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Gut microbial indicators of
metabolic health underlie age-
related differences in obesity
and diabetes risk among Native
Hawaiians and Pacific Islanders
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School of Medicine, Honolulu, HI, United States, 3Institutional Development Awards (IDeA)
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Native Hawaiians and Pacific Islanders (NHPIs) suffer from higher prevalence of

and mortality to type 2 diabetes mellitus (T2DM) than any other major race/

ethnic group in Hawaii. Health inequities in this indigenous population was

further exacerbated by the SARS-CoV-2 pandemic. T2DM progression and

medical complications exacerbated by COVID-19 are partially regulated by the

gut microbiome. However, there is limited understanding of the role of gut

bacteria in the context of inflammation-related diseases of health disparities

including T2DM and obesity. To address these gaps, we used a community-

based research approach from a cohort enriched with NHPI residents on the

island of Oahu, Hawaii (N=138). Gut microbiome profiling was achieved via 16s

rDNA metagenomic sequencing analysis from stool DNA. Gut bacterial

capacity for butyrate-kinase (BUK)-mediated fiber metabolism was assessed

using quantitative PCR to measure the abundance of BUK DNA and RNA

relative to total bacterial load per stool sample. In our cohort, age positively

correlated with hemoglobin A1c (%; R=0.39; P<0.001) and body mass index

(BMI; R=0.28; P<0.001). The relative abundance of major gut bacterial phyla

significantly varied across age groups, including Bacteroidetes (P<0.001),

Actinobacteria (P=0.007), and Proteobacteria (P=0.008). A1c was negatively

correlated with the relative levels of BUKDNA copy number (R=-0.17; P=0.071)

and gene expression (R=-0.33; P=0.003). Interestingly, we identified specific

genera of gut bacteria potentially mediating the effects of diet on metabolic

health in this cohort. Additionally, a-diversity among gut bacterial genera

significantly varied across T2DM and BMI categories. Together, these results

provide insight into age-related differences in gut bacteria that may influence

T2DM and obesity in NHPIs. Furthermore, we observed overlapping patterns
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2022.1035641/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1035641/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1035641/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1035641/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1035641/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.1035641&domain=pdf&date_stamp=2022-12-21
mailto:amaunake@hawaii.edu
https://doi.org/10.3389/fcimb.2022.1035641
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.1035641
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Wells et al. 10.3389/fcimb.2022.1035641

Frontiers in Cellular and Infection Microbiology
between gut bacteria and T2DM risk factors, indicating more nuanced,

interdependent interactions among these factors as partial determinants of

health outcomes. This study adds to the paucity of NHPI-specific data to

further elucidate the biological characteristics associated with pre-existing

health inequities in this racial/ethnic group that is significantly

underrepresented in biomedical research.
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1 Introduction

Native Hawaiians and Pacific Islanders (NHPIs) suffer from

a disproportionately higher prevalence of and mortality to type 2

diabetes mellitus (T2DM) than any other major race/ethnic

group in Hawaii (Hawaii State Department of Health, 2019).

In 2018, the age-adjusted diabetes death rate among NHPIs was

reported at 48.1% - over 2.5 times higher than that of the general

state population (Centers for Disease Control and Prevention

[CDC], 2018). The following year, NHPIs accounted for 31.2%

of reported diabetic cases among Hawaii residents. T2DM

prevalence among NHPIs increases annually at a rate

comparably faster than that of other racial/ethnic groups in

the state (Uchima et al., 2019). In addition, this pre-existing

health disparity has been implicated as a determinant of the

heightened risk to severe COVID-19 (Gregory et al., 2020;

Penaia et al., 2021; Zhou et al., 2021).

Given that health disparities including T2DM and severe

COVID-19 are also compounded by data disparities arising from

underrepresentation of NHPIs and other minority race/ethnic

populations in biomedical research (McElfish et al., 2019;

Uchima et al., 2019; Wang et al., 2020; Kamaka et al., 2021:

Penaia et al., 2021), understanding the relationships between

established or emerging biomarkers and anthropometric data

relevant to cardiometabolic health in these populations are

urgently needed. There are several established and emerging

clinical indicators of cardiometabolic health, however the degree

of variability of these indicators and their relationship to T2DM

risk remain understudied in the NHPI population (Kamaka

et al., 2021). Of the established indicators, the percentage of

glycosylated hemoglobin A1c in blood has now become a wide-

spread, point-of-care diagnostic standard for T2DM, where A1c

levels are stratified into non-diabetic (less than 5.7%), pre-

diabetic (between 5.7% and 6.5%), and diabetic (greater than

6.5%) categories (American Diabetes Association, 2021). Body

mass index (BMI; kg/m2) scores are similarly considered

indicative of cardiometabolic health upon stratification into

normal (less than 25), overweight (between 25 and 30), and
02
obese (greater than 30) categories (CDC, 2021). However, the

applicability of BMI as an indicator of cardiometabolic health

outcomes has been demonstrated to vary with age and ethnicity

(Uchima et al., 2019).

A developing indicator of cardiometabolic health of

increasing interest to clinical and biomedical research studies

is the gut microbiome (Everard and Cani, 2013; Panwar et al.,

2013; Tilg and Moschen, 2014; Upadhyaya and Banerjee, 2015;

Gomez-Arango et al., 2016; Wen and Duffy, 2017; Chen et al.,

2021). Recent metagenome-wide association studies have

implicated the bidirectional relationship between the gut

microbiome and host physiology as a partial determinant of

cardiometabolic health outcomes (Tilg and Moschen, 2014;

Upadhyaya and Banerjee, 2015; Chen et al. , 2021).

Exploratory, diet-based interventions leveraging this

relationship have demonstrated sufficiency in enhancing blood

glucose homeostasis (Panwar et al., 2013). This phenomenon is

partially mediated by serum metabolites originating from gut

microbes, many of which have been identified as direct

determinants of T2DM pathophysiology and adjacent

complications (Arpaia et al., 2013; Panwar et al., 2013; Wen

and Duffy, 2017; Wang et al., 2018; Chen et al., 2021).

