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IgG serology can be utilized to estimate exposure to Anopheline malaria

vectors and the Plasmodium species they transmit. A multiplex bead-based

assay simultaneously detected IgG to Anopheles albimanus salivary gland

extract (SGE) and four Plasmodium falciparum antigens (CSP, LSA-1, PfAMA1,

and PfMSP1) in 11,541 children enrolled at 350 schools across Haiti in 2016.

Logistic regression estimated odds of an above-median anti-SGE IgG response

adjusting for individual- and environmental-level covariates. Spatial analysis

detected statistically significant clusters of schools with students having high

anti-SGE IgG levels, and spatial interpolation estimated anti-SGE IgG levels in

unsampled locations. Boys had 11% (95%CI: 0.81, 0.98) lower odds of high anti-

SGE IgG compared to girls, and children seropositive for PfMSP1 had 53% (95%

CI: 1.17, 2.00) higher odds compared to PfMSP1 seronegatives. Compared to

the lowest elevation, quartiles 2-4 of higher elevation were associated with

successively lower odds (0.81, 0.43, and 0.34, respectively) of high anti-SGE

IgG. Seven significant clusters of schools were detected in Haiti, while spatially

interpolated results provided a comprehensive picture of anti-SGE IgG levels in

the study area. Exposure to malaria vectors by IgG serology with SGE is a proxy

to approximate vector biting in children and identify risk factors for

vector exposure.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2022.1033917/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1033917/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1033917/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1033917/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.1033917&domain=pdf&date_stamp=2022-11-08
mailto:erogier@cdc.gov
https://doi.org/10.3389/fcimb.2022.1033917
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.1033917
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Jaramillo-Underwood et al. 10.3389/fcimb.2022.1033917
Introduction

Malaria is an infectious disease caused by Plasmodium

parasite infection in humans and is transmitted by mosquitoes

in the genus Anopheles. In 2020, there were an estimated 241

million malaria infections globally, 0.26% of which were

estimated to result in patient death (World Health

Organization, 2021). While a disproportionate amount of

disease burden lies in African countries, some areas of the

world have made progress in reducing malaria transmission to

the point of near elimination. Hispaniola, an island composed of

the Dominican Republic and Haiti, is the only area in the

Caribbean with endemic malaria, with Plasmodium falciparum

as the primary species. Though recent malaria transmission in

Haiti has been relatively low (Lucchi et al., 2014; Jules et al.,

2022), heterogeneity by spatial, individual, and environmental

factors accentuates the need for enhanced surveillance methods

to characterize higher-risk regions and population subgroups to

further move towards malaria elimination (Boncy et al., 2015;

Cameron et al., 2021).

Reducing vectorial capacity is critical for any malaria

elimination efforts (Briët et al., 2019). As the primary malaria

vector in Haiti (Desenfant et al., 1987), Anopheles albimanus

exhibits exophilic and exophagic preferences (Hobbs et al., 1986;

Zimmerman, 1992; Frederick et al., 2016); peaks in vector density

in Haiti occur after the start of the rainy seasons in November and

June (Hobbs et al., 1986). Detailed knowledge of human-vector

interaction in Haiti is limited, and only one published study to date

has attempted to measure malaria transmission intensity using

entomological inoculation rate, with no mosquitoes incriminated

for P. falciparum (Hobbs et al., 1986). Traditional entomological

methods may be inadequate in Haiti and other malaria low-

transmission settings, pointing to the need for alternative

methods that can provide better insights about vector biting in

human populations.

Serologic methods have been used to assay for human

antibody responses against antigens from both malaria vector

and parasite. The multiplex bead-based assay (MBA) detects

multiple analytes from the same specimen simultaneously

(Elshal & McCoy, 2006) and has been utilized to detect

antibodies against panels of Plasmodium antigens as evidence

of an individual’s history of malaria infection (Kerkhof et al.,

2015; Rogier et al., 2017; Rogier et al., 2019). Malaria vector

exposure has also been elucidated using serologic methods via

detection of antibody responses to Anopheline-specific antigens,

which in turn provide information about vector contact among

both individuals and populations (Bousema et al., 2010; Marie

et al., 2020). In particular, immunoglobulin (Ig)G response to

Anopheles salivary antigens has been used as a biomarker of

exposure to mosquito bites, including in the areas where An.

