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Introduction: A growing body of evidence indicates that the dysbiosis of both

mammary and intestinal microbiota is associated with the initiation and

progression of breast tumors. However, the microbial characteristics of

patients with breast tumors vary widely across studies, and replicable

biomarkers for early-stage breast tumor diagnosis remain elusive.

Methods: We demonstrate a machine learning-based method for the analysis

of breast tissue and gut microbial differences among patients with benign

breast disease, patients with breast cancer (BC), and healthy individuals using

16S rRNA sequence data retrieved from eight studies. QIIME 2.0 and R software

(version 3.6.1) were used for consistent processing. A naive Bayes classifier was

trained on the RDP v16 reference database to assign taxonomy using the

Vsearch software.

Results: After re-analyzing with a total of 768 breast tissue samples and 1,311

fecal samples, we confirmed that Halomonas and Shewanella were the most

representative genera of BC tissue. Bacteroides are frequently and significantly

enriched in the intestines of patients with breast tumor. The areas under the

curve (AUCs) of random forest models were 74.27% and 68.08% for breast

carcinoma tissues and stool samples, respectively. The model was validated for

effectiveness via cohort-to-cohort transfer (average AUC =0.65) and leave-

one-cohort-out (average AUC = 0.66). The same BC-associated biomarker

Clostridium_XlVa exists in the tissues and the gut. The results of the in-vitro

experiments showed that the Clostridium-specific-related metabolite

deoxycholic acid (DCA) promotes the proliferation of HER2-positive BC cells

and stimulates G0/G1 phase cells to enter the S phase, which may be related to

the activation of peptide-O-fucosyltransferase activity functions and the

neuroactive ligand–receptor interaction pathway.
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Discussion: The results of this study will improve our understanding of the

microbial profile of breast tumors. Changes in the microbial population may be

present in both the tissues and the gut of patients with BC, and specificmarkers

could aid in the early diagnosis of BC. The findings from in-vitro experiments

confirmed that Clostridium-specific metabolite DCA promotes the

proliferation of BC cells. We propose the use of stool-based biomarkers in

clinical application as a non-invasive and convenient diagnostic method.
KEYWORDS

breast cancer, 16S rRNA, microbiome, intestine, cancer diagnosis, random forest,
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Introduction

Breast cancer (BC) is a common type of cancer and accounts

for most cancer-related deaths in women worldwide. According to

the latest cancer statistics report, an estimated 2,261,419 new cases

(11.7% of total cancer cases) and 684,996 cancer deaths (6.9% of

total cancer deaths) were reported in women worldwide in 2020

(Sung et al., 2021). In recent years, the BC incidence rates have

continued to increase at an annual rate of 0.5% per year (Siegel

et al., 2021). The findings of a hallmark population-based study on

cancer indicated that early-stage detection can help reduce breast

cancer mortality by one-third (Elmore et al., 2005; Jafari et al.,

2018). As the availability of high-throughput sequencing

technology has continued to expand and its cost has decreased,

the identification and characterization of the tissue or gut

microbiome in patients with BC have constituted an active area

of research. In addition to the various imaging techniques and

biochemical parameters, tumor-related microbes may be used as

diagnostic biomarkers for breast diseases, and investigating the

microbiome could be a novel cancer diagnostic method.

Our perception of sterility in breast tissue has undergone

significant changes over time. The breast microbiome may

originate from the intestine and is highly malleable (Shively

et al., 2018; Chadha et al., 2021). Recent advances in

metagenomics and next-generation sequencing technologies

have promoted a more comprehensive understanding of the

complex relationships between human microbiota and breast

disease. We confirmed that, across different studies, mammary

gland tissues were found to harbor disparate microbial

communities, some even exhibiting contrasting microbial

abundances. Hieken et al. confirmed that Fusobacterium,

Gluconacetobacter, Lactobacillus, and Atopobium were

significantly enriched in breast cancerous tissues compared

with those in healthy individuals (Hieken et al., 2016).