One such metabolite is butyrate, a short-chain fatty acid

(SCFA) byproduct of bacterial fiber metabolism (Roediger, 1980;

Arpaia et al., 2013; Menni et al., 2020). While prior studies have

reported a negative relationship between the relative abundance

of butyrate-producing bacteria and T2DM risk (Arora and

Tremaroli, 2021), dynamic interactions among gut bacterial

butyrate metabolism and cardiometabolic health outcomes in

NHPIs is unclear (De la Cuesta-Zuluaga et al., 2019). Dietary

adjustment is a non-invasive therapeutic strategy for modulating

gut microbiome dynamics (Panwar et al., 2013; Karmally and

Goldberg, 2021). Fiber-rich dietary tendencies have been

demonstrated to reduce A1c levels (Panwar et al., 2013; Fu

et al., 2022) and systemic inflammation (Nastasi et al., 2015;

Wen and Duffy, 2017; Scheithauer et al., 2020), suggested in

reducing T2DM risk. However, the relationship among dietary

habits, gut bacterial population dynamics, and T2DM risk
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factors in NHPI populations is unknown and hinders efforts to

comprehensively understand T2DM and obesity health

disparities in this population (Kamaka et al., 2021). To address

this gap in knowledge, we characterized the variability of the gut

microbiome in a NHPI-enriched cohort in Hawaii with

extensive anthropometric and other health-related data.
2 Materials and methods

2.1 Human subjects data collection

IRB approval was obtained from the University of Hawaii

Institutional Review Board (UH IRB) under protocol number

2019-00376. All laboratory procedures were evaluated and

approved by the Hawaii Institutional Biosafety Committee,

under protocol number B22-100652.

Participants included in this cohort study (N=138; aged 16

to 79 years) mainly resided in one of two NHPI-enriched

communities on Oahu, Hawaii (Waianae and Palolo).

Informed consent, sociodemographic information, medical

history, and behavioral risk factor data were collected using

self-reported survey responses. Personal information was de-

identified for each participant through assignment of unique

numerical ID. Biometric data including height, weight, and A1c

(PTS Diagnostics, Whitestown, IN) were collected upon survey

completion. T2DM categories (non-diabetic, pre-diabetic,

diabetic) and BMI categories (healthy, overweight, obese) were

defined using A1c and BMI value cut points recommended by

the American Diabetes Association (ADA) and the Centers for

Disease Control and Prevention (CDC), respectively.
2.2 Stool sample storage and processing

Home stool sample self-collection kits were distributed to

participants upon biometric data collection. Each kit included

one sample tube containing RNAlater (5 ml; a sample

preservative supplied by Thermofisher Scientific, Waltham,

MA). Instructions for proper sample collection and storage

(-20°C) were provided verbally and in print. Samples were

submitted by mail or collected by a community facilitator

within one week of biometric data collection.

DNA and RNA were simultaneously isolated using the

AllPrep PowerFecal DNA/RNA Kit (Qiagen Inc., Valencia,

CA, USA) and stored in -80°C until further processing.

Quality and concentration of nucleic acid yields were assessed

using the NanoDrop Microvolume Spectrophotometer

(ThermoFisher Scientific, Waltham, MA, USA). An overview

of workflow methodology for stool sample processing and

analyses are illustrated in Figure 1.
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2.3 16s metagenomic sequencing

DNA (40 ng) isolated from each stool sample were subjected

to polymerase chain reaction (PCR) amplification targeting 16s

rDNA hypervariable regions V2-4 and V6-9 (Figure 2; Ion

Torrent 16s Metagenomics Kit; Thermo Fisher Scientific,

Warrington, England).

Amplicon products were pooled (20 uL per primer set),

purified (Agencourt Ampure XP Kit; Beckman Coulter, Brea,

CA, USA), and quantified using the Qubit dsDNA BR Assay

(ThermoFisher Scientific, Warrington, England). 16s rDNA

libraries were prepared from 150 ng of pooled amplicons (Ion

Plus Fragment Library Kit; Thermo Fisher Scientific, Austin, TX,

USA) and barcoded using Ion Xpress Barcode Adapters (Life

Technologies, Carlsbad, CA, USA). DNA libraries were pooled

(80 pmol from up to 60 libraries) and loaded onto Ion 530™

chips (Ion S5 Next-Generation Sequencing System) in

preparation for sequencing.

16s Metagenomics Kit analysis was performed using Ion

Reporter™ Software v5.18.4.0 (ThermoFisher Scientific).

Chimeric sequences were automatically identified and

removed. Reads were mapped to reference databases

Greengenes v13.5 and MicroSEQ ID v3.0. Gut microbiome

profiles were compiled using metagenome taxonomic data via

the Curated MicroSEQ(R) 16S Reference Library v2013.1. Raw

abundance values were subsampled at 10,000 reads per sample

to control for inequivalent read numbers across samples.

Subsampling was performed on the species-level operational

taxonomic unit (OTU) table via the rrarefy function of the vegan

R package (Oksanen et al., 2022). Samples with less than 10,000

total reads were excluded from the dataset. Upstream taxonomic

ranks were determined by systematically comparing family-level

OTU data to the NCBI database via the classification function of

the taxize R package (Chamberlain et al., 2020). Family-level

OTU table was the preferred classification input due to large

amounts of unclassified upstream classifications when using

genus and species-level OTU tables. Genus and species-level

OTU tables were joined onto the family-OTU table to form a

comprehensive taxonomic classification. Subsampled reads on

the species-level were converted to per-sample relative

abundance values via the “transform” function of the

microbiome R package (Lahti and Shetty, 2019). Shannon,

Simpson and Chao-1 a-diversity values were computed via

IonReporter v5.18.4.0.
2.4 Measuring BUK-mediated
butyrate metabolism

RNA (40 ng per sample) isolated from stool specimens were

converted to cDNA using SuperScript IV VILOMaster Mix with

ezDNase™ Enzyme (Thermo Fisher Scientific, Waltham, MA,
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USA). PCR primers were synthesized (Thermo Fisher Scientific,

Custom DNA Oligos Synthesis Services, Waltham, MA, USA)

using butyrate kinase (BUK) as a gene target. DNA and cDNA

yields (20 uL per sample) were subjected to quantitative PCR

(qPCR; PerfeCTa SYBR Green FastMix, Quantabio, Beverly,

MA, USA) in duplicate reactions on 96-well plates using the

StepOnePlus Real-Time PCR instrument (Thermo Fisher

Scientific, Waltham, MA, USA). Thermal cycling was

programmed as follows: 95°C for 2 min; 40 cycles of 55°C for

15 sec followed by 72°C for 1 min with a hold at 4°C for later

storage. Target concentration was calculated using qPCR using

the delta-Ct method.