albimanus circulates (Londono-Renteria et al., 2010; Montiel

et al., 2020), and has been compared against other measures of

malaria transmission (Kearney et al., 2021). This current study
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utilized cross-sectional data collected in 2016 from a

transmission assessment survey (TAS) conducted in Haiti with

enrollment of children ages 6 and 7 at their schools (Druetz et al.,

2020), and assessed risk factors and spatial associations for IgG

against An. albimanus salivary antigens.
Materials and methods

Human subjects

Children were enrolled and samples were collected in 2016

as part of lymphatic filariasis (LF) transmission assessment

surveys in Haiti, with integration of malaria RDTs and

microscopy for soil-transmitted helminths in stool specimens

(Knipes et al., 2017). Individuals with a positive RDT result

received free treatment as per the national policy in Haiti. The

study protocol was approved by the National Bioethics

Committee of Haiti, and this activity was considered a

program evaluation activity by CDC Human Subjects Office

(#2014–256). Before enrollment, informed consent forms were

sent home with each of the students so that a parent or legal

guardian could read and sign for return to the study teams.

Before sample collection, the informed consent forms were

signed by the child’s parent, and verbal assent was given by

the child for collection of multiplex serological data.
Participant enrollment

Surveys were conducted in evaluation units (EUs) that had

met World Health Organization (WHO) criteria to conduct an

LF TAS, with the current WHO recommendation to conduct a

school-based TAS in areas where the net primary-school

enrollment rate is ≥75%. Haitian school enrollment data for

2014 were utilized along with population census data to

determine the sampling approach employed in each EU, which

are program defined and dependent on baseline LF prevalence

found during initial mapping surveys (Beau de Rochars et al.,

2004). Per WHO criteria, only children aged 6 or 7 years were

approached to participate, and after verbal assent, fingerpick

blood was collected on filter papers (TropBio filter wheels,

Cellabs, Sydney, Australia), dried (creating a dried blood spot,

DBS), and packaged individually with desiccant for later

laboratory analysis at the U.S. Centers for Disease Control and

Prevention in Atlanta, GA.
Mosquito dissection, SGE preparation,
and bead conjugation

As described previously (Jaramillo-Underwood et al., 2022),

whole salivary gland pairs were dissected from three- to seven-
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day-old unfed An. albimanus mosquitoes (lab strain STECLA)

and frozen for later use. Whole salivary glands were

homogenized with glass tissue grinder in phosphate buffered

saline (PBS, pH 7.2) and freeze-thawed twice for further protein

dissociation. Total protein concentration of this SGE

homogenate was determined by BCA assay (Pierce BCA

Protein Assay Kit, ThermoFisher).

Six separate bead regions (Bio-Plex non-magnetic beads,

BioRad, Hercules, CA) were coupled with antigens for IgG

capture and subsequent detection. Recombinant Schistosoma

japonicum glutathione-S-transferase (GST) was utilized as a

non-binding internal well control and was coupled at pH 5.0

at 20 mg/mL. The malaria antigens in the multiplex panel have all

been reported before: the P. falciparum merozoite surface

protein 1 19kD fragment (PfMSP119; coupled at pH 5.0 at 20

mg/mL), P. falciparum apical membrane antigen 1 N-terminal

region (PfAMA1; coupled at pH 5.0 at 20 mg/mL), P. falciparum

circumsporozoite protein (NANP)5 peptide fused to GST (CSP;

coupled at 30 mg/mL), and Pl1043 epitope from P. falciparum

liver stage antigen 1 (LSA-1) (Rogier et al., 2015; Plucinski et al.,

2018). The homogenate of salivary gland proteins was

conjugated to beads as described previously at pH 5.0 at 30

mg/mL.
Assay for anti-SGE and P. falciparum IgG
by multiplex bead assay

Participant whole blood was eluted from a single tab of the

TropBio filter wheels to provide sample for the IgG detection

assay. A single DBS tab (10 mL whole blood) was rehydrated in

blocking buffer (PBS pH 7.2, 0.5% Polyvinyl alcohol

(SigmaAldrich, St. Louis, MO), 0.5% polyvinylpyrrolidine

(SigmaAldrich), 0.1% casein (ThermoFisher, Waltham, MA),

0.5% bovine serum albumin (SigmaAldrich), 0.3% Tween 20,

0.05% sodium azide, and 0.01% E. coli extract to prevent non-

specific binding) and diluted to a final concentration of 1:200,

which is approximately a 1:400 serum dilution. Diluted blood

samples were stored at 4°C until assayed.

