natural course of HPV infection (Castle and Giuliano, 2003).

The previous study revealed that transient and persistent HPV16

infections, comparing with no HPV infection, are related to

vaginal flora dominated by non-Lactobacillus species

(Berggrund et al., 2020). We then studied whether specific

vaginal bacteria are associated with HPV clearance. Our

results show that bacterial genera (Sneathia, Streptococcus,

Staphylococcus and Sphingomonas), and species (S. amnii, S.

haemolyticus, S. intermedius, and P. amnii), were observed

significantly higher in the persistent HPV group than those in

the cleared HPV group. LDA analysis showed that

Fusobacterium, Bacteroides, Neisseria, and Helicobacter are

characteristic bacterial genera that are significantly different

between patients with persistent HPV and in patients who

cleared HPV. Women with a certain specific composition of

vaginal flora might be more susceptible to HPV infection or
FIGURE 10

Alpha diversity index (observed - species, Shannon, Simpson, Chao1, ACE, good-coverage) in the HPV-cleared and HPV-persistent groups. The
p-value on the top indicates the overall difference among three groups calculated using the Kruskal-Wallis nonparametric test method, and the
asterisks on the top indicate a statistically significant difference between the two groups calculated using Dunn’s test (* p < 0.05, ** p < 0.01).
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show faster progression of dysplasia (Norenhag et al., 2020).

Distinguishing bacterial features associated with HPV clearance

in patients will be helpful for early intervention and reversal of

persistent infection, which will contribute to reducing the

incidence of cervical cancer.

Vaginal Lactobacilli can exert vaginal protection through

multiple mechanisms. For example, Lactobacilli can offer broad-

spectrum protection by producing lactic acid, bacteriocins, and

biosurfactants, and forming barriers against pathogenic

infections in the vaginal microenvironment by adhering to the

mucosa (Mitra et al., 2016; Piyathilake et al., 2016; Łaniewski

et al., 2019; Ilhan et al., 2019; Borgogna et al., 2020). For

treatment options, the addition of exogenous probiotics, i.e.,

Lactobacillus can improve the treatment of cervicovaginal

dysbiosis and persistent HPV infections (Qingqing et al.,

2021). In comparision with short-term use, long-term use of

vaginal probiotics containing Lactobacillus spp. is related with

increased clearance of HPV (Palma et al., 2018). However, the

therapeutic effect varies greatly. Among the main components of
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a healthy vaginal flora is the presence of Lactobacillus spp.,

which includes L. crispatus, L. iners, L. jensenii, and L. gasseri

(Łaniewski et al., 2018; Kovachev, 2020). A previous study

suggested that bacterial community state types dominated by

L. gasseri might be related with the fastest clearance of acute

HPV infection (Brotman et al., 2014). Unlike L. crispatus, L.

iners produces small amounts of lactic acid without the

production of reported host-protective peptide. Cervicovaginal

microbiota of transiently HPV-infected women is dominated by

L. iners (Qingqing et al., 2021), probably because L. iners are able

to adapt to various pH environments and apparently lack genes

for the synthesis of bacteriocin, all of which creates conditions

for abnormal cervicovaginal bacteria to proliferate (Macklaim

et al., 2011; Mitra et al., 2016). The predominant microbiota in

vaginal flora samples was L. crispatus or L. iners, whereas

individuals with a low-Lactobacillus vaginal microbiota usually

have the colonizedzation of bacteria such as Gardnerella,

Prevotella, and Sneathia (Ravel et al., 2011; Callahan et al.,

2017; Serrano et al., 2019). In our study, only 28.89% of
FIGURE 11

Heat map analysis of bacterial species found in the vaginal flora of 90 women. Each vertical line represents one sample. Different colors indicate
relative abundance: red represents a high proportion and blue represents a low proportion. HPV-clearance: patients who cleared HPV; HPV-
persistent: patients who did not clear HPV.
FIGURE 12

Vaginal flora at the genus level of HPV-cleared (n = 26) and HPV-persistent (n = 64) patients.
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patients cleared HPV following treatment with IFN plus vaginal

Lactobacillus spp. Higher levels of non- Lactobacillus dominant

bacteria, including S. amnii, E. faecalis, S. haemolyticus, S.

intermedius, P. amnii, and P. timonensis, were found in the

HPV-persistent group than those in the HPV-cleared group,

indicating that women with a high abundance of these bacteria

have more difficulty in clearing HPV (Ritu et al., 2019; Chao

et al., 2020).

We further classified patients based on their HPV subtypes

and assessed the relationship between HPV phylogenetic groups
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and the composition of the vaginal flora. Our results indicate

that L. iners is the primary bacterial species that is connected

with HPV subtypes. Some studies have demonstrated a link

between greater cervical microbiome (CVM) diversity and

prevalence of Hr-HPV infection and/or cervical abnormalities

(vs. HPV negative) (Audirac-Chalifour et al., 2016; Dareng et al.,

2016). Increased alpha diversity was associated with Hr-HPV

positivity that was associated with increasing disease severity

(Mitra et al., 2015; Klein et al., 2019). Consistent with the

previous study, women with multiple HPV types infection

showed higher bacterial diversity, with higher diversity being

displayed by women with a single HPV type infection than

women with no HPV infection (Cheng et al., 2020). Of note, in

the HPV-persistent group, women showed significantly higher

bacterial diversity than the HPV-cleared group. Presently,

evidence on the relationship between CVM diversity and

cervical neoplasia severity is conflicting (Mitra et al., 2015; Seo

et al., 2016). Because most studies focusing on the natural course

of HPV and the microbiome are cross-sectional, it is difficult to

decipher potential causality. The potential mechanisms

underlying the potential interactions between HPV and

microbiota need to be revealed (Cheng et al., 2020).

Probiotics are believed to exert a helpful influence on a wide

range of diseases. Compared with the development of novel anti-

inflammatory drugs, it may be less costly to find novel approaches,

i.e., probiotics that can change the vaginal flora environment by

playing a direct role in vaginal flora (Nami et al., 2014; Nami et al.,

2014; Eslami et al., 2016; Wang et al., 2018). Currently, probiotic

strains of lactobacillus administered vaginally by suppository or

vaginal ovule have been explored (Knackstedt et al., 2020). Our

clinical experience shows that probiotics, as adjunctive therapy for

interferon, have a good therapeutic effect on HPV clearance, but

also have some efficacy in the clearance of chlamydia and

mycoplasma (data not shown). Thus, it is crucial to provide a

completely new method to cure diseases by monitoring specific

bacterium associated with HPV infection and controlling vaginal

flora (Li et al., 2020).
FIGURE 13

LEfSe analysis comparing microbial variations at the genus level in infected and healthy individuals. LEfSe cladogram representing differentially
abundant taxa (p < 0.05). LDA scores as calculated by LEfSe of taxa are differentially abundant among groups. Only taxa with LDA scores of >2
are presented.
FIGURE 14

Chord diagram shows the relationship between HPV subtypes
and dominant vaginal bacteria. The width of the strings
(connecting lines) in the chord diagram shows the extent and
proportion of the association between different HPV subtypes
and dominant vaginal bacteria. The wider the width of the
connecting lines, the higher the proportion. Different colors
distinguish between different relationships.
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