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Alterations of the gut
microbiota and short chain fatty
acids in necrotizing enterocolitis
and food protein-induced
allergic protocolitis infants:
A prospective cohort study
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Xiao-Chen Liu1, Lei Bao1* and Lu-Quan Li1*

1Neonatal Diagnosis and Treatment Center of Children’s Hospital of Chongqing Medical University,
National Clinical Research Center for Child Health and Disorders, Ministry of Education Key
Laboratory of Child Development and Disorders, International Science and Technology
Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of
Pediatric, Chongqing, China, 2Department of Neonatology, The first People’s Hospital of Jiulongpo
District, Chongqing, China
Background: Even though presenting with similar clinical manifestations,

necrotizing enterocolitis (NEC) and food protein-induced allergic protocolitis

(FPIAP) have completely different treatments and prognosis. Our study aimed

to quantify and evaluate differences in gut microbiota and short chain fatty

acids (SCFAs) between infants with NEC and FPIAP to better identify these two

diseases in clinical settings.

Methods: A total of 43 infants with NEC or FPIAP in Children’s Hospital of

Chongqing Medical University, China between December 2020 and December

2021 were enrolled. Stool samples were prospectively collected and froze.

Infants defined as NEC were those who presented with clinical courses

consistent with NEC and whose radiographs fulfilled criteria for Bell’s stage 2

or 3 NEC, while those who were healthy in appearance and had blood in the

stool (visible or may be microscopic), had normal bowel sounds in physical

examination, were resolved after eliminating the causative food, and/or had

recurrence of symptoms after oral food challenge (OFC) were defined as FPIAP.

Primers specific for bacterial 16S rRNA genes were used to amplify and

pyrosequence fecal DNA from stool samples. Gas chromatography-mass

spectrometry (GC-MS) technology was used to determine the

concentrations of SCFAs.

Results: Among the 43 infants, 22 were diagnosed with NEC and 21 were

diagnosed with FPIAP. The microbial community structure in NEC infant stools

differed significantly from those in FPIAP infant stools. NEC infants had

significantly higher proportion of Actinobacteria and reduced proportion of

Bacteroidetes compared with FPIAP infants, and the proportions of
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Halomonas, Acinetobacter, Bifidobacterium, and Stenotrophomonas in NEC

infants were significantly higher than that of FPIAP infants. In addition, infants

with NEC had significantly lower levels of acetic acid, propionic acid, butyric

acid, isovaleric acid, and total SCFAs, and higher level of hexanoic acid as

compared to the infants of the FPIAP group.

Conclusions: The differences of gut microbiota composition and

concentrations of SCFAs might represent suitable biomarker targets for early

identification of NEC and FPIAP.
KEYWORDS

necrotizing enterocolitis, food protein-induced allergic protocolitis, gut mictobiota,
short chain fatty acids, newborn
Introduction

Necrotizing enterocolitis (NEC) is a destructive gastrointestinal

disease that occurs primarily in preterm infants with highmorbidity

andmortality. It is associated with intestinal inflammation driven by

microbiota and is characterized by an exaggerated inflammatory

response andnecrosis to the intestine resulting in the loss of intestinal

barrier integrity and eventuallymultiple organ failure (Lu et al., 2014;

Hackam and Caplan, 2018). A US-nationwide study reported that

NEC affects about 8.9% of extremely preterm infants, among them

3.9%infants require surgery (Bell et al., 2022).According toastudyby

a UK specialist centre, the mortality for surgical NEC is 18.9%

(Calvert et al., 2021). Common symptoms of NEC include gastric

retention of enteral feedings, abdominal distension, and blood per

rectum (Sowden et al., 2022). The onset of the disease is usually

fulminant. Antibiotic therapy is usually used and therapeutic

strategies for severe cases are limited and often useless.

Food protein-induced allergic proctocolitis (FPIAP) is a

non-IgE-mediated gastrointestinal disorder with rising

prevalence in food allergy. FPIAP is commonly caused by

severe allergic reactions in the digestive system and has some

overlapping clinical features with NEC, including hematochezia

and diarrhea (Ohtsuka, 2015). The management of FPIAP relies

upon avoidance of dietary triggers, with interval challenge to

assess for resolution, which usually occurs in the first years of life

(Feuille and Nowak-Węgrzyn, 2015). The exact prevalence of

FPIAP is not well established. Study from North American

revealed that the cumulative incidence of FPIAP was 17% over

3 years (Martin et al., 2020). Conversely, a large study of an

Israeli birth cohort reported that the overall prevalence of FPIAP

was low, at 0.16% (Elizur et al., 2012). Due to the lack of specific

biomarkers, the diagnosis of FPIAP is mainly done by

clinical history.