All IgG assay reagents were diluted in buffer containing PBS,

0.05% Tween 20, 0.5% bovine serum albumin (SigmaAldrich),

and 0.02% NaN3. Positive and negative controls, which had been

determined by preliminary assay runs as high or low responders,

were included on each IgG detection plate to ensure appropriate

assay performance. The bead mix including all bead regions

contained approximately 1,000 beads/region added to each assay

well. Samples (50 mL of 1:200 dilution of eluted whole blood)

were incubated with beads for 90 min at room temperature

under gentle shaking protected from light in MultiScreen-BV

filter plates (SigmaAldrich). After three washes (wash buffer:

PBS, 0.05% Tween 20) following incubation, beads were
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incubated with 50 mL biotinylated detection antibody (a

mixture of 1:500 anti-hIgG and 1:625 anti-hIgG4, both

produced by Southern Biotech, Birmingham, AL) for 45 min.

After three washes, 50 mL streptavidin-phycoerythrin

(Invitrogen, Waltham, MA) were added to all wells (1:250x of

1 mg/mL) for a 30-min incubation. After three washes, samples

beads were incubated with 50 mL reagent buffer for 30 min,

washed once, and resuspended in 100 mL PBS. Assay plates were

briefly shaken and read on a Bio-Plex 200 machine (BioRad) by

generating the median fluorescence intensity (MFI) for a target

of 50 beads. The final measure, denoted as MFI minus

background (MFI-bg), was reported by subtracting MFI values

of beads on each plate only exposed to sample diluent during the

first incubation step. The MFI-bg threshold for true positive IgG

assay signal against Plasmodium antigens was ascertained if the

sample MFI-bg was higher than the mean + 3SD of the MFI-bg

signal of a panel of 92 known anti-malaria IgG negative

DBS samples.
Statistical analysis

Statistical analysis was performed using SAS (version 9.4; SAS

Institute Inc., Cary, USA). Figures were produced using R

Statistical Software (version 4.1.1; R Foundation for Statistical

Computing, Vienna, Austria) and GraphPad Prism (version 9.3.1;

GraphPad Software, San Diego, USA). Individual covariates

included sex; rapid diagnostic test (RDT, First Response Malaria

Histidine-Rich Protein II (HRP2); II3FRC30, Premier Medical

Corporation, New Jersey) result; and seropositivity to four P.

falciparum antigens, PfAMA1, CSP, LSA-1, and PfMSP1.

Environmental covariates by school GPS coordinate included

elevation, normalized difference vegetation index (NDVI),

population density, rainfall, distance to the nearest water body

(defined as the nearest stream, river, or lake), and air temperature

(Figure S1). Data for environmental covariates were obtained

from outside sources and values corresponding to each school’s

GPS coordinates were sampled using QGIS (v3.20.3-Odense); any

values with a temporal component were averaged across the study

period (Table S1). Log-transformed MFI-bg values represent anti-

SGE IgG levels as a proxy for vector exposure. Student’s t-test

assessed differences in mean vector exposure by individual

covariates. Non-parametric Mann-Whitney U and Kruskal-

Wallis tests assessed categorical differences by environmental

covariates using an empirical Bayes estimate of mean vector

exposure by school; Spearman’s correlation coefficient assessed

the relationship between vector exposure and continuous values of

environmental covariates. A multilevel logistic regression model

provided estimates of prevalence odds ratios, using an outcome of

an above-median anti-SGE IgG response that adjusted for

covariates at the individual and environmental level.
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Spatial analysis

Spatial analysis was conducted in SaTScan v10.0.2 to detect

statistically significant clusters of schools with students who

had elevated anti-SGE IgG responses using a Bernoulli

probability model. Due to a lack of sampling in all regions of

the country, clusters were detected separately in northern

(Nord and Artibonite departments as well as La Tortue,

which is in Nord-Ouest department) and southern

(Grand’Anse and Sud departments) regions of Haiti. Outputs

were overlayed onto geospatial surfaces of Haiti using QGIS.