Gut bacterial SCFA metabolic pathways primarily result in

synthesis of acetate, propionate, and butyrate (Louis and Flint,

2017). Three bacterial enzymes have been identified as main

catalysts for the final step in butyrate synthetic pathways: acetyl-

Coenzyme A (CoA):acetoacetyl-CoA transferase (ATO), butyryl-

CoA:acetate CoA-transferase (BUT), and butyrate kinase (BUK)

(Anand et al., 2016). While expression and activity of any of these

three enzymes may provide insight into bacterial butyrate

production capacity, CoA-transferases commonly exhibit broad

substrate specificity (Louis and Flint, 2017). BUT isolated from

Roseburia hominis serves as a relevant example of this
Frontiers in Cellular and Infection Microbiology 04
phenomenon, where although it has been identified as the

bacterium’s primary catalyst for butyrate production, its dual

affinity for propionyl-CoA and butyryl-CoA enable participation

in multiple SCFA synthetic pathways (Charrier et al., 2006).

Although microenvironmental conditions may shift enzymatic

substrate preferences for butyrate-producing CoA-transferases

BUT and ATO (Diez-Gonzalez et al., 1999; Sauer and Eikmanns,

2005; Sato et al., 2016), BUK participates in butyrate synthesis via

the hydrolytic conversion of a phosphorylated intermediate

butyryl-phosphate (Eeckhaut et al., 2011; Anand et al., 2016).

While a similar reaction step is mediated by acetate kinase

(ACK; Hartmanis and Gatenbeck, 1984), BUK is distinct from

ACK in its substrate specificity for butyryl-phosphate rather than

other SCFA precursors or long-chain fatty acid (LCFA) precursors

(Sirobhushanam et al., 2017; Bui et al., 2021; Imdad et al., 2022).

For the purpose of this study, we focused on measuring the

abundance of BUK gene copies and transcriptional products to

investigate butyrate metabolism and its relationship with T2DM-

related health outcomes among NHPI communities.

BUK qPCR primers were designed as previously described by

Gomez-Arango et al., 2016: Forward: 5′ - TGCTGTWGTTGGW

AGAGGYGGA - 3′; Reverse: 5′ - GCAACIGCYTTTTGAT

TTAATGCATGG - 3’.
FIGURE 1

Overview of methodology for stool sample processing.
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BUK quantitation was normalized against concurrent

amplification by universal 16s qPCR primers (labeled “BAC”) as a

proxy for total bacterial load. BAC primers were designed as

previously described by Castillo et al., 2006: 63F: 5′ - GCAG

GCCTAACACATGCAAGTC - 3′; 355R: 5′ - CTGCTGCCTCC
CGTAGGAGT - 3’
2.5 Data analysis

Intergroup comparisons of nominal distributions of

biometric data were performed using Kruskal-Wallis one-way

analysis of variance (ANOVA), followed by Dunn’s Multiple

Comparison Test. P-values for multiple comparisons were

adjusted via the Benjamini-Hochberg method. Categorical

distributions were analyzed using Pearson’s chi-squared tests

for independence. Relationships between variables were

measured using Spearman rank-order correlation coefficients

(R Core Team, 2021). Data was visualized via ggplot2 and ggpubr

packages (Kassambara, 2020). Due to conceptual and technical

limitations around integration of molecular and anthropometric

variables, and sample size, statistical significance was determined

at P<0.05 for molecular data analyses, and at P<0.10 for

exploratory analyses with anthropometric variables. A

flowchart describing quality control and inclusion/exclusion

criteria used to arrive at the reported dataset is provided in

Figure S1.
3 Results

3.1 Dynamic interactions among T2DM
risk factors in NHPIs

Descriptive statistics summarizing our NHPI-enriched

cohort are provided in Table 1. To control for considerable

variance in age among participants (s2 = 288.3), the total study

population was subdivided into four age groups: Early

Adulthood (EA; 16-20 years), Young Adulthood (YA; 21-35

years), Mid-Adulthood (MA; 36-55 years), and Late Adulthood

(LA; 56+ years). Individual membership to T2DM (Figure 3A;

X2=25.5, P<0.001) and BMI (Figure 3B; X2=16.9, P=0.010)
Frontiers in Cellular and Infection Microbiology 05
categories significantly varied across age groups. Furthermore,

differences between EA-YA and MA-LA individuals were

observed for both A1c (Figure 3C) and BMI (Figure 3D). A1c

(P<0.001) and BMI (P=0.005) values both differed between age

groups, increasing significantly across successively older groups.

These differences were verified by direct intergroup

comparisons for T2DM (Figure 3E; P<0.001) and BMI

(Figure 3F; P=0.001) categories. In our cohort, age increased

across successive T2DM categories, as diabetics (P<0.001) and

pre-diabetics (P<0.01) tended to be older than non-diabetic

individuals (Figure 3E). Similarly, individuals in the obese

(P<0.001) and overweight (P<0.01) BMI categories tended to

be older than individuals with normal BMI (Figure 3F). These

consistent and notable age-associated trends among T2DM risk

and obesity reinforce conclusions from previous literature

regarding the importance of age stratification in NHPI

populations (Uchima et al., 2019).
3.2 Gut microbial population dynamics
among T2DM risk factors

Relationships between gut bacterial taxa and age, T2DM

risk, and BMI are summarized in Table 2. Taxa described as

butyrate-producers in previous literature are denoted by an

asterisk (Louis and Flint, 2009; Vital et al., 2014; van den Berg

et al., 2021; Das et al., 2022; Jaagura et al., 2022; Lee et al., 2022;

Sasaki et al., 2022). As an exploratory measure, we chose to

consider gut bacterial relationships with biometric data at

statistical significance of P<0.10. The average relative

abundance of identified gut bacterial phyla across age groups,

T2DM categories, and BMI categories is summarized in Figure 4.