Intestinal dysbiosis has been proposed as one of the possible

factors involved in the pathogenesis of NEC (Lindberg et al.,
02
2020; Tarracchini et al., 2021; Thänert et al., 2021). Early life

microbiota disruption had also been proven to be related to the

development of metabolic disorders and allergies (Savage et al.,

2018). Various studies reported that fecal microbiome from

infants with NEC had increased relative abundances of

Proteobacteria and Klebsiella and deceased relative abundances

of Firmicutes and Bacteroidetes (Pammi et al., 2017a; Olm et al.,

2019). While study described elevated relative abundances of

Firmicutes and Bacteroidetes in FPIAP infants (Berni Canani

et al., 2018a). Short chain fatty acids (SCFAs), mainly acetic acid,

propionic acid and butyric acid, are the products of bacterial

fermentation of carbohydrates in the intestines. Disruption in

gut microbiota could subsequently cause the metabolic disorder

of SCFAs.

NEC and FPIAP are two major diseases in preterm infants

with overlapping clinical features but totally different treatment

regimens. However, there is limited data in the literature

comparing the gut microbiota and SCFAs between the NEC

and FPIAP infants. Therefore, we firstly conducted this study to

compare the gut microbiome and SCFAs of infants with NEC or

FPIAP at a single tertiary center. We hypothesized that there

would be differences in the gut microbial and SCFAs patterns

between NEC and FPIAP infants. These differences might

represent suitable biomarker targets for early identification of

NEC and FPIAP.
Materials and methods

Standard protocol approval, registration,
and patient consent

The study was approved by institutional review board for

human studies of the Children’s Hospital of Chongqing Medical

University (project approval No. 2020104) and registered at
frontiersin.org
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Chinese Clinical Trial Registry (Identifier: ChiCTR2000034672)

(registration date, July 15, 2020). The study was designed to be

prospective protocol, and informed consent was obtained from

patient parents.
Patient characteristics and
sample collection

This prospective cohort trial was conducted in the tertiary

referral NICU of Children’s Hospital of Chongqing Medical

University between December 2020 and December 2021. A total of

168neonateswhopresentedclinical features of abdominal distension

or hematochezia were recruited and the fecal samples of all the final

included neonates were collected. All of the following neonates were

excluded from the study: 1. neonates born with congenital intestinal

disorders, 2. neonates who received probiotics before recruitment, 3.

neonates whose parents refused the treatments, 4. neonates whose

parents insist to discharge, 5. spontaneous intestinal perforation

without radiographic evidence of NEC, and 6. neonates who lost

the follow-up. In the end, 22 of the 168 recruited infants were

diagnosed with NEC, while 21 of the 168 recruited infants were

diagnosed with FPIAP.

Fecal samples of NEC or FPIAP patients were collected as soon

as possible after the diagnosis was made within 24 hours. The

samples were collected directly from the diapers by the nursing stuff

using a sterile cotton swab, and then were placed into a sterile

DNAase-, RNAase-, Eppendorf tube. All samples were frozen and

stored at -80°C until processed.
Case definition and clinical management

NEC was diagnosed based on the Vermont Oxford Network

criteria (Vermont Oxford Network database, ) and staged according

to Bell’s modified staging criteria (Kliegman and Walsh, 1987). The

diagnosis of FPIAP is based on a careful and detailed history

(including diet records), clinical manifestation of being healthy in

appearance and being the presence of blood in the stool (visible or

may bemicroscopic), physical examination of normal bowel sounds,

remission of symptoms after eliminating the causative food, and/or

recurrence of symptomsafter oral food challenge (OFC) (Burks et al.,

2012; Nowak-Węgrzyn et al., 2015;Meyer et al., 2020; Senocak et al.,

2022). In addition, it is important to rule out other causes of blood in

the stools in infancy such as anal fissures or infectious gastroenteritis

(Thompson et al., 1996).
Demographic and clinical variables

Neonatal andmaternalmedical record data were extracted from

themedical recordmanagement system. Neonatal factors including:

gestational age (GA), birth weight (BW), gender, age at sample
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collection, age at NEC/FPIAP diagnosis, antibiotic therapy before

NEC/FPIAP diagnosis, and dietary information (type of feeding).

Maternal factors including: mode of delivery, premature prolonged

rupture of membranes (PPROM), meconium-staining amniotic

fluid, intrauterine fetal distress, maternal hypertension, maternal

diabetes, and use of antenatal corticosteroids.
DNA extraction and 16S rRNA gene
sequencing analysis

DNA of each sample was extracted using the E.Z.N.A.® soil

DNA Kit (Omega Bio-tek, Norcross, GA, USA) following the

manufacturer’s instructions. The quality and concentration of

DNA were determined by 1.0% agarose gel electrophoresis and a

NanoDrop® ND-2000 spectrophotometer (Thermo Scientific

Inc., USA) and kept at -80 °C prior to further use. The V3-V4

region of 16S rRNA gene was amplified using primers 338F (5′-
ACTCCTACGGGAGGCAGCA-3 ′ ) and 806R (5 ′ -
GGACTACHVGGGTWTCTAAT-3′) by an ABI GeneAmp®