Spatial interpolation of anti-SGE IgG levels to unsampled

locations within the TAS study area was conducted in QGIS

using inverse distance weighting; select environmental

variables were depicted for visual comparison with the

spatially interpolated results.
Results

Study population

From the 2016 Haiti TAS, 11,541 students had samples

available for the multiplex IgG assay, representing 350 schools of

enrollment (Figure S2). Of students enrolled who had sex and

age data available, 51.8% of participants were female and 55.9%

were 7 years old (Table 1). At the time of enrollment, 16 (0.2%)

children were positive for P. falciparum malaria infection by

RDT, while 919 (8.0%) had a positive IgG response against any

P. falciparum antigen. Overall, seropositivity to PfAMA1 (3.8%)

and PfMSP1 (4.9%) was more common than seropositivity to

CSP (0.8%) and LSA-1 (0.4%). Compared to other departments,

Grand’Anse had the highest proportion of participants who were
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RDT positive (13/810 RDT positive, 1.6%) and had past malaria

exposure (328/1650 P. falciparum IgG positive, 19.9%). The

median elevation of schools was 208 m (IQR: 62-346 m); the

median distance to the nearest water body was 2.2 km (IQR: 0.8-

4.5 km); and the median normalized difference vegetation index

(NDVI) was 0.6 (IQR: 0.5-0.7), indicating relatively dense

vegetation throughout the study area (Table S2) (Brown, 2018).
Individual covariates

The mean log-transformed MFI-bg value for anti-SGE IgG

was 6.07 (SD = 1.36) in the study population. The mean anti-

SGE IgG level was significantly higher among six-year-olds

(6.14, SD = 1.40) compared to seven-year-olds (6.00,

SD = 1.33) (t = 5.37, p<0.0001) (Figure S3A), and there was

no significant difference in anti-SGE IgG levels based on sex

(t = -1.47, p = 0.14) (Figure S3B). Children positive for P.

falciparum infection by RDT at time of enrollment had

significantly higher anti-SGE IgG levels (6.92, SD = 1.38)

compared to those without (6.01, SD = 1.34) (t = -2.64, p =

0.02) (Figure 1A). Children seropositive to LSA-1, PfAMA1, and

PfMSP1 antigens had significantly higher anti-SGE IgG levels

compared to those who were seronegative to each antigen (t = -

4.66, p < 0.0001; t = -4.41, p < 0.0001; and t = -9.50, p < 0.0001,

respectively), while there was no difference in anti-SGE IgG

between children seropositive to the P. falciparum sporozoite

protein CSP and those seronegative (t = -1.39, p = 0.17)

(Figure 1B). Seropositivity to any of the four P. falciparum

antigen targets was associated with significantly higher anti-

SGE IgG levels (6.44, SD = 1.30) compared to those who were

seronegative to all P. falciparum antigens (6.04, SD = 1.36) (t =

-8.93, p<0.0001).
TABLE 1 Descriptive statistics of the study population: Haiti, 2016.

Overall Artibonite Grand’Anse La Tortue* Nord Sud

Total 11541 3153 1650 848 3656 2234

Female 5739 (51.8) 1627 (51.8) 787 (49.2) 419 (49.8) 1736 (52.2) 1170 (53.7)

Age

6 years 4888 (44.1) 1253 (39.9) 688 (43.0) 344 (40.9) 1479 (44.5) 1124 (51.5)

7 years 6199 (55.9) 1887 (60.1) 912 (57.0) 498 (59.1) 1845 (55.5) 1057 (48.5)

Positive RDT† 16 (0.2) 0 (0.0) 13 (1.6) 0 (0.0) 0 (0.0) 3 (0.2)

CSP seropositive 86 (0.8) 14 (0.4) 23 (1.4) 2 (0.2) 23 (0.6) 24 (1.1)