Malignant tumor tissues also showed an increase in the

relative abundance of Ralstonia, and a relative decrease in the
02
abundance of Methylobacterium was also observed compared

with that in healthy controls in another study (Costantini et al.,

2018). However, Xuan et al. showed Methylobacterium to have

the greatest prevalence in malignant tumor tissues (Xuan et al.,

2014). The gut microbiome, as one of the major sources of the

breast microbiome, contributes to physiological immune

modulation and serves as a critical component in the

occurrence and progression of mammary carcinoma (Zhang

et al., 2020; Zhang et al., 2021). Similarly, previous studies have

not reported the same findings on intestinal microorganisms in

patients with breast diseases. Studies focused on population-

based community metrics have shown that the populations of

Coprococcus, Butyricimonas, and Odoribacter in fecal samples

were most inversely associated with BC (Bobin-Dubigeon et al.,

2021). In other studies, there is a high abundance of Bacteroides,

Clostridiaceae, Ruminococcaceae, and Faecalibacterium in

stool samples collected from patients with BC, along with a

low abundance of Romboutsia, Coprococcus, Dorea, and

Lachnospiraceae (Goedert et al., 2015; Byrd et al., 2021).

Substantial variability in the abundances of microbial

communities has been reported in different studies, possibly

owing to various biological factors, such as individual genetic

variance, ethnicity, and dietary habits that influence microbiota

composition. Furthermore, the presence of hypervariable

regions, the sequencing platform and the bioinformatics

pipelines used, and the method of data processing differ from

study to study, thus making tissue and fecal microbiome more

challenging to analyze uniformly and systematically.

Meta-analysis serves as a useful research tool owing to its

informative and unbiased nature, which helps reduce the effect

of biological and technological differences across multiple

studies and provide stabilized and accurate results (Gurevitch

et al., 2018). Several meta-analyses have been performed for the

identification of microbial markers in colorectal cancer based on

16S rRNA or shotgun genome sequencing datasets (Sze and

Schloss, 2018; Mo et al., 2020; Wu et al., 2021). An urgent need
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exists to explore and precisely identify stool- and tissue-based

microbial biomarkers. While findings from certain studies have

confirmed that the microbial communities differ significantly

between patients with breast diseases and healthy controls, the

co-differences of microbes between these two body sites

remain unclear.

In this study, we performed an integrated analysis using

public 16S rRNA sequence data from both breast tissues (n =

768) and stool samples (n = 1,311) from healthy women and

women with breast diseases across eight studies to improve our

understanding of specific microbial community in breast

diseases and specific microbe-related metabolics in breast

carcinogenesis. Clostridium_XlVa had simultaneously high

expression both in breast tissue and gut environment. DCA

was the main and specific metabolic biotransformed by

Clostridium with primary bile acids and reabsorbed in the

colon and recycled to the liver, then conjugating to glycine or

taurine, similar to primary bile acids inducing biliary lipid

secretion, and solubilizing cholesterol in the bile, contributing

approximately 20% to the bile acid pool (Chiang, 2013).

Yoshimoto et al. revealed that the levels of DCA and

Clostridium genus increased simultaneously in high-fat diet

mice by liquid chromatography–mass spectrometry (LC-MS)

and 16S rRNA analysis (Yoshimoto et al., 2013). Considering the

specific 7a-dehydroxylating activity carried by the Clostridium

genus, the explanation for it is that the Clostridium genus

contributes to an increase in the DCA level. DCA could

promote M1 macrophage polarization and pro-inflammatory

cytokine production (Wang et al., 2020) and be involved in

gastrointestinal cancer dose-dependently (Nagathihalli et al.,

2014). DCA exposure could inhibit farnesoid X receptor

expression and enhance the Wnt–b-catenin signaling pathway,

thereby contributing to colon carcinogenesis (Yao et al., 2022).

In addition, the enterohepatic circulation of DCA provokes

senescence-associated secretory phenotype in hepatic stellate

cells, facilitating hepatocellular carcinoma development

(Yoshimoto et al., 2013). These notions prompted us to

examine if Clostridium-specific-related DCA has key roles in

BC development. Therefore, DCA was used to demonstrate the

effect of specific microbe-related metabolics on BC cell growth

and apoptosis. Based on these results, we combined the method

with proteomic analysis to investigate the mechanisms by which

microbial metabolites contribute to BC development. In

addition, after pooling data from different cohorts, we

constructed a random forest (RF) model to distinguish

patients with BC from non-cancer controls. Cohort-to-cohort

transfer validation and leave-one-cohort-out (LOCO) validation

across multiple datasets were employed to overcome the

influence of technical discrepancies and cohort heterogeneity.