9700 PCR thermocycler (ABI, CA, USA). For each extracted

DNA sample, The PCR reaction mixture contains 4 mL 5 × Fast

Pfu buffer, 2 mL 2.5 mM dNTPs, 0.8 mL each primer (5 mM), 0.4

mL Fast Pfu polymerase, 10 ng of template DNA, and ddH2O to

a final volume of 20 µL. PCR was performed with the following

conditions: initial denaturation at 95 °C for 3 min, followed by

27 cycles of denaturing at 95 °C for 30 s, annealing at 55 °C for 30

s and extension at 72 °C for 45 s, and single extension at 72 °C for

10 min, and end at 4 °C. All samples were amplified in triplicate.
PCR products purification

The amplification products were separated by 2% agarose gel

electrophoresis, purified using the AxyPrep DNA Gel Extraction

Kit (Axygen Biosciences, Union City, CA, USA) according to

manufacturer’s instructions, and quantified with a Quantus™

Fluorometer (Promega, USA).
Library preparation and sequencing

DNA library preparation was performed using the TruSeq

DNA PCR-Free Sample Preparation Kit (Illumina, San Diego,

CA), following the manufacturer’s instructions. Sequencing was

performed on Novaseq6000 instrument (Illumina, San Diego,

CA), following the manufacturer’s instructions.
Bioinformatic analysis

Bioinformatic analysis of the gut microbiota was carried out

using the Majorbio Cloud platform (https://cloud.majorbio.
frontiersin.org
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com). Sequences were divided into operational taxonomic units

(OTUs) using similarity levels with a cutoff of 97% similar.

Bacterial OTU representative sequences were assigned to a

taxonomic lineage by a Ribosomal Database Project (RDP)

classifier version 2.2 against the 16S rRNA gene database

(Silva v138). Based on the OTUs information, rarefaction

curves and a-diversity indices including Shannon index,

Simpson index, Ace index, and Chao1 index were calculated

with Mothur v1.30.1 (Schloss et al., 2009). The similarity among

the microbial communities in different samples was determined

by principal coordinate analysis (PCoA) based on Bray-curtis

dissimilarity using Vegan v2.5-3 package. The linear

discriminant analysis (LDA) effect size (LEfSe) (http://

huttenhower.sph.harvard.edu/LEfSe) was performed to identify

the significantly abundant taxa (phylum to genera) of bacteria

among the different groups (LDA score≥4, P < 0.05) (Segata

et al., 2011). Correlation heatmap was conducted to explore the

relationship between SCFAs concentrations and the gut

microbiota composition based on Spearman rank correlation

in R.
SCFAs analysis

Fecal SCFAs concentration was determined by using gas

chromatography-mass spectrometry (GC-MS) technology

(Termo TRACE 1310-ISQ LT, America) as follows: Briefy,

fecal pellets were ground twice for three minutes, placed in an

ice bath for 30 minutes, held at 4°C for 30 minutes, and

centrifuged at 13,000 rpm, at 4 °C for 15 minutes. In addition,

ethyl acetate was added to SCFAs (including acetic, propionic,

butyric, isovaleric, hexanoic acid, and the total SCFAs) and 2-

ethylbutyric acid to obtain standard concentration gradients.

Then, a small sample of the supernatant (1 mL) and the standard
solution were injected into the column and used for detection by

GC-MS. Last ly , Masshunter quant i ta t ive sof tware

(version10.0.707.0; Palo Alto, USA) was used to automatically

identify and integrate target SCFAs. The SCFAs concentrations

of each sample were calculated based on standard curves.
Statistical analysis

All data were analyzed using SPSS version 24.0 software

(SPSS Inc., USA). Data exhibiting a normal distribution were

described as the mean with standard deviation (SD) and were

analyzed by means of Student’s t-test or one-way analysis of

variance (ANOVA). Non-normally distributed measurement

data were presented as the median (interquartile range) and

were analyzed by means of the Wilcoxon rank-sum test.

Categorical data were compared using chi-square tests or

Fisher’s exact test, when appropriate. Receiver operating

characteristic (ROC) curves and all figures were generated
Frontiers in Cellular and Infection Microbiology 04
with GraphPad Prism (version 9.0; California, USA). Two

sided P values < 0.05 were considered statistically significant.
Results

Subjects

A total of 168 infants presenting abdominal distension or

hematochezia over one year were enrolled prospectively. 22

(13.1%) of 168 infants developed NEC, while 21 (12.5%) of

these infants developed FPIAP (Figure 1). The basic clinical

characteristics are shown in Table 1. The median age of onset of

NEC was 11.6 days (interquartile range [IQR], 6.8-16.0 days),

while that of FPIAP was 15.2 days (IQR, 11.0-22.0 days). In NEC

infants, 9.1% of them were exclusively breast-fed, 72.7% were fed

with cow’s milk (CM)-based formula, and 18.2% were fed by

both breast milk and CM-based formula before the onset of

symptoms. While the percentages of these three feeding patterns

in FPIAP infants were 19.1%, 61.9%, and 19.0%, respectively.
Characterization of gut microbiota