LSA-1 seropositive 50 (0.4) 3 (0.1) 33 (2.0) 1 (0.1) 2 (0.1) 11 (0.5)

PfAMA1 seropositive 441 (3.8) 83 (2.6) 168 (10.2) 21 (2.5) 85 (2.3) 84 (3.8)

PfMSP1 seropositive 564 (4.9) 81 (2.6) 248 (15.0) 6 (0.7) 106 (2.9) 123 (5.5)

Seropositive to any
P. falciparum antigen

919 (8.0) 167 (5.3) 328 (19.9) 29 (3.4) 189 (5.2) 206 (9.2)
fron
Data presented as n (%).
*La Tortue is the only commune in Nord-Ouest department for which data were collected.
†Rapid diagnostic test.
The bold values indicate cumulative total numbers for each column.
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Environmental covariates

Estimated mean values of anti-SGE IgG from children

enrolled in different schools varied from 4.2 to 8.4. A negative

relationship was observed between elevation and anti-SGE IgG

by school (rs = -0.57, p < 0.0001) (Figure 2A); when elevation

was grouped into quartiles, IgG levels significantly decreased

with increasing elevations (X2 = 101.1, p < 0.0001) (Figure 2B).

In just comparing those who were enrolled at schools under

500 m versus those over 500 m in elevation, anti-SGE IgG was

substantially higher at lower elevation (Z = -7.02, p < 0.0001)

(Figure 2C). Negative correlations were observed between NDVI

and anti-SGE IgG levels (rs = -0.09, p = 0.09) and distance to the

nearest body of water (rs = -0.18, p = 0.0009). Rainfall (rs = 0.23,

p < 0.0001), population density (rs = 0.32, p < 0.0001), and

temperature (rs = 0.35, p < 0.0001) were positively correlated

with anti-SGE IgG.
Adjusted model for associations with
anti-SGE IgG

In the adjusted model, sex and seropositivity to PfMSP1

were the only individual factors found to be significantly

associated with high anti-SGE IgG levels (Figure 3, Table S3).

Compared to girls, boys had 11% (95% CI: 0.81, 0.98) lower odds

of high IgG levels, and children seropositive to PfMSP1 had 53%

(95% CI: 1.17, 2.00) higher odds of elevated anti-SGE IgG

compared to those who were PfMSP1 seronegative. Among

environmental covariates, with the referent as the lowest

elevation quartile, quartiles 2, 3, and 4 of increasing elevation

had successively lower odds [aPOR: 0.81 (95% CI: 0.58, 1.12),

0.43 (95% CI: 0.29, 0.63), and 0.34 (95% CI: 0.22, 0.54),
Frontiers in Cellular and Infection Microbiology 05
respectively] of elevated anti-SGE IgG. The same relationship

was observed with NDVI and distance to the nearest water body

when grouped into quartiles, where higher quartiles for both

covariates were associated with lower odds of having high anti-

SGE IgG when compared to the lowest quartile. Increased

rainfall was positively associated with higher anti-SGE IgG

levels; for each additional 50 mm of average rainfall, odds

increased by an estimated 29% (95% CI: 1.12, 1.49). Estimates

for temperature indicated successively higher odds of high anti-

SGE IgG at the top quartiles of temperature values [aPORQ3:

1.11 (95% CI: 0.77, 1.61); aPORQ4: 1.52 (95% CI: 1.00, 2.31)]