Collectively, our study suggests that distinct microbiota

populations are present in breast tissues or gut of patients with

BC and non-cancer controls, the RF model constructed based on

specific members of the microbial community can more
Frontiers in Cellular and Infection Microbiology 03
accurately classify patients with BC, and Clostridium-specific

DCA could stimulate BC cell growth.
Materials and methods

Study selection

PubMed was searched for studies (published on or before up

to 01 January 2022) that used breast tissue or stool microbiota

obtained from patients with breast disease using the terms

“(Breast Neoplasms or breast cancer) AND (microbiome or

microbiota) AND (metagenomic or mNGS or 16S rRNA).”

The search was limited to studies that fit the following criteria:

1) had original data, 2) used fecal or breast tissue samples, and 3)

included breast disease and normal control populations.

Systematic reviews, letters to the editors, conference papers,

case reports, and meta-analyses data were excluded. Of the

nine studies that fulfilled the criteria, in eight studies, the 16S

rRNA gene was characterized, and in only one study, shotgun

metagenomics was used. The eight studies that characterized the

16S rRNA gene were included in this meta-analysis.
Data retrieval and processing

Raw sequencing data were retrieved from the National

Center for Biotechnology Information Sequence Read Archive

(NCBI-SRA) database using the following accession numbers

(BioProject ID): PRJNA624822 for Nejman et al. (2020),

SRP076038 for Urbaniak et al. (2016), PRJNA335375 for

Hieken et al. (2016), PRJNA637875 for Thyagarajan et al.

(2020), PRJNA383849 for Goedert et al. (2018), PRJNA658160

for Byrd et al. (2021), PRJNA566060 for Yao et al. (2021), and

PRJNA630839 for Guan et al. (2020). The downloaded FASTQ

data of each study were reprocessed separately with consistent

processing to avoid the biases arising from bioinformatics

analyses. All 16S rRNA gene datasets containing forward and

reverse read files were processed using a standardized pipeline in

QIIME 2.0 after an initial visualization of read quality using the

FastQC and MultiQC software. The DADA2 (V.2018.11)

software, wrapped in QIIME2, was used to filter sequencing

reads with quality score Q >25 and denoise reads into amplicon

sequence variants, which resulted in the formation of feature

tables and representative sequences for each study.
Combined processing

Feature tables and representative sequences in each study

were merged using QIIME2’s merge and merge-seqs commands.

R software (version 3.6.1) was used to conduct further analyses

using the data exported from QIIME2. A naive Bayes classifier
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was trained on the RDP v16 reference database to assign