DNA sequences from the 43 fecal samples were analyzed,

with a total of 4,438,641 sequences and an average length of 465

base pairs (bps). The rarefaction curves based on sobs index, the

Shannone curves based on Shannon index, and the species

accumulation curves of each group demonstrated that the

sequencing data and depth, and the sample size were sufficient

(Supplementary Figure S1).

A Venn diagram was used to indicate the differences of

bacterial populations between the two groups. The Venn

diagram revealed that 592 OTUs were shared between the

NEC and FPIAP groups, while 1550 and 102 OTUs were

unique to NEC infants and FPIAP infants, respectively

(Figure 2A). Suggesting that the richness of gut microbiota in

NEC infants was higher than that of the FPIAP infants, and

there were shared or specific gut microbiota between the two

groups. As shown in the circos plot, Firmicutes, Proteobacteria,

Actinobacteriota, and Bacteroidota were dominant in both NEC

and FPIAP infants at the phylum level (Figure 2B). The

community abundance on genus level of NEC and FPIAP

infants was shown in Figures 2C, D, which showed noticeable

discrepancies in community structure between infants with NEC

and FPIAP (Figures 2C, D).
Microbial diversity

The a-phylogenetic diversity indexes were analyzed to

explore the community richness and diversity in two groups.

No significant differences were observed between the two groups
frontiersin.org
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in terms of Shannon, Simpson, Ace, and Chao1 indexes

(Figure 3A). The overall microbial structure was then analyzed

in each group at the phylum and genus levels. The results

showed that Firmicutes, Proteobacteria, Bacteroidota, and

Actinobacteriota were the most abundant bacteria in the two
Frontiers in Cellular and Infection Microbiology 05
groups and constituted over 90% of the total bacteria at the

phylum level. Infants in the NEC group had significantly higher

proportion of Actinobacteriota and reduced proportion of

Bacteroidota compared with infants in the FPIAP group

(P<;0.05, Figure 4A). While no significant difference was
TABLE 1 Baseline characteristics of the newborns between the NEC and FPIAP groups.

NEC (n=22) FPIAP (n=21) P value

Gestational age (weeks) 35.5 ± 2.2 36.5 ± 1.4 0.105

Birth weight (g) 2542.9 ± 699.9 2715 ± 482.3 0.355

Male, n (%) 17 (77.3) 14 (66.7) 0.438

Age at sample collection (days) 11.6 (6.8-16.0) 15.2 (11.0-22.0) 0.114

Age at NEC/FPIAP diagnosis (days) 11.6 (6.8-16.0) 15.2 (11.0-22.0) 0.114

Rupture of membranes (>18h), n (%) 8 (36.4) 4 (19.0) 0.206

Meconium-staining amniotic fluid, n (%) 2 (9.1) 1 (4.8) 0.578

Intrauterine fetal distress, n (%) 4 (18.2) 2 (9.5) 0.413

Maternal hypertension, n (%) 3 (13.6) 0 (0) 0.079

Maternal diabetes, n (%) 5 (22.7) 2 (9.5) 0.241

Prenatal use of corticosteroids, n (%) 7 (31.8) 2 (9.5) 0.072

Vaginal birth, n (%) 17 (77.3) 14 (66.7) 0.438

Feeding pattern before the onset of symptoms

Breast feeding, n (%) 2 (9.1) 4 (19.1) 0.412

CM-based formula, n (%) 16 (72.7) 13 (61.9) 0.526

Mixed feeding, n (%) 4 (18.2) 4 (19.0) 1.000

Antibiotic therapy before NEC/FPIAP diagnosis, n (%) 9 (40.9) 3 (14.3) 0.052
front
Data are mean (SD), median (IQR), or n (%), unless otherwise specified. CM, cow’s milk; NEC, necrotizing enterocolitis; FPIAP, food protein-induced allergic proctocolitis.
FIGURE 1

Flow diagram of the inclusion and exclusion processes of the study.
iersin.org
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observed between the two groups in terms of Firmicutes and

Proteobacteria. At the genus level, infants in the NEC group had

significantly higher proportions of Halomonas, Acinetobacter,

Bifidobacterium, and Stenotrophomonas as compared to the

infants of the FPIAP group (P<;0.05, Figure 4B).