compared to the lowest quartile.
Spatial analysis

In total, seven statistically significant clusters were identified

in the study area with children who had elevated anti-SGE IgG

levels (Table S4). One cluster was detected in the southern

peninsula (Figure 4A), while six were detected in northern

Haiti (Figure 4B), with one cluster in Nord department with a

radius of 0.1 km not visible on the map. Spatially interpolated

intensity of anti-SGE IgG levels (Figure 4C) showed that higher

levels of anti-SGE IgG generally corresponded to areas of lower

elevation and coastlines. Visual representation of elevation,

average NDVI, and average rainfall levels in Haiti are shown

in Figure S4.
Discussion

Malaria infection occurs through injection of Plasmodium

sporozoites within mosquito saliva during a blood meal, and
A B

FIGURE 1

Relationship between select individual factors and anti-SGE IgG levels. (A) Boxplots of log-transformed salivary gland extract (SGE)
immunoglobulin (Ig)G levels by malaria infection at time of enrollment, indicated by rapid diagnostic test (RDT) result. (B) Boxplots of anti-SGE
IgG levels by seropositivity to P. falciparum antigen targets. Boxes represent the interquartile range (IQR) of anti-SGE IgG values for each
category; the horizontal line in each box is the median anti-SGE IgG value and the circle represents the mean anti-SGE IgG. Whiskers extend
1.5x IQR above and below boxes, and circles represent outlier anti-SGE IgG values outside of 1.5x IQR.
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estimating exposure to malaria vectors represents an indirect

assessment of malaria risk where Plasmodium parasites are

endemic (Vanderberg and Frevert, 2004). Detecting IgG

against salivary proteins to estimate bite exposure has been

described as a potential complement to traditional methods,

such as the entomological inoculation rate and human biting

rate (Londono-Renteria et al., 2010; Kearney et al., 2021).

However, few studies have characterized human antibody

response to Anopheles salivary antigens in large sample sizes,

and most of these studies have focused on the An. gambiae

salivary gland 6 (gSG6) antigen (Poinsignon et al., 2008;

Londono-Renteria et al., 2010; Drame et al., 2015; Ya-Umphan

et al., 2018; Montiel et al., 2020). Results for different salivary

antigens, immunoassay platforms, and study populations have

varied regarding age, with some finding that IgG increases with

age (Drame et al., 2010; Drame et al., 2013), decreases with age

(Londono-Renteria et al., 2010; Rizzo et al., 2011), or that there is

no association between IgG against salivary proteins and age

(Waitayakul et al., 2006; Idris et al., 2017). Our group previously

reported on the capacity of SGE homogenate from the An.

albimanus STECLA strain to capture human IgG, with stark
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contrasts in IgG levels by age with peak in IgG levels at ages 6

and 7 (Jaramillo-Underwood et al., 2022). This current study’s

enrollment of a large number of children ages 6 and 7 and

inclusion of other individual and environmental factors provides

a clear evaluation of how IgG against salivary proteins can be

used to predict Anopheline exposure and assess risk of exposure

to malaria vectors in low-transmission settings.

While there was no difference in level of anti-SGE IgG by sex

in crude analysis, adjusted results indicated that boys had 11%

significantly lower odds of prevalence of high anti-SGE IgG

compared to girls. In contrast, a study conducted in Artibonite,

Haiti, found that males typically had elevated anti-SGE IgG levels

compared to females, though this finding applied to all ages and

was not statistically significant (Jaramillo-Underwood et al., 2022).

Other groups have similarly found that males were bitten more

frequently by Anophelines than females, which was related to the

greater amount of time they spent outdoors compared to females

(Camargo et al., 1996; Pathak et al., 2012; Guglielmo et al., 2021).

Indeed, while An. albimanus has been shown to exhibit indoor

biting behavior (Bown et al., 1993), it is widely considered to be

exophilic (Hobbs et al., 1986; Zimmerman, 1992; Ryan et al.,
A B

C

FIGURE 2

Relationship between elevation and anti-SGE IgG levels. (A) Loess curve of the relationship between log-transformed salivary gland extract (SGE)
immunoglobulin (Ig)G and elevation. The line represents a fitted smooth curve between elevation and anti-SGE IgG. Shading depicts the range
of values that contain the true range of anti-SGE IgG values by elevation with 95% confidence. (B) Boxplots of anti-SGE IgG levels by elevation
(m) are grouped into quartiles. (C) Boxplots of anti-SGE IgG levels for all schools at elevations above and below 500 m. For plots (B, C), boxes
represent the interquartile range (IQR) of anti-SGE IgG values for elevation categories, the horizontal line represents the median anti-SGE IgG
value, and the circle represents the mean anti-SGE IgG value. Whiskers extend 1.5x IQR above and below boxes, and circles represent outlier
anti-SGE IgG values outside of 1.5x IQR.
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2017). Further investigation of this age- and sex-based association

is needed, including adjustments for outdoor activity levels and

other potential confounders.