taxonomy using the Vsearch software. Sequences that were

identified as “Chloroplast,” “Mitochondria,” and those that

were unclassified at the kingdom level were removed from the

datasets. Samples that could not be mapped to any species were

omitted. ANOVA-like analysis was used to quantify the effect of

potential confounding factors and disease status. The total

variance within the abundance of a given ASV was compared

to the variance explained by disease status (BC, benign tumor,

and normal) and the variance explained by confounding factors

including study, age, and BMI. Variance calculations were

performed on ranks in order to account for the non-Gaussian

distribution of microbiome abundance data. Potential

confounders were transformed into categorical data (study) as

quartiles (age) and for the case of BMI into lean (>25), obese

(25–30), and overweight (>30). Beta diversity in microbial

composition was calculated using the Bray–Curtis dissimilarity

metrics, and principal coordinate analysis (PCoA) was

performed based on the Bray–Curtis dissimilarity matrix using

the R “vegan” package. Microbiome data were CLR-transformed

using the “compositions” package in R software. The significance

of differential abundance was tested on genera using the STAMP

software after CLR transformation of microbiome data (Welch’s

t-test and P-values <0.05 were considered significant). BC-

related biomarkers were identified by the Wilcoxon rank-sum

tests based on CLR-transformed data. Genera with P <0.05 and

high abundance in the BC group were considered as BC-

related biomarkers.
RF model construction and evaluation

Based on the sequence information, we prepared RF models

using the “randomForest” package with default parameters to

distinguish the cancer status from the non-cancer status. Stratified

10-fold cross-validation was used to configure the training and

testing datasets. Theminimum error was calculated using five-fold

cross-validation with the “rfcv” function. Based on the Mean-

Decrease-Accuracy values, the model was constructed using the

top 30 most important genera, which are considered as important

microbial characteristics. LOCO and cohort-to-cohort validation

were performed to evaluate the generalizability of microbe-based

BC classifiers, including geographic variation and technical

differences in the 16S rRNA microbial data across multiple

studies. In LOCO validation, data from one cohort were used as

the testing set to assess the training set, which was set by pooled

data from the remaining cohorts. In the cohort-to-cohort

validation, we constructed the RF classifier models using a

single cohort and used other cohorts as the testing data

separately to evaluate classifiers. In addition, a nested cross-

validation was used on the training study to calculate the

within-study accuracy.
Frontiers in Cellular and Infection Microbiology 04
Cell line culture and the configuration of
metabolite solution

The human breast cancer cell lines MDA-MB-231 and SK-

BR-3 were purchased from the ATCC (ATCC, Rockville, MD,

USA) and cultured in complete DMEM (12800-058; Thermo

Fisher Scientific, Inc., China) supplemented with 10% fetal

bovine serum (FBS; C04001-500; Biological Industries, China)

and 1% penicillin/streptomycin (P1400, Solarbio, China) at 37°C

in 5% CO2. DCA (D103698; Aladdin, China) was dissolved in

DMSO (DH105-2; Dingguo Biology, China), and a stock

solution of 250 mM was stored at −20°C.
Cell proliferation assay

Growth assays were performed using a Cell Counting Kit-8

(CCK8) assay kit (CK04; Dojindo Laboratories, Japan). Briefly,

MDA-MB-231 and SK-BR-3 cells were seeded in 96-well plates

at 103 cells/well and cultured for 24 h and then treated with DCA

for 24 h. After treatment, CCK8 was added to each well (10 ml of
CCK8 substrate and 90 ml of complete DMEM), and the cells

were incubated at 37°C for 1 h. The optical density (OD) was

determined using a microplate reader at 450 nm (Multiskan

MK3; Pioneer Co-operative UK Ltd., Britain). After

normalization, cell viability was calculated using the formula:

Cell viability = (OD value of the experimental well −OD value of

the blank well)/(OD value of the control well − OD value of the

blank well) × 100%.
Apoptosis analysis

We detected apoptosis by Annexin V FITC/PI staining. SK-

BR-3 cells were seeded in six-well plates (105 cells/well), cultured

for 24 h, and then treated with DCA (0, 40, 60, and 80 mmol/L)

for 24 h. Following this, SK-BR-3 cells were harvested and

resuspended in 500 ml of binding buffer. Five microliters of

Annexin V/FITC (WLA001c; Wanleibio, China) and 10 ml of PI
solution were added and incubated in the dark for 15 min at 25°

C. The cells were assessed using a flow cytometer (BD FACSAria

II; BD Co., USA), and data were analyzed using the

FlowJo software.
Cell cycle analysis

Cell cycle analysis was performed using flow cytometry.

Briefly, SK-BR-3 cells were seeded in six-well plates (105 cells/

well) and incubated for 24 h in DMEM supplemented with DCA

(0, 40, 60, and 80 mmol/L). The cells were then harvested,

centrifuged (1,500 rpm, 5 min), and fixed overnight with 70%
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precooled ethanol at 4°C and resuspended in ice-cold

phosphate-buffered saline (PBS). Subsequently, 100 ml of

RNase A solution (WLA010a; Wanleibio, China) was added to

the cell suspension, and the cells were incubated for 30 min at

37°C in a water bath. Five hundred microliters of PI was added

to the cells, which were incubated in the dark at 4°C for 30 min.

A flow cytometer was used to determine the cell cycle of the cells,

and data were analyzed using the FlowJo software.
Proteomics analysis

SDT buffer (4% SDS, 100 mM of Tris–HCl, pH 7.6) was

added to the sample. The lysate was sonicated and boiled for

10 min. After centrifugation at 14,000g for 15 min, the protein

content in the supernatant was quantified using the BCA Protein

Assay Kit (P0012, Beyotime, China). The proteins were

separated on a 12% SDS-PAGE gel. One hundred microliters

of iodoacetamide (IAA) (100 mM of IAA in UA buffer) was

added to block the reduced cysteine residues, and the samples

were incubated for 30 min in the dark. Finally, the protein

suspensions were digested using 4 mg of trypsin (V5117,

Promega, China) in 50 mM of NH4HCO3 buffer overnight at

37°C. The peptide segment was desalted using a C18 column.

The peptide content was estimated based on the UV light

spectral density at 280 nm using an extinction coefficient of

1.1 in a 0.1% (g/L) solution.
Analysis of mass spectrometry data

The samples were analyzed on a nanoElute (Bruker, Bremen,

Germany) coupled to a timsTOF Pro (Bruker, Bremen,

Germany) equipped with a CaptiveSpray source. Peptides were

separated on a 25-cm × 75-mm analytical column, with 1.6 mm of

C18 beads with a packed emitter tip (IonOpticks, Australia). The

column was equilibrated using 4 column volumes before loading

the sample in 100% buffer A (99.9% Milli-Q water, 0.1% FA).

The samples were separated at 300 nl/min using a linear gradient

as follows: 1.5 h gradient: 2%–22% buffer B for 75 min, 22%–37%

buffer B for 5 min, 37%–80% buffer B for 5 min, and hold in 80%

buffer B for 5 min.
Data analysis

The MaxQuant software was used to analyze the MS data. A

maximum of two missed cleavage sites and a mass tolerance of

40 ppm for fragment ions were allowed. The cutoff of the global

false discovery rate (FDR) for peptide and protein identification

was set to 0.01. Protein abundance was calculated based on the
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normalized spectral protein intensity (LFQ intensity). Protein

fold change >2 or <0.5 and P-value (Student’s t-test) <0.05 were

considered to indicate differentially expressed proteins.
Bioinformatics analysis

All protein sequences were aligned to those present in the

NCBI BLAST+. The GO terms of the sequences were selected

using the top Bit-Score by Blast2GO. Following this, the

annotation from GO terms to proteins was completed. Fisher’s

exact test was used to enrich the GO terms by comparing the

number of differentially expressed proteins and total proteins

correlated with the GO terms. The KEGG database was used for

pathway analysis. Fisher’s exact test was used to identify the

significantly enriched pathways.
Statistical analysis

Each experiment was performed at least three times to

ensure reproducibility. Results are presented as mean ± SEM.

Significance was calculated using one-way ANOVA followed by

Bonferroni’s multiple comparisons test. GraphPad Prism 8.0 was

used to perform all statistical analyses. Statistical significance

was considered at *P <0.05 and **P <0.01.
Results

Characteristics of the datasets in
the meta-analysis

Eight studies that employed the 16S rRNA sequencing

method for microbiome analysis of tissue and fecal samples

from patients with benign and malignant breast disease and

healthy controls were selected in this meta-analysis to

characterize the distinct microbial characteristics. Among the

studies, four were conducted in the USA, two in China, one in

Israel, one in Canada, and one in Ghana. Notably, we only

included data obtained from breast tissue samples from studies

conducted by Nejman et al. and Hieken et al., and data from

non-breast and non-tissue samples were excluded. In total, we

pooled data from eight studies, which included data from 768

tissue samples and 1,311 fecal samples. The sample sizes and

clinicopathological data from the datasets for each cohort are

presented in Table 1. After quality control using the DADA2

method, data satisfying the follow-up requirements for

subsequent analysis were included. A summary of sequences

analyzed by DADA2 is listed in Table 2.
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Confounder analysis of the microbiome
associated with BC

As studies differed from one another in many biological

aspects, we first investigated the effect of potential confounders

(including sample type, study, patients’ age, BMI). This analysis
Frontiers in Cellular and Infection Microbiology 06
revealed that “sample type” has a predominant impact on species

composition (Figure 1A), and analyzing the microbiome in

different sample types separately is essential. Additionally, we

quantified the effect of age, BMI, and study on microbiome

composition and contrasted this with disease status (Figures S1,

S2). The variance explained by “study” was greater than that by
TABLE 2 The number of reads produced by each step during quality control.

Cohorts No. of samples Sequence lengths (bp) No. of reads

Input Filtered Denoised Merged Non-chimeric

Nejman
(2020)

608 150-PE 121,500,721 117,747,260 117,546,602 98,076,145 95,936,476

Urbaniak
(2016)

68 100-SE 901,286 899,895 885,093 – 878,656

Hieken
(2016)

28 300-SE 4,571,009 3,840,371 3,828,956 – 3,664,393

Thyagarajan
(2020)

64 300-PE 1,800,520 1,009,714 977,573 906,868 352,481

Goedert
(2018)

288 250-PE 8,580,928 6,294,134 6,204,855 5,616,720 5,527,051

Byrd
(2021)

956 150-PE 25,036,506 24,081,617 23,828,549 21,995,066 19,955,146

Yao
(2021)

36 250-PE 10,636,634 9,953,346 9,825,646 8,848,662 1,279,577

Guan
(2020)

31 150-PE 1,959,200 1,916,553 1,905,425 1,875,691 1,805,792
TABLE 1 Details of the large-scale breast tissue or gut datasets included in this study.

Study Type Group (n) Age
(average
± SD)

BMI
(average
± SD)

Gravidity
Yes (%)

Menopausal
Yes (%)

Platform Region Country

Nejman
(2020)

Tissue Normal (51) 46.3 ± 14.5 – – – Illumina_Hiseq, Illumina_Miseq,
Illumina_NextSeq

V2, V3, V5,
V6, V8

Israel

Benign (29) 41.7 ± 11.9 – – –

Cancer (35) 57.6 ± 12.6 – – –

Cancer-
adjacent (173)

57.6 ± 12.1 – – –

Urbaniak
(2016)

Tissue Normal (23) 48.9 ± 12.1 – 17 (73.9%) 12 (52.2%) Illumina_MiSeq V6 Canada

Benign (13) 55.6 ± 16.7 – 6 (46.2%) 2 (15.4%)

Cancer (32) 54.7 ± 17.0 – 28 (87.5%) 29 (90.6%)

Hieken
(2016)

Tissue Benign (12) 60.8 ± 13.2 29.5 ± 7.0 11 (91.7%) 6 (50.0%) Illumina_MiSeq V3–V5 USA

Cancer (16) 62.8 ± 12.1 30.1 ± 6.4 13 (81.3%) 14 (87.5%)

Thyagarajan
(2020)

Tissue Cancer (33) 25.0–78.0 – – – Illumina_MiSeq V3–V4 USA

Cancer-
adjacent (31)

25.0–78.0 – – –

Goedert
(2018)

Stool Normal (144) 62.0 ± 5.2 28.2 ± 5.5 – 144 (100.0%) Illumina_MiSeq V4 USA

Cancer (144) 61.0 ± 3.1 28.3 ± 5.8 – 144 (100.0%)

Byrd (2021) Stool Normal (442) 46.9 ± 12.9 28.0 ± 7.9 391 (88.5%) 189 (42.8%) Illumina_MiSeq V4 Ghana

Benign (111) 38.8 ± 12.8 27.7 ± 6.5 77 (69.4%) 28 (25.2%)

Cancer (403) 50.8 ± 12.3 27.1 ± 5.9 348 (86.4%) 226 (56.1%)

Yao (2021) Stool Cancer (36) – – – – Illumina_HiSeq V3–V4 China

Guan (2020) Stool Cancer (31) – – – 7 (22.6%) Illumina_MiSeq V4 China
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tiersin.org

https://doi.org/10.3389/fcimb.2022.1029905
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2022.1029905
disease status and by other potential confounders. Study

heterogeneity has a large effect on overall microbiome

composition (Figures 1B, C).
Alterations in microbial composition
in BC

Analysis based on Bray–Curtis dissimilarity indicated the

extensive variations in the different sample groups. For the tissue

microbiota, PCoA showed distinct distributions among normal

breast tissue, benign breast tissue, breast carcinoma tissue, and

lesion-adjacent cancer tissue (Figure 1D). Furthermore, this

finding also indicated a clearer distinction between tissues

from cancer (including cancerous and adjacent tissues) and

non-cancer (including benign diseases and normal breast

tissue) groups. For the stool microbiota, the ecological

discrepancy among the gut microbiota from patients with
Frontiers in Cellular and Infection Microbiology 07
breast cancer and benign breast tumor and the healthy

population was distinguishable (Figure 1E).

The idea of defining a core microbiota in breast tumor tissues

or gut of patients with BC is intriguing because of its potential

association with carcinogenesis. In the current meta-analysis, the

four most abundant phyla in all groups were Proteobacteria,

Firmicutes, Actinobacteria, and Bacteroidetes, with relative

abundances depending on the tissue type. Compared with that

in normal and benign tissues, the Proteobacteria phylum was

slightly more abundant in cancer tissues and lesion-adjacent

tissues, accounting for 70.5% and 74.4% of all bacteria.

Meanwhile, the abundance of Bacteroidetes was lower (3.4% in

the cancer group and 2.3% in the lesion-adjacent tissue group)

(Figure 2A). Relative to normal and benign tissues, cancer and

lesion-adjacent tissues exhibited a greater proportion of

Halomonas and Shewanella and a lesser proportion of

Pelomonas and Pseudomonas at the genus level (Figure 2B). Gut

bacterial communities were distinct from the tissue microbial
A B

D E

C

FIGURE 1

The total variance explained by disease status (BC, benign tumor, health) is plotted against total explained by sample type (A), study of tissue
(B), and study of gut (C) for individual ASVs. The significantly differential ASVs are colored in blue and P-values were from the two-way
ANOVA test. (D, E) Principal coordinate analysis (PCoA) of the breast tissue and gut microbiome based on the Bray–Curtis metric. Each
ellipse in different color represents the 95% confidence level. (D) In breast tissue samples, the purple and red ellipses are similar, and the
blue and green ellipses are almost overlapping, indicating insignificant differences between normal and benign tissues, adjacent-cancer, and
cancer tissue. (E) The ellipses that represented normal, benign, and cancer stool microbiota are inconsistent, demonstrating significant
differences among different groups.
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communities, and Bacteroidetes, Firmicutes, and Proteobacteria

were the major bacterial phyla (Figure 2C). In the gut samples

obtained from patients with cancer, the abundance of bacteria

from the Prevotella genus was found to decline, whereas the relative

abundance of the Bacteroides genus increased, accounting for

19.5% of the total genera identified (Figure 2D). The microbiota

from different types of breast tumors have distinct compositions in

the tissue or intestinal environment (Figures 2E, H).
Differential abundance analysis
identifies significantly enriched and
depleted features

We deployed five differential abundance analysis groups,

namely, cancer tissue vs. normal tissue, lesion-adjacent tissue vs.

normal tissue, cancer tissue vs. benign tissue, cancer stool vs.

normal stool, and cancer stool vs. benign stool, to investigate the

potential differences in the microbiota. Compared with those in

normal tissues, Sphingomonas, Veillonella, Porphyromonas, and
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Flavobacterium were found to be significantly enriched in cancer

tissues, whereas nine genera were found to be significantly

depleted (Figures 3A, B). In the lesion-adjacent tissue vs.

normal tissue group, 14 enriched and 7 depleted genera were

identified in lesion-adjacent tissues (Figure S3). Eleven enriched

and 15 depleted genera were identified in the cancer tissues

compared with those in the benign tissues (Figure S4). Twelve

enriched genera (including Bacteroides, Escherichia/Shigella,

Lachnospiracea_incertae_sedis, Roseburia, Ruminococcus2,

Clostridium_XlVa, Parabacteroides, and Phascolarctobacterium)

and Prevotella, Succiniclasticum, and Anaerotruncus were

observed in the intestinal microbiome, analyzed using stool

samples from patients with cancer compared with those of

healthy controls (Figure 3C). Compared with those in the stool

samples of patients with benign disease, 10 enriched genera and 6

depleted genera were identified in the stool samples of patients

with cancer (Figure S5). This led us to identify Prevotella, which

was depleted in patients with BC compared with that in the non-

cancer group and constituted an overlapping differential

characteristic in both tissue and stool sampling (Figure 3D).
A B

D

E

F

G

H

C

FIGURE 2

Relative proportions of bacteria in the breast tissue and gut environment of healthy controls, benign breast tumors, and breast cancer. (A, B) The
bacterial abundance at the phylum and genus levels in breast tissues, respectively, and the structural analysis of the intestinal microbiome are displayed
in (C) and (D). (E–H) Chord plots of the relative abundance at the phylum and genus levels in the tissues and gut.
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Microbial classification models for BC
and non-cancer controls

To evaluate whether the microbial information can be used to

distinguish cancer from non-cancer controls, we established 10-

fold cross-validation RF classifiers by pooling tissue and stool

samples, respectively. Here, benign and normal samples were

classified into one category named “non-cancer.” The RF model

(AUC = 74.27%) was constructed using the top 30 most important

genera in the tissue samples (Figure 4A). The most important key

microbial features were Prevotella, Reyranella, Atopobium,

Micrococcus, Butyrivibrio, Weissella, Ruminococcus, Hydrotalea,

Paenibacillus, and Yersinia, among others (Figure 4B). To

determine whether cancer-adjacent tissues also play a pivotal

role in distinguishing BC, we reconstructed the RF model using

cancer-adjacent tissue and a non-cancerous microbiome, using

the top 30 important genera in the cancerous vs. non-cancerous

tissue model as the input for our new model. The AUC was

75.29% (Figure 4A). We noticed that the classifiers performed

similarly in cancer vs. control and cancer-adjacent vs. control

groups, likely because the cancer-adjacent tissue microbiome

closely resembles that of cancerous tissues. This indicated that
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adjacent tissues also possess the ability to diagnose BC.

Additionally, when stool microbial characteristics were used to

build the model for predicting cancer, the AUC was 68.08%, and

the top 30 important features belong to Bacteroides, Prevotella,

Haemophilus, Butyrivibrio, Fusobacterium, and Faecalibacterium

(Figures 4C, D; Tables S1, S2).
Cohort-to-cohort and LOCO validation
of BC classifiers

To evaluate whether the identified essential characteristics

were reproducible across multiple studies, we conducted LOCO

and cohort-to-cohort transfer validation by pooling data from

cancerous and non-cancerous tissue samples. Cohort-to-cohort

transfer validation was performed using the cancer stool vs. non-

cancer stool strategy because only two cohorts were available. In

the cancer tissue vs. non-cancer tissue RF models, the AUCs of

cohort-to-cohort transfer validation ranged from 0.50 to 0.79,

with an average of 0.65, whereas those in the LOCO analysis

ranged from 0.60 to 0.69 (average AUC = 0.66) (Figure 5).

Notably, the dataset provided by Nejman et al. was a better
A B

DC

FIGURE 3

Differential microbial analyses show the enriched and depleted genera identified using different strategies. (A) The differential microbial numbers
in each comparison strategy. Differential abundance analysis was conducted using the Welch’s t-test based on CLR-transformed data and P-
value <0.05 considered enriched or depleted. VS: comparison of the former to the latter; enriched or depleted genera were identified based on
the latter. Difference in the abundance of tissue (B) and gut (C) bacteria between patients with BC and healthy controls. The blue color presents
the abundance of bacteria in the BC group, and the red color presents the abundance of bacteria in healthy controls. Venn plot (D) displays the
overlap of the genera among BC vs. normal or benign disease strategies in breast tissue and stool samples. BC, breast cancer; T, tissue; S, stool.
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training set than those obtained from other studies and achieved

a relatively higher testing AUC (average AUC = 0.73). When

leaving the Nejman_Israel cohort out as the independent

validation, the AUC decreased significantly compared with

that of the other groups. This may be explained by the larger

size of the dataset. Prediction models constructed using a larger

sample size could help identify the signature signals of

microorganisms associated with BC.

Models prepared using stool microbes could also be used to

distinguish BC from healthy individuals. However, some

weakness was noted in the cross-cohort validations. When the

cohorts Goedert_USA and Byrd_Ghana were used as the

validation datasets, respectively, and another cohort was used

as the training dataset, the AUCs of the model were 0.54 and

0.59. This result suggests that low AUC values may be attributed

to different geographical locations, and the assessment of

characteristic gut microorganism communities requires

accounting for geographical heterogeneity in dietary habits

across different areas. Our results validated the predictive
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ability and stability of the RF models prepared using

important microbial genera as the feature set for BC diagnosis.

Furthermore, geographic region, sample type, and sample size

impact the diagnostic ability of the RF models.
Clostridium-specific-related DCA
stimulates proliferation by promoting cell
cycle entry into the S phase in HER2-
positive BC cells

To quantify the distinctions corresponding to the breast

tumor status and health, we performed the Wilcoxon rank