Age group comparisons for the relative abundance of four

major gut bacterial phyla are illustrated in Figure 5. The relative

abundance of Bacteroidetes (Figure 5A; P<0.001), Firmicutes

(Figure 5B; P=0.050), Actinobacteria (Figure 5C; P=0.007),

Proteobacteria (Figure 5D; P=0.008), Deferribacteres (P<0.001),

and Spirochaetes (P=0.011) significantly differed across age

groups. Among these relationships, significant correlations

were observed between age and Actinobacteria (R=-0.26,

P=0.002), Bacteroidetes (R=-0.25; P=0.003), Deferribacteres

(R=0.30; P<0.001), and Proteobacteria (R=0.28; P<0.001). It
FIGURE 2

ThermoFisher 16s rDNA hypervariable region (hvr) proprietary PCR primer coverage (Barb et al., 2016). Arrows are representative of target
binding sites and directionality of amplification. Primer set 1 achieves amplification of hvr V3, V6, V7, and V9. Primer set 2 achieves amplification
of hvr V2, V4, and V8.
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should be noted that Proteobacteria uniquely exhibited a

significant correlation with age and differential relative

abundance across age groups without demonstrating strong

direct associations with indicators of T2DM risk or BMI.

Age also demonstrated a marginally positive correlation with

the relative abundance of Tenericutes (R=0.14; P=0.090). While

this relationship with age uniquely accompanied a negative

correlation with BMI (R=-0.15; P=0.077), intergroup variance

for relative Tenericutes abundance was nonsignificant for age

groups (P=0.152) and BMI categories (P=0.240). Interestingly,

its relative abundance significantly varied across T2DM

categories (P=0.023) while no such relationship was observed

with nominal A1c values (P=0.120).

The relative abundance of Actinobacteria (P=0.069),

Cyanobacteria (P=0.016), Deferribacteres (P<0.001), Firmicutes

(P=0.059), Fusobacteria (P=0.095), Lentisphaerae (P=0.084),

Tenericutes (P=0.023) and Thermotogae (P=0.062) significantly

differed across T2DM categories. Among these trends, A1c

significantly correlated with Cyanobacteria (R=0.17; P=0.051)

and Deferribacteres (R=0.18; P=0.032), possibly suggesting an

influential or bidirectional relationship between glucose

homeostasis and gut bacterial members of these two phyla.

Additionally, A1c correlated negatively with the relative

abundance of Lentisphaerae (R=-0.15; P=0.087). This phylum

had a notably parallel relationship with BMI (R=-0.23; P=0.008),

exhibiting consistently negative directionality between

increasing glycemia and obesity. However, implications of this

integrated functional relevance coincide with nonsignificant

variance in relative Lentisphaerae abundance across BMI

categories (P=0.535).
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Relative Bacteroidetes abundance similarly exhibited

overlapping correlations with A1c and BMI. Relative

Bacteroidetes abundance was observed to simultaneously

decrease with glycemia (R=-0.20; P=0.020) and increase with

obesity (R=0.15; P=0.086). Although relative abundance of this

phylum did not significantly vary across T2DM (P=0.376) and

BMI (P=0.823) categories, it uniquely correlated with age, A1c,

and BMI.

Genera that were differentially abundant across age groups

included Bifidobacterium (P=0.003),Mucispirillum (P<0.001) and

Shigella (P=0.023). Of these genera, Bifidobacterium (R=-0.33;

P<0.001) correlated negatively with age, while Mucispirillum

(R=0.301; P<0.001) and Shigella (R=0.182; P=0.032) correlated

positively. While it demonstrated no statistical difference across

age groups, the relative abundance of Prevotella also correlated

negatively with age (R=-0.17; P=0.043). Notably, each of these age-

related genera demonstrated parallel correlations to A1c.

Genera exhibiting significant correlations to A1c included

Bifidobacterium (P=-0.20; 0.019), Faecalibacterium (R=-0.23;

P=0.007), Lactococcus (R=0.18; P=0.034), Mucispirillum

(R=0.18; P=0.032), Prevotella (R=-0.14; P=0.101), and Shigella

(R=0.17; P=0.041). The relative abundance of all genera

discussed for the purpose of this study distributed differentially

across T2DM groups except one, Bifidobacterium, the only

genus to simultaneously exhibit negative correlations among

age, A1c, and BMI (R=-0.017; P=0.046). The only other observed

genus to simultaneously correlate with A1c and BMI in relative

abundance was Faecalibacterium (R=-0.15; P=0.077), which was

unique in its differential distribution across both T2DM

(P=0.028) and BMI (P=0.030) categories . Notably,
TABLE 1 Sociodemographic and biometric summary of the NHPI-enriched cohort stratified by age into four groups: Early Adulthood (EA; aged
16-20 years), Young Adulthood (YA; aged 21-35 years), Mid-Adulthood (MA; aged 36-55 years), and Late Adulthood (LA; aged 56-80 years).

Cohort Age Groups

EA YA MA LA Pa

Participants (N; %) 138 37 (26.8%) 41 (29.7%) 36 (26.1%) 24 (17.4%)

Sex (N; %) X2 = 7.5 0.058b

Male 61 (44.2%) 23 (62.2%) 14 (34.1%) 13 (36.1%) 11 (45.8%)

Female 77 (55.8%) 14 (37.8%) 27 (65.9%) 23 (63.9%) 13 (54.2%)

BMI (mean ± SE) 33.3 ± 0.77 29.0 ± 1.23 34.6 ± 1.65 35.1 ± 1.29 35.3 ± 1.81 0.005a

BMI categories (N; %) X2 = 16.9 0.010b

Normal 24 (17.4%) 14 (37.8%) 6 (14.6%) 2 (5.6%) 2 (8.3%)

Overweight 29 (21.0%) 7 (18.9%) 10 (24.4%) 7 (19.4%) 5 (20.8%)

Obese 85 (61.6%) 16 (43.2%) 25 (61.0%) 27 (75.0%) 17 (70.8%)

A1c (mean ± SE) 5.7 ± 0.13 5.4 ± 0.21 5.3 ± 0.19 6.1 ± 0.31 6.4 ± 0.27 <0.001a

T2DM categories (N; %) X2 = 25.5 <0.001b

Non-diabetic 97 (70.3%) 31 (83.8%) 36 (87.8%) 21 (58.3%) 9 (37.5%)

Pre-diabetic 20 (14.5%) 4 (10.8%) 2 (4.9%) 6 (16.7%) 8 (33.3%)

Diabetic 21 (15.2%) 2 (5.4%) 3 (7.3%) 9 (25.0%) 7 (29.2%)
frontie
Bold P-values indicate statistical significance at a=0.05.
aKruskal-Wallis ANOVA.
bPearson’s chi-squared test for independence.
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Faecalibacterium was the only taxon among reported phyla and

genera with significant differences in abundance across BMI

categories. While seemingly specific interactions with T2DM

risk were observed for Lactococcus (P=0.003), Ruminococcus

(P=0.003), Serratia (P=0.021), and Streptococcus (P=0.008),

Lactococcus uniquely exhibited a corresponding correlation

with A1c levels (R=0.18; P=0.034).