Though findings from this study point to a significant

association only between IgG against PfMSP1 and anti-SGE

IgG in the adjusted model, seropositivity to each of the four P.

falciparum antigens was consistently associated with increased

IgG against salivary proteins in bivariate analyses. This is in line

with previous findings from the Thailand-Myanmar border,

which found significant, positive associations between PfMSP1

and CSP seroprevalence and seroprevalence to gSG6-P1 (Ya-

Umphan et al., 2018), but stands in contrast to other studies that

have not found a significant association between anti-Anopheles

IgG and seroprevalence to PfMSP1 (Londono-Renteria et al.,

2020; Jaramillo-Underwood et al., 2022). The present study

included Plasmodium blood-stage and pre-erythrocytic stage

antigens, each having varying levels in humans and longevity

of IgG antibodies in circulation (Ya-Umphan et al., 2018).

Studies in murine models have found that IgG against

Anopheline salivary antigens has modulatory effects on the

host’s immune response to malaria infection (Cross et al.,

1993; Schneider et al., 2011). While a study of children in

Senegal found differential acquisition of IgG responses against

P. falciparum antigens depending on intensity of Anopheles
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exposure (Sarr et al., 2012), it remains to be established what

mechanism is responsible for this difference—and caution must

be used when interpreting results restricted to children.

Seropositivity to PfAMA1 and PfMSP1 could serve as a

reliable proxy for lifetime malaria exposure among young

children, while seropositivity to CSP and LSA-1 likely

indicates malaria exposure within the past few months

(Ondigo et al., 2014). Regardless of IgG dynamics to these

different P. falciparum antigens in children in this study,

higher IgG levels at a population level would indicate more

people being exposed to P. falciparum. Further investigation is

necessary to understand the associations between short- and

long-term malaria exposure and vector exposure, especially

among different age groups.

When adjusting for other variables, RDT result was not

significantly associated with high anti-SGE IgG. While the

number of RDT positive children (n=16) was insufficiently

large to explore associations by infection status, it was

nonetheless an expected finding in Haiti’s low-transmission

setting. This points to the importance of using other markers

of exposure to assess malaria risk when infection is rare; while

0.2% of the study population had a positive RDT, 8% of study

participants—and 20% of participants in Grand’Anse

department—were IgG positive to P. falciparum antigens,
FIGURE 3

Prevalence odds ratio estimates for individual and environmental factors associated with high anti-SGE IgG levels. Point estimates and 95%
confidence intervals are displayed for main effects of multilevel logistic regression. Individual-level effects include sex; rapid diagnostic test
(RDT) result; and seropositivity to P. falciparum antigens CSP, LSA-1, PfAMA1, and PfMSP1. Environmental-level effects include elevation, rainfall,
temperature, population density, normalized difference vegetation index, and distance to the nearest water body; variables that did not have a
linear relationship with the logit were categorized into quartiles.
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indicating the need for serologic methods in assessing both

malaria and vector exposure in this type of setting.

These data link associations between vector exposure (through

the anti-SGE IgG biomarker) and a variety of environmental factors.

Anopheline mosquitoes prefer breeding sites below 500 m in

elevation (Rubio-Palis and Zimmerman, 1997), and the strongly

negative dose-response relationship found in both bivariate and

adjusted analyses between enrollment site elevation and anti-

Anopheles IgG supports these previous findings. Indeed, at lower

elevations, there aremore possibilities for standing water sites where

these mosquitoes can complete their life cycles (Mattah et al., 2017).

While data were unavailable for small aquatic habitats such as

puddles and ditches, a negative dose-response association was still

found between increased distance to larger water bodies and anti-

SGE IgG. Higher vegetation levels were also associated with lower

anti-SGE IgG, contrasting with previous findings indicating that

increased vegetation is associated with enhanced mosquito survival

(Stone et al., 2012). However, knowledge of the resting, host-seeking,

and biting behavior ofmosquitoes inHaiti is limited (Frederick et al.,

2016), and studies of vegetation in other malaria settings may not

apply to Haiti—leaving this result open to further exploration.