Given these findings, principle coordinate analysis (PCoA) of

unweighted UniFrac distances was used to estimate b-diversity of

gut microbiota between the two groups. The NEC group had more

variability compared with the FPIAP group. PCoA of unweighted

UniFrac distance (quantitative, R2 = 0.0812, P = 0.001) showed that

the samples in the FPIAP group were ordinated closely, while the

samples in the NEC group were separated obviously, indicating

differences in bacterial structure in the NEC group (Figure 3B).

To determine the value of gut microbiota in identifying

FPIAP and NEC in the early stage, ROC curves of

Actinobacteriota, Bacteroidota, Halomonas, Acinetobacter,

Stenotrophomonas, and Bifidobacterium were performed, and
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the area under curves (AUCs) were 0.6851, 0.7868, 0.8074,

0.8766, 0.7532, and 0.7814, respectively (Figure 5).
LEfSe analysis

Differential abundant phylotypes between the two groups were

further evaluated by LEfSe using linear discriminant analysis (LDA)

(LDA score≥4). This threshold guarantees that the meaningful taxa

is compared and eliminates most of rare taxa. The figure generated

in the LEfSe analysis (Figure 6A) shows the taxonomic groups with

the largest differences between the two groups at various levels. The

histogram (Figure 6B) shows the differences in 18 phylotypes

between the two groups. At the family level, the abundance of

Enterobacteriaceae in the fecal microbiota was higher in the FPIAP

group, whereas the abundance of Halomonadaceae,

Lactobacillaceae, Moraxellaxceae, and Xanthomonadaceae was
A B

C D

FIGURE 2

Shared and unique microbiota between the necrotizing enterocolitis (NEC) and food protein-induced allergic protocolitis (FPIAP) groups. (A)
The Circos plot shows each main phyla between the NEC and FPIAP groups. Outer bars show the percentage of reads in a category that are
connected to the category at the other end of the drawn band. (B) The heatmap displays genus-level changes (rows) between the samples of
NEC and FPIAP groups (columns). The variation of each genus is indicated by a gradient of color from blue (decease) to red (increase). (C)
Genus-level taxonomic composition of the NEC and FPIAP infants. Relative abundances are reported on the horizontal axis and the two groups
on the vertical axis (D).
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higher in the NEC group. There were four genus levels (Halomonas,

Lactobacillus, Acinetobacter, and Stenotrophomonas) differences

between the two groups, and the abundance of these four genus

was higher in the NEC group as compared to the FPIAP group.
SCFAs production in NEC and
FPIAP infants

In this study, GC-MS was used to investigate the

concentrations of SCFAs in each sample. The results revealed

that compared to the infants with FPIAP, infants with NEC had

significantly lower levels of acetic acid, propionic acid, butyric

acid, isovaleric acid, and total SCFAs, and higher level of

hexanoic acid (all P<;0.05) (Figure 7).

ROC curves fore these metabolites were conducted to

evaluate the value of SCFAs in the early identification of NEC

and FPIAP. The results showed that the AUCs of acetic acid,

butyric acid, hexanoic acid, isovaleric acid, propionic acid, and

total SCFAs were 0.8398, 0.8593, 0.7576, 0.7641, 0.8680, and

0.8658, respectively (Figure 8).
Relationship between SCFAs and the
gut microbiota

To explore the relationship between SCFAs and the gut

microbiota, a heatmap was conducted as shown in Figures 9A, B.

At the phylum level, propionic acid and butyric acid were all

negatively correlated with Bacteroidota, Actinobacteriota,
Frontiers in Cellular and Infection Microbiology 07
Proteobacteria, and Firmicutes, and acetic acid was negatively

correlated with Firmucutes. In the contrary, propionic acid was

positively correlated with Proteobacteria (P<;0.05) (Figure 9A).

At the genus level, most SCFAs were negatively correlated with

Stenotrophomonas , Acinetobacter , Lactobacil lus , and

Halomonas. In the contrary, acetic acid, propionic acid, and

butyric acid were positively correlated with Escherichia-Shigella,

and isobutyric acid was positively correlated with Clostridioides

(P<;0.05) (Figure 9B).
Discussion

New biomarkers for the early identification of FPIAP and

NEC are important. In this study, high throughput 16S rRNA

gene sequencing and GC-MS techniques were used to compare

the gut microbial profiles and diversity and metabolite

characteristics in infants with NEC and FPIAP. The results

confirmed that there are significant differences between the

NEC and FPIAP groups in the main component of the gut

microbiota, with differences between the two groups in species

composition at different classification levels. In addition,

significant differences were also observed between the two

groups in terms of the fecal SCFAs concentrations, including

acetic acid, propionic acid, butyric acid, isovaleric acid, hexanoic

acid, and total SCFAs. These findings could provide value for the

early identification of FPIAP and NEC in clinical settings.