We then applied Dunn’s post-hoc test for multiple-

comparisons to the genus-level a-diversity indices across age,

T2DM risk and BMI categories, summarized in Figure 6. Chao-1

did not differ between age, T2DM risk and BMI groups

(Figures 6A-C). Shannon index values did not significantly

vary between age groups (Figure 6D) but were significantly

higher in diabetics compared to non-diabetics (P=0.042) and

pre-diabetics (P=0.018) (Figure 6E), and similarly higher in
Frontiers in Cellular and Infection Microbiology 07
obese individuals compared to overweight individuals

(P=0.031) (Figure 6F). Simpson index values demonstrated

intergroup significance in all three categorical variables, EA

and YA age groups (P=0.042) (Figure 6G), pre-diabetics and

diabetics (P=0.018) and between overweight and obese

(P=0.021) participants.
3.3 BUK-mediated butyrate metabolism

To explore metabolic mechanisms underlying functional

interactions between microflora and health outcomes in

NHPIs, we quantified gut bacterial capacity for BUK-mediated

butyrate metabolism by measuring the abundance of BUK DNA

and RNA relative to total bacterial load per stool sample.
A B

D

E F

C

FIGURE 3

Categorical associations between age, T2DM, and BMI. The proportion individuals in the cohort in (A) T2DM (X2 = 27.6; P<0.001) and (B) BMI
categories (X2 = 17.8; P<0.001) varied significantly across age groups. Intergroup comparison demonstrated significantly different (C) A1c
(P<0.0001) and (D) BMI (P=0.005) values across age groups. Additionally, participant age significantly differed across (E) T2DM (P<0.001) and (F)
BMI (P=0.001) categories. * = P<0.05; ** = P<0.01; *** = P<0.001; ****= P<0.0001.
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Observed trends in relative levels of BUK abundance among age

groups, T2DM categories, and BMI categories are summarized in

Figure 7. While the relative abundance of BUK DNA did not

significantly vary between age groups (Figure 7A), it significantly

decreased across successive T2DM categories (Figure 7B; P=0.032)

with a notable reduction in diabetics compared to non-diabetics

(P<0.05). This relationship with host physiology did not extend to

differential abundance across BMI categories (Figure 7C).

Without statistical indicators of direct interactions among

BUK gene abundance and biometric data, we investigated

these relationships more broadly. Variance in BUK levels
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between age groups was visualized using a fitted population

density histogram (Figure 7D). Relatively low BUK gene

abundance was observed most frequently in MA individuals

compared to other age groups. While LA individuals exhibited

low BUK DNA, the levels of which were similar to those of

younger individuals (EA-YA), notable peaks were observed

among LA individuals with moderate to high levels of BUK

DNA. While exhibiting significant differences across T2DM

categories, relative BUK DNA abundance did not show a

clearly discernible pattern across intersecting age groups and

T2DM categories (Figure 7E). Aside from an anomalously
TABLE 2 Intergroup comparisons and correlation analyses for gut bacterial population distribution across age groups, T2DM categories, and BMI categories.

Intergroup comparisons
(P-values)a

Correlation analysesb

Age A1c BMI

Age groups T2DM categories BMI categories R P R Pb R Pb

Phylum relative abundance

Actinobacteria* 0.007 0.069 0.823 -0.26 0.002 -0.09 0.310 -0.06 0.462

Bacteroidetes* <0.001 0.376 0.823 -0.25 0.003 -0.20 0.020 0.15 0.086

Cyanobacteria 0.150 0.016 0.634 0.06 0.496 0.17 0.051 -0.10 0.234

Deferribacteres* <0.001 <0.001 0.289 0.30 <0.001 0.18 0.032 -0.05 0.535

Elusimicrobia 0.419 0.373 0.823 0.13 0.141 0.11 0.219 0.03 0.765

Firmicutes* 0.050 0.059 0.598 0.07 0.403 0.06 0.455 -0.16 0.070

Fusobacteria* 0.279 0.095 0.469 -0.04 0.667 0.07 0.440 0.20 0.019

Lentisphaerae 0.904 0.084 0.535 0.03 0.724 -0.15 0.087 -0.23 0.008

Nitrospinae 0.458 0.981 0.823 0.01 0.926 -0.05 0.604 0.02 0.845

Proteobacteria 0.008 0.599 0.823 0.28 <0.001 0.09 0.300 0.07 0.450

Spirochaetes* 0.011 0.307 0.823 0.14 0.110 0.09 0.310 -0.08 0.365

Synergistetes* 0.113 0.867 0.535 0.10 0.258 0.01 0.959 -0.12 0.158

Tenericutes* 0.152 0.023 0.240 0.14 0.090 0.13 0.120 -0.15 0.071

Thermotogae* 0.418 0.062 0.823 0.06 0.468 0.12 0.149 0.03 0.699

Verrucomicrobia 0.142 0.428 0.919 0.11 0.211 0.08 0.382 0.03 0.753

Genus relative abundance

Bifidobacterium* 0.003 0.262 0.484 -0.33 <0.001 -0.20 0.019 -0.17 0.046

Faecalibacterium* 0.484 0.028 0.030 -0.11 0.223 -0.23 0.007 -0.15 0.077

Lactococcus 0.685 0.003 0.828 -0.03 0.732 0.18 0.034 -0.05 0.574

Mucispirillum <0.001 <0.001 0.273 0.30 <0.001 0.18 0.032 -0.06 0.517

Prevotella 0.111 0.006 0.217 -0.12 0.043 -0.14 0.101 0.02 0.849

Ruminococcus* 0.781 0.003 0.346 -0.11 0.202 -0.03 0.713 0.10 0.266

Serratia 0.786 0.021 0.164 0.08 0.376 -0.01 0.911 0.03 0.758

Shigella 0.023 0.004 0.543 0.18 0.032 0.17 0.041 0.05 0.566

Streptococcus* 0.306 0.008 0.697 <0.001 0.993 0.02 0.809 -0.01 0.950

a-Diversityc

Chao-1 0.200 0.062 0.105 0.01 0.932 -0.01 0.946 0.13 0.143

Shannon 0.439 0.028 0.078 0.02 0.868 0.04 0.678 0.18 0.053

Simpson 0.289 0.026 0.056 0.02 0.828 0.07 0.427 0.17 0.060
frontiers
Bold P-values indicate statistical significance at a=0.1.
aKruskal-Wallis ANOVA.
bSpearman rank-order correlation coefficient.
cTaxonomic diversity at the genus-level.
*Butyrate-producing taxa.
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high BUK DNA abundance in diabetic MA individuals,

increased BUK gene abundance seemed to tend toward non-

diabetics, while demonstrating a more ambiguous distribution

across age groups. This ambiguous relationship with age was

consistent with that observed for BUK DNA levels across age

groups and BMI categories, although elevated BUK gene

abundance tended toward individuals with high BMI

values (Figure 7F).