Positive associations between anti-SGE IgG and rainfall and

temperature, meanwhile, are in line with current understanding;

while rainfall leads to development of suitable breeding sites, higher

temperatures tend to occur at lower elevations and allow larvae
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maturation. Based on these strong associations, rainfall and elevation

data alonemaybe sufficient for estimating vector exposure inHaiti as

shown by antibody responses to SGE.

The regions of Haiti included as school sampling sites have high

heterogeneity in malaria disease burden and vector density

(Frederick et al., 2016; Cameron et al., 2021). High levels of vector

exposure can still occur even when P. falciparum is not prevalent in

the human population. Visual comparison between spatially

interpolated results and a map of Haiti’s elevation shows that

highest levels of anti-SGE IgG matched well to areas of low

elevation across the TAS study area; this also corresponds with the

strong relationships observedbetween elevation and anti-SGE IgG in

both bivariate and multivariate analyses. Because the other

environmental variables used in this study were temporally

averaged, whereas elevation has static values, this may not only

account for the weak correlations observed in bivariate analyses, but

also for the lack of a clear relationship with anti-SGE IgG levels in

spatial analysis. The low resolution of rainfall data relative to other

environmental variables also makes comparison difficult with

interpolated anti-SGE IgG. More complex geostatistical analyses

could further evaluate these relationships.

This study was subject to multiple limitations. Because

participant enrollment was restricted to participants ages 6-7,

the main limitation is generalizability of our results to other age

groups in Haiti or beyond. As IgG serological data is a proxy for
A B

C

FIGURE 4

Mapping of high An. albimanus anti-SGE IgG levels in Haiti. (A) Significant spatial cluster of high anti-SGE IgG responses located in southern
Haiti, encompassing 130 schools in Grand’Anse and Sud departments. (B) Significant spatial clusters of high anti-SGE IgG responses located in
the northern region of Haiti, encompassing 220 schools in Artibonite and Nord departments and the island of La Tortue. Small, solid circles
represent individual schools, with darker shading to indicate greater mean anti-SGE IgG levels by school. Elevations above 500 m are
represented in grey to distinguish Anopheline preference. (C) Heat map of inverse-distance weighting interpolation of schools’ lognormal mean
anti-SGE IgG levels within the TAS study area.
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vector exposure, another limitation to this study is the

association between anti-SGE IgG and environmental

covariates. Because enrollment was at schools, it is impossible

to know the exact location where exposure to An. albimanus

bites was occurring, as bites could have occurred anywhere

outside the school where children enrolled. However, it is

reasonable to assume that most children’s households were

likely within a few kilometers of the school they were

attending. Another limitation is the lack of data on

entomological measures such as human biting rate (HBR) and

entomological inoculation rate (EIR), which would have been

useful for validating anti-SGE IgG as a biomarker for both vector

exposure and malaria transmission; future directions would

include collection of these data for analysis. Moreover, while

the RDT was the most practical tool available to indicate active

infection in this study, RDTs may not have captured all of the

very-low-density P. falciparum infections in this non-treatment-

seeking population. It is thus possible that a more-sensitive

diagnostic tool such as polymerase chain reaction (PCR) could

have detected more infections in this setting, allowing for a more

robust analysis by infection status (Wu et al., 2015).

Additionally, mosquito salivary gland extracts are crude and

therefore reactivity is likely to multiple factors, including

unknown immunogenic factors. The data generated here are

specific for the extract used in the study only and there are no

guarantees that other extracts will produce the same reactivities.

Finally, the cross-sectional study design did not allow for

examining variations in vector exposure across time and

seasonal differences, including characterization by wet and

dry seasons.

The current study presents results on associations with

vector exposure among school-aged children, as estimated by

IgG levels against Anopheline salivary proteins. Findings

indicate that environmental, serologic, and demographic

variables alike have varying degrees of association with vector

exposure in this group, while spatial analysis can be used to

estimate exposure in unsampled areas. Taken together, these

results point to more-targeted capabilities for predicting and

addressing malaria risk in low-transmission settings using

serological indicators of vector exposure along with other

traditional parameters.
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