At the phylum level, our study found that Firmicutes and

Proteobacteria constituted the main component of intestinal

microbiome in both NEC and FPIAP infants. As compared to
A B

FIGURE 3

Alpha and beta diversity between the necrotizing enterocolitis (NEC) and food protein-induced allergic protocolitis (FPIAP) groups. There were
no significant differences between the NEC and FPIAP groups in the ace index, Chao1 index, Shannon index, and Simpson index (P>0.05). (A)
There was a significant difference in beta diversity between the NEC and FPIAP groups (P<;0.05). (B) N=22 for NEC and N=21 for FPIAP.
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D E F

FIGURE 5

The value of gut microbiota in the early identification of necrotizing enterocolitis (NEC) and food protein-induced allergic protocolitis (FPIAP) by
receiver operating characteristic (ROC) analysis. The area under curves (AUCs) of Actinobacteriota (A), Bacteroidota (B), Halomonas (C),
Acinetobacter (D), Stenotrophomonas (E), and Bifidobacterium (F) were 0.6851, 0.7868, 0.8074, 0.8766, 0.7532, and 0.7814, respectively. N=22
for NEC and N=21 for FPIAP.
A

B

FIGURE 4

Relative abundances at the phylum level (A) and the genus level (B) in the necrotizing enterocolitis (NEC) and food protein-induced allergic
protocolitis (FPIAP) groups. There were significant differences between the NEC and FPIAP groups in gut microbiota at the phylum and genus
levels. *P<0.05, **P<0.01, ***, and P<0.001. Data was presented as means±SEM, N=22 for NEC and N=21 for FPIAP.
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the infants with FPIAP, infants in the NEC group had a

remarkably lower number of Bacteroidota and higher number

of Actinobacteriota. Previous studies have reported that the gut

characteristic bacterial populations in healthy newborns are

dominant in Lactobacillus and Bifidobacterium in term

neonates, and Enterobacteriaceae, Veillonella, Enterococcus,

and Staphylococcus in preterm neonates, respectively (Tirone

et al., 2019), which are different from those in NEC or FPIAP

infants of our study. There are four main phyla in the gut

microbiota, including Firmicutes, Bacteroidota, Proteobacteria,

and Actinobacteriota (Faith et al., 2013). The two dominant
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phyla, Firmicutes and Bacteroidota, represent over 90% of the

total gut microbiota community (Magne et al., 2020), while

members of Proteobacteria and Actinobacteriota are less

abundant. Bacteroidota contain a large repertoire of genes

involved in acquisition and metabolism of polysaccharides

(Mahowald et al., 2009), and Bacteroides species are reported

to be able to alter gut permeability (Curtis et al., 2014; Hua et al.,

2016). Bacteroidota species have either anti-inflammatory effects

or are involved in the process of proteolysis, however, some

Bacteroidota species are pathogetic. The previous studies

demonstrated that low level of Bacteroidota is associated with
A

B

FIGURE 6

Differentially abundant taxa between the necrotizing enterocolitis (NEC) and food protein-induced allergic protocolitis (FPIAP) groups analyzed
by Linear discriminant analysis (LDA) effect size (LEfSe) were shown in cladogram and histogram. (A) Comparative analysis of the gut microbiota
by LEfSe: the cladogram shows bacterial taxa significantly higher in the group of infants of the same color, in the gut microbiota between NEC
and FPIAP infants; (B) Gut microbiota analysis via LDA score between NEC and FPIAP infants. N=22 for NEC and N=21 for FPIAP.
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D E F

FIGURE 7

Gas chromatography-mass spectrometry (GC-MS) analysis of short chain fatty acids (SCFAs) in fecal samples from necrotizing enterocolitis
(NEC) infants and food protein-induced allergic protocolitis (FPIAP). (A) acetic acid, (B) butyric acid, (C) hexanoic acid, (D) isovaleric acid, (E)
propionic acid, and (F) Total SCFAs. **P<;0.01. Data was presented as means±SEM, N=22 for NEC and N=21 for FPIAP.
A B C

D E F

FIGURE 8

The value of some short chain fatty acids (SCFAs) in the early identification of necrotizing enterocolitis (NEC) and food protein-induced allergic
protocolitis (FPIAP) by receiver operating characteristic (ROC) analysis. The area under curves (AUCs) of acetic acid (A), butyric acid (B), hexanoic
acid (C), isovaleric acid (D), propionic acid (E), and Total SCFAs (F) were 0.8398, 0.8593, 0.7576, 0.7641, 0.8680, and 0.8658, respectively. N=22
for NEC and N=21 for FPIAP.
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allergic disease and factors related to allergic disease, such as a

Western lifestyle and cesarean section delivery (De Filippo et al.,

2010; Abrahamsson et al., 2012). In contract, an enrichment of

Bacteroides was found in non-IgE-mediated Cow’s milk allergy

children (Berni Canani et al., 2018b). Specifically, Kirjavainen

et al. found high abundance of Bacteroides in the gut

microbiome of infants with a high degree of milk allergy, early

onset atopic eczema, and a strong family history of atopic

disorders (Kirjavainen et al., 2002). A meta-analysis by Pammi

et al. reported that fecal microbiome from infants with NEC had

increased relative abundances of Proteobacteria and decreased

relative abundances of Firmicutes and Bacteroidota (Pammi

et al., 2017b), consistent with our results. In our study, the

abundance of Actinobacteriota was higher in the NEC group as

compared to the FPIAP group, which consistent with a previous

study by Torrazza et al., in which a higher proportion of

Actinobacteria was observed in NEC cases compared to

controls (Torrazza et al., 2013). Actinobacteriota are Gram-

negative bacteria with linear colonies and numerous species,

such as Bifidobacterium, which are involved in immune

modulation and metabolic activities. These findings indicated
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that dysbiosis of the gut microbiota plays an important role in

the development of NEC and FPIAP.

At the genus level, our study also showed that differences in

the gut microbiota at the genus level were notable between the

NEC and FPIAP groups. The abundances of several genera of

Ha lomonas , Ac in e t obac t e r , B ifidobac t e r i um , and

Stenotrophomonas were remarkably higher in the NEC group

as compared to the FPIAP group. Belongs to the class

Gammaproteobacteria and the family Halomonadaceae,

Halomonas is a Gram-negative, aerobic, rod-shaped, extremely

halotolerant bacteria, which has been found to have cytotoxic

activity (Kim et al., 2013; Cheffi et al., 2021). Stenotrophomonas

is an opportunistic pathogen of significant concern to

susceptible patient populations, it can cause various

nosocomial and community-acquired infections in humans

and shows low susceptibility to many antibiotics (Sánchez,

2015; Brooke, 2021). To date, no studies have been carried out

to explore the correlation between Stenotrophomonas and NEC

or FPIPC infants. Acinetobacter is a gram-negative bacterum and

is one of the most significant emerging multidrug-resistant

pathogens. It is the cause of various hospital-acquired diseases
A

B

FIGURE 9

Relationship between the gut microbiota and short chain fatty acids (SCFAs) at the phylum level (A) and the genus level (B) in the study. Some
flora and SCFAs were negatively related, represented in blue, and others were positively related, represented in red. The darker the color, the
higher the correlation was. *P<0.05, **P<0.01, and ***P<0.001. Data was presented as means±SEM, N=22 for necrotizing enterocolitis (NEC)
and N=21 for food protein-induced allergic protocolitis (FPIAP).
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including septicemia, pneumonia, and wound infections

(Geisinger et al., 2019). The genus Bifidobacterium is included

within the phylum Actinobacteria and plays an important role in

digestion and gut immunity. Previous studies have shown that

some Bifidobacterium species have proteolytic activity (De

Palma et al., ; de Almeida et al., 2020), which helps the protein

absorption. Chen et al. found that the abundance of

Bifidobacterium increased significantly in children with food

protein allergy (Chen et al., 2016). Some studies have found that

children received Bifidobacterium supplementation had

significantly reduced allergic symptoms (Ismail et al., 2016; Liu

et al., 2018). Decrease in the abundance of Bifidobacterium leads

to a decrease in protein absorption and transformation, which

may be the cause of FPIAP. Generally, the significant differences

in abundance of Halomonas, Acinetobacter, Bifidobacterium,

and Stenotrophomonas between the two groups may serve as

biomarkers for NEC and FPIAP infants and suggest a role for the

gut microbiota in the pathogenesis of the main symptoms of

the disorder.

In this study, no significant differences were observed in

mode of delivery, feeding patterns, and antibiotic exposure

between the NEC and FPIAP groups, suggesting that the

microbial diversity between the two groups in the present

study may be associated with other factors. Substantial

evidence suggested that the abundance and diversity of

microbiota could be affected by multiple factors, including

mode of delivery, feeding patterns (i.e., breast milk, formula,

or both), and antibiotic exposure. Study reported that the

microbial diversity was lower in infants delivered via C-section

than in infants delivered vaginally (Korpela et al., 2018; Korpela

et al., 2018; Lundgren et al., 2018). In fecal samples of infants

born by vaginal delivery, the Bifidobacterium genus was

predominant (Biasucci et al., 2008), followed by Bacteroides

and enterobacteria (Fallani et al., 2010). In addition, Willers

et al. showed that infants born by vaginal delivery had higher

levels of S100 proteins as compared to infants born by cesarean

delivery, which was associated with higher abundance of

Actinobacteria and Bifidobacteriaceae, and lower abundance of

Gammapro t eobac t e r i a -pa r t i cu l a r l y oppor tun i s t i c

Enterobacteriacea (Willers et al., 2020). Investigating to the

role of diet, Pammi et al. reported that significant differences

in microbial diversity were observed among infants with

different feeding types (Pammi et al., 2017a). In particular,

formula-fed infants who developed NEC had more

Proteobacteria and less Firmicutes compared to breast milk-

fed controls (Pammi et al., 2017a). Investigating to antibiotic

exposure, study also found that OTU richness between control

infants who didn’t received antibiotics and NEC infants who

received antibiotics differed significantly (Pammi et al., 2017a).

Antibiotic treatment decreases a-diversity of the individual’s

microbiome (Yassour et al., 2016). Besides, maternal treatment

with antibiotics prior to delivery has also been related to a

decrease in microbial diversity in infants, especially lacking
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Bifidobacterium, which is a genus regarded as favorable

(Aloisio et al., 2014). The possible reason for the inconsistence

between our findings and the above studies is due to the small

sample size, and studies with a larger sample size are needed.

In the current study, NEC infants had significantly lower

levels of acetic acid, propionic acid, butyric acid, isovaleric acid,

and total SCFAs, and higher level of hexanoic acid compared

with the FPIAP infants. SCFAs, which are produced by

fermentation of dietary fibre by gut microbiota, are potential

mediators involved in the intestinal immune function, including

the inhibition of the production of pro-inflammatory factors and

the maintenance of gut barrier function (Tedelind et al., 2007).

Among the most common SCFAs, acetic acid, propionic acid,

and butyric acid account for 90-95% of SCFAs in the human

colon (Soldavini and Kaunitz, 2013). Some studies reported that

acetic acid, propionic acid, and butyric acid can be produced by

the fermentation of Ruminococcus (Lin et al., 2021; Liang et al.,

2021). Besides, Some Lactobacillus strains, including L.

rhamnosus GG, L. gasseri PA 16/8, L. salivarius spp salcinius

JCM 1230, L. agilis JCM 1048, and L. acidophilus CRL 1014 were

reported to participate in the production of acetic acid,

propionic acid, and butyric acid (Markowiak-Kopeć and

Śliżewska, 2020). Acetic acid is the most abundant SCFAs in

the colon and constitutes over half of the total SCFAs content in

the feces (Ziętek et al., 2021). Propionic acid is produced

primarily by Bacteroidetes and Firmicutes (Russell et al.,

2013). Acetic, propionic, and butyric acid have been shown to

induce apoptosis (Kotunia et al., 2010), and butyric acid has been

shown to exert the most significant anti-inflammatory property

of all SCFAs and can improve the intestinal barrier function and

mucosal immunity (Liu et al., 2018). Isovaleric acid and

hexanoic acid are putrefactive acids generated by the

unabsorbed amino acids or proteins reaching the intestines.

Adequate balance of microbiota and metabolites could allow

intestinal homeostasis and immunologic tolerance to food

antigens, while imbalance of gut microbiota and their

metabolites (SCFAs) possible influence key immunologic

events that enhance allergic sensitization to food antigens.

Therefore, the differences of the concentrations of SCFAs and

the components of gut microbiota between the NEC and FPIAP

groups could provide new strategies for the differential diagnosis

of NEC and FPIPC.

In addition, we explored the value of the gut microbiota and

SCFAs in the early identification of NEC and FPIAP and the

results showed that the AUCs of Actinobacteriota, Bacteroidota,

Halomonas, Acinetobacter, Stenotrophomonas, Bifidobacterium,

acetic acid, propionic acid, butyric acid, isovaleric acid, hexanoic

acid, and total SCFAs were 0.6851, 0.7868, 0.8074, 0.8766,

0.7532, 0.7814, 0.8398, 0.8680, 0.8593, 0.7641, 0.7576, and

0.8658, respectively. This finding suggests that they have

moderate predictive value (Swets, 1988). Investigating to the

heatmap, the production of metabolites was associated with the

decline in Bacteriodota, Actinobacteriota, and Firmicutes, and
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the increase in Proteobacteria, suggesting that it might be the

joint work of the gut microbiota to produce metabolites.

This study has some limitations. Firstly, the samples were

collected at a single hospital, and the cohort size was small. A

large-scaled study is needed to further clarify the biomarkers in

gut microbiota and SCFAs between the two groups. Secondly, as

the gut microbiota composition was identified using 16S rRNA

sequencing, we could not evaluate bacterial genomic functions

or compare the composition at the species level. Detailed

analysis using shotgun metagenomics would enable

these evaluations.
Conclusions

The composition of gut microbiota and concentrations of

SCFAs of NEC infants is different from that of FPIAP infants.

NEC infants had higher abundances of Actinobacteria,

Halomona s , Ac ine t oba c t e r , B ifidobac t e r i um , and

Stenotrophomonas, and lower abundance of Bacteroidota,

lower levels of acetic acid, propionic acid, butyric acid,

isovaleric acid, and total SCFAs, and higher level of hexanoic

acid as compared to FPIAP infants. The differences of gut

microbiota composition and concentrations of SCFAs might

represent suitable biomarker targets for early identification of

NEC and FPIAP.
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