Compared to patterns observed for BUK DNA, low BUK

RNA was observed at a notably higher frequencies across all age

groups, with fewer observations of increased levels (Figure 7J).

The relative abundance of BUK RNA distributed across age

groups and T2DM categories revealed higher levels among non-

diabetic individuals and showed an ambiguous distribution

across age (Figure 7K). This ambiguity with age extended to

age groups and BMI categories, with higher values observed

among obese individuals, except for an anomalously high

relative BUK RNA abundance in YA individuals with normal

BMI (Figure 7L).
Frontiers in Cellular and Infection Microbiology 09
To better understand this ambiguity and as previous

literature has reported strong associations between dietary

habits and gut bacterial butyrate metabolism (Das et al., 2022),

we investigated whether the relationship between the gut

microbiome and host health outcomes may be modulated by

fiber consumption, primarily from vegetable sources, as a

potential avenue for T2DM risk reduction. To this end, we

leveraged known metrics of dietary quality and developed a new

dietary score based on self-reported data with a focus on

vegetable sources of dietary fiber intake called “VEG2”

defined below.
3.4 VEG2 as a measure of dietary quality
in NHPIs

The Multi-Ethnic Cohort (MEC) study based at the

University of Hawaii Cancer Center included data collected

from 215,000 residents of Hawaii and Los Angeles through a
FIGURE 4

Average relative abundance of gut bacterial phyla across age groups, T2DM categories, and BMI categories. Bacterial phyla Bacteroidetes,
Firmicutes, Proteobacteria, and Actinobacteria (among unclassified bacteria) largely compose an average of roughly 97% of the gut bacterial
population in each group. The remaining 3% of gut bacteria are largely composed of members belonging to 12 additionally identified phyla:
Fusobacteria, Tenericutes, Lentisphaerae, Synergistetes, Deferribacteres, Spirochaetes, Verrucomicrobia, Nitrospinae, Cyanobacteria,
Thermotogae, Elusimicrobia, and Candidatus Thermoplasmatota.
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26-page questionnaire (including questions regarding behavioral

risk factors and medical history) with follow-up questionnaires

administered in five-year intervals (University of Hawaii).

Biological samples were collected from more than 70,000 MEC

members in 2001-2005. One MEC sub-study presented NHPI

quintile distribution data for a number of conventionally

accepted dietary quality indices (DQIs): the Approaches to

Stop Hypertension (DASH) and the Healthy Eating Index

(HEI-2010) (Jacobs et al., 2015). We accessed this data and

obtained a summary of dietary index score quintile distribution

data among NHPI men and women (provided in supplemental

materials). Quintile distribution was based on dietary index

range, from Q1 (lowest scores) to Q5 (highest scores).

Participant scores were treated separately for men and women

to control for sex-related differences.
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For the purpose of our study, a modified DQI, VEG2, was

formulated to assess fiber supplementation via vegetable

consumption in NHPI populations. Survey questions used to

collect dietary data were designed to quantify individuals’ variety

and frequency of vegetable consumption relative to that of

meats, fish, refined sugars, processed carbohydrates, and more

using a point-value system assigned to diet-related survey

responses. An overview of questions used for vegetable-related

dietary data collection and their corresponding point-value

assignment is provided in Table S3, followed by the formulas

used to calculate the VEG2 metric. Chi-squared tests for

independence comparing quintile distribution of NHPIs

between DASH, HEI-2010, and VEG2 (Table S4) indices were

nonsignificant (Table S5). Thus, we propose that the VEG2 DQI

is functionally similar to established metrics in providing a
A

C D

B

FIGURE 5

Gut microbiome composition dynamics upon age stratification. Graphical representation of significantly different relative abundance of four
major gut bacterial phyla across age groups. Color-coded indications of individual data points categorized by T2DM risk: non-diabetic (yellow),
pre-diabetic (orange), and diabetic (red). Visualized phyla include (A) Bacteroidetes, (B) Firmicutes, (C) Actinobacteria, (D) Proteobacteria.
Statistical significance denoted in figures above using asterisks as follows: * (P<0.05); ** (P<0.01); **** (P<0.0001).
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general overview of self-reported dietary quality in NHPIs, with

a focus on dietary sources of fiber intake.

In our cohort study, VEG2 correlated negatively with age

(Table 3; R=-0.17; P=0.051), differed across age groups

(Figure 8A; P<0.005), and did not significantly differ across

T2DM categories (Figure 8B). VEG2 also correlated negatively

with BMI (R=-0.25; P=0.004) and significantly varied across

BMI categories (Figure 8C; P=0.005). Direct associations were

not observed between VEG2 and BUK gene abundance (R=-0.05;

P=0.573) or expression (R=0.02; P=0.804). The distribution of

VEG2 score frequency clustered similarly among YA, MA, and

LA age groups, while that of EA tended toward a higher median

with higher frequency (Figures 8D). Mean VEG2 scores

appeared to be dependent on BMI per age group, while the

relationship was less clear in the context of T2DM risk

(Figures 8E, F).

A1c negatively correlated with BUK DNA (R=-0.17;

P=0.071) and RNA (R=-0.33; P=0.031) , suggesting a

functional distinction between dietary and biometric

interactions with gut bacteria. Relative Verrucomicrobia

abundance uniquely correlated with VEG2 (R=-0.20;

P=0.018) without exhibiting direct relationships between
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age, T2DM risk, or BMI (Table 2). Haemophilus was the

only genus whose abundance significantly correlated with

both VEG2 (R=0.19; P=0.025) and BUK gene abundance

(R=0.19; P=0.045). Akkermansia was the only genus that

demonstrated significant negative correlations with BUK

gene abundance (R=-0.24; P=0.012) and expression (R=-

0.22; P=0.049). Genera whose levels exhibited a positive

correlation with BUK gene abundance were Mannheimia

(R=0.26; P=0.002) and Photobacterium (R=0.18; P=0.036).

Negative correlations were observed between Blautia (R=-

0.22, P=0.011), Subdoligranulum (R=-0.19; P=0.026) ,

Victivallis (R=-0.18; P=0.035), Ruminococcus 2 (R=-0.17;

P=0.044) and Catenibacterium (R=-0.17; P=0.050). Genera

that exhibited a positive correlation with BUK gene

expression were Enterococcus (R=0.26; P=0.021) and

Lactobacillus (R=0.30; P=0.006), with Bacteroides (R=-0.28;

P=0.011) showing a negative relationship. Without indication

of direct relationships with age or BMI (Table 3), the relative

levels of BUK DNA and BUK RNA demonstrated marginal

(R=-0.17; P=0.071) and strong (R=-0.33; P=0.031) negative

correlations with A1c, respectively. Additional data regarding

dietary associations are summarized in Table S6.
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FIGURE 6

Intergroup comparisons for gut bacterial a-diversity at the genus level across age groups, T2DM categories, and BMI categories. Mean
comparisons were performed across (A, D, G) age groups; (B, E, H) T2DM categories, and (C, F, I) BMI categories for Chao1, Shannon and
Simpson indices, respectively. Statistical significance denoted: * (P<0.05).
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4 Discussion

Due to the underrepresentation of NHPIs in biomedical

research studies, data from our NHPI cohort provides an

example of potentially race/ethnic-specific relationships that

would have not been previously recognized. Exploratory

analyses of T2DM risk factors in our NHPI cohort revealed

dynamic biometric and sociodemographic patterns, some of

which were unexpected based on studies in other race/ethnic
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groups. Although A1c and BMI are commonly associated with

each other, the positive correlation observed between the two

(R=0.18; P=0.030) was not as strong as that of A1c and age

(R=0.39; P<0.001).

The lack of overlap between A1c and BMI as predictors of

T2DM-related health outcomes implicate the two metrics as

inequivalent indicators of cardiometabolic disease risk. While

conventional associations between obesity and T2DM risk have

limited applicability to NHPI populations, age may be more
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FIGURE 7

BUK gene abundance and expression relative to BAC across age, T2DM and BMI categories. Intergroup comparison of relative BUK gene
abundance across (A) age groups (P=0.802), (B) T2DM categories (P=0.032), and (C) BMI categories (P=0.736). Frequency distribution of
participants by age groups among binned BUK DNA values is summarized by a color-coded density plot fitted over a histogram (D). Heatmaps
indicating the range of relative BUK DNA distributed across age groups and (E) T2DM categories and (F) BMI categories. Intergroup comparison
of relative BUK RNA quantitation across (G) age groups (P=0.151), (H) T2DM categories (P<0.001). and (I) BMI categories (P=0.636). Frequency
distribution of participants by age groups among binned BUK RNA values is summarized by a color-coded density plot fitted over a histogram
(J). Heatmaps indicating the range of relative BUK RNA distributed across age groups and (K) T2DM categories and (L) BMI categories.
Statistical significance denoted in figures above using asterisks as follows: * (P<0.05); **** (P<0.0001).
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TABLE 3 Comparisons between biometrics, microbial abundances, VEG2 scores and BUK levels.

VEG2 BUK DNA BUK RNA

R Pa R Pa R Pa

Age -0.17 0.051 0.046 0.631 0.02 0.833

A1c 0.03 0.705 -0.17 0.071 -0.33 0.003

BMI -0.25 0.004 -0.03 0.783 -0.08 0.479

VEG2 – – -0.05 0.573 0.02 0.840

Phylum Relative Abundance

Verrucomicrobia -0.20 0.018 -0.08 0.379 -0.18 0.114

Genus Relative Abundance

Mannheimia 0.26 0.002 0.09 0.340 -0.13 0.261

Blautia -0.22 0.011 -0.07 0.463 -0.09 0.450

Senegalimassilia -0.20 0.019 -0.02 0.807 -0.17 0.123

Haemophilus 0.19 0.025 0.19 0.045 0.09 0.434

Subdoligranulum -0.19 0.026 0.02 0.799 0.00 0.993

Victivallis -0.18 0.035 -0.03 0.776 0.04 0.750

Photobacterium 0.18 0.036 0.13 0.182 -0.09 0.404

Ruminococcus 2 -0.17 0.044 0.03 0.741 0.02 0.886

Catenibacterium -0.17 0.050 -0.09 0.323 0.09 0.401

Akkermansia -0.15 0.085 -0.24 0.012 -0.22 0.049

Klebsiella -0.13 0.121 0.25 0.007 -0.05 0.645

Enterococcus -0.05 0.543 0.01 0.917 0.26 0.021

Lactobacillus 0.05 0.545 0.09 0.372 0.30 0.006

Bacteroides 0.01 0.950 0.02 0.807 -0.28 0.011

Species Relative Abundance

Mannheimia varigena 0.26 0.002 0.11 0.238 -0.12 0.273

Collinsella tanakaei 0.25 0.003 0.06 0.534 -0.04 0.741

Prevotella stercorea -0.21 0.012 -0.02 0.847 0.08 0.499

Holdemania massiliensis 0.21 0.014 0.07 0.442 0.00 1.000

Lactobacillus salivarius -0.21 0.015 -0.02 0.826 0.11 0.349

Dorea formicigenerans -0.20 0.019 0.09 0.358 0.11 0.325

Blautia glucerasea -0.20 0.022 0.02 0.849 0.12 0.297

Collinsella aerofaciens -0.20 0.022 -0.08 0.379 0.00 0.976

Haemophilus parainfluenzae 0.19 0.023 0.19 0.040 0.14 0.225

Ruminococcus torques -0.19 0.024 -0.06 0.505 -0.15 0.195

Victivallis vadensis -0.18 0.033 -0.03 0.776 0.04 0.750

Streptococcus peroris -0.18 0.034 0.00 0.987 0.24 0.030

Slackia isoflavoniconvertens -0.18 0.039 0.05 0.632 0.01 0.964

Eubacterium hallii -0.18 0.039 -0.09 0.336 -0.03 0.774

Parabacteroides johnsonii 0.18 0.040 0.05 0.605 0.12 0.288

Clostridium bartlettii 0.18 0.040 0.05 0.605 0.12 0.288

Akkermansia muciniphila -0.15 0.071 -0.25 0.009 -0.22 0.053

Helicobacter hepaticus 0.13 0.129 0.06 0.528 -0.25 0.027

Streptococcus australis -0.12 0.174 0.01 0.886 0.24 0.031

Lactobacillus ruminis -0.11 0.210 0.04 0.697 0.25 0.023

Clostridium paraputrificum 0.10 0.231 0.13 0.172 -0.25 0.024

Streptococcus salivarius -0.10 0.259 -0.04 0.674 0.24 0.031

Bacteroides stercoris -0.08 0.377 0.00 0.990 -0.23 0.040

Clostridium lavalense 0.07 0.399 -0.23 0.016 -0.08 0.494

Ruminococcus callidus -0.07 0.409 0.01 0.941 0.23 0.041

(Continued)
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effective as a predictor of cardiometabolic pathophysiology.

Further discrepancies between documented trends among gut

microbial influence on host physiology and those observed in

our cohort emphasize unforeseen functional independence

between BMI and T2DM risk in NHPIs. Significant differences

in relative phylum abundance were not observed across BMI

categories, contrasting with direct correlations observed between

BMI values and five phyla (Table 2). This discrepancy may

suggest that interactions between gut bacteria and host adiposity

are functionally indirect. Further mediation analyses are

required to assess indirect effects of these interactions.
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Bifidobacterium is the most conventionally reported to

be an antagonist against physiological determinants of

T2DM-related complications (Ma et al. , 2021). The

negative correlation between Bifidobacterium and age (R=-

0.32; P<0.001), consistent with reports from existing

literature, was further supported by negative correlations

with A1c (Table 2; R=-0.20; P=0.019) and BMI (R=-0.17;

P=0.046). While exploratory statistics may implicate certain

bacteria as partial determinants of glucose homeostasis or

adiposity, their effects on host physiology are neither direct

nor isolated, as the population dynamics and metabolic
TABLE 3 Continued

VEG2 BUK DNA BUK RNA

R Pa R Pa R Pa

Oscillibacter sp. 0.06 0.472 -0.19 0.050 0.07 0.509

Bifidobacterium angulatum -0.06 0.519 -0.04 0.688 0.24 0.030

Serratia rubidaea -0.06 0.523 0.22 0.021 -0.01 0.907

Ruminococcus sp. -0.03 0.690 -0.21 0.023 -0.15 0.177

Ruminococcus gnavus 2 0.03 0.699 0.15 0.111 -0.26 0.019

Helicobacter ganmani 0.02 0.775 0.15 0.123 0.26 0.018

Sutterella sp. -0.01 0.904 -0.12 0.198 0.27 0.013

Desulfovibrio d168 -0.01 0.905 0.20 0.032 0.21 0.065

Veillonella rogosae -0.01 0.934 0.21 0.024 -0.04 0.702

Parabacteroides goldsteinii 0.01 0.939 -0.03 0.773 0.25 0.026
frontiers
aSpearman rank-order correlation coefficient.
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FIGURE 8

Intergroup comparison of VEG2 across (A) age groups (P=0.064); (B) T2DM categories (P=0.396); and (C) BMI categories (P=0.005). Frequency
distribution of participants by age groups among binned VEG2 scores is summarized by a color-coded density plot fitted over a histogram (D)
Heatmaps indicating the range of VEG2 scores distributed across age groups and (E) T2DM categories or (F) BMI categories. Statistical
significance denoted: * (P<0.05).
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activity observed in gut bacteria are interdependent on

one another.

Existing literature led us to expect an inverse relationship

between gut bacterial a-diversity and T2DM risk. Cross-

sectional studies have reported negative associations between

a-diversity and insulin resistance in the majority of race/ethnic

groups examined (Chen et al., 2021), suggesting a protective

relationship between a diverse bacterial population and T2DM

pathophysiology. While we observed contradictory results in our

NHPI-cohort, further investigation, including increasing

representation of NHPIs across diverse communities, is

necessary to better understand these relationships.

Among the gut microbial features under our investigation in

this study, we did not observe a direct relationship of relative

BUK DNA abundance with age or BMI (Table 3). However, a

positive relationship with A1c was observed (R=-0.17; P=0.071).

The same trends were observed with BUK RNA levels, as a

significant relationship was only observed with A1c (R=-0.33;

P=0.031). These results suggest that reduced BUK activity in the

gut corresponds with an increase in A1c and T2DM risk, likely

through glucose homeostatic pathways.

Meta-analyses investigating the relationship between DQIs

and health outcomes have found an inverse association between

both DASH and HEI scores with the risk of incidence or

mortality from cardiovascular disease and T2DM (Jacobs

et al., 2015; Schwingshackl and Hoffmann, 2015). While such

systematic reviews provide insight into conventional DQI score

applications, it is unclear whether these trends are generalizable

to indigenous populations, in particular to NHPIs. We propose

the VEG2 score as a modified DQI with increased accessibility

for members of NHPI communities. Due to the negative

correlation between vegetable intake scores and age, we are

unable to conclude whether a characteristic shift in diet with

age is as significant a contributor to the shift in gut microbial

population dynamics as is age alone. We note, however, that this

decreased VEG2 score with age associated with increased BMI

and T2DM risk in our NHPI-enriched cohort, implicating

dietary deficiencies, in particular fiber intake, as a potential

contributor to obesity and diabetes. Given the strong yet

contrasting associations with VEG2 and BUK, our data

implicates Haemophilus and Akkermansia, among others, in

playing a role in potentially mediating the effects of diet on

metabolic health in this cohort.

Our observations of dynamic interactions among age, gut

microbiome, and T2DM risk factors support previous literature

emphasizing the necessity for age stratification in health

disparities research involving NHPI populations. Discrepancies

in conclusions of relationships between gut microbial indicators

of health outcomes may likely arise from race/ethnic variability,

emphasizing that findings in other populations may not be

generalizable to NHPI and other minority populations

underpresented in biomedical research. Gut microbial
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mediation of host physiology affects obesity and T2DM risk in

NHPIs in ways not yet well understood. NHPI-specific microbial

dynamics may contribute to the cardiometabolic health disparity

experienced by the NHPI community via microbial pathways

that may be unique to this group. Thus, bridging the gap in

biomedical data disparity for NHPI populations may allow for

the development of more robust, community-based strategies to

effectively address specific pathways underlying disparities

among NHPIs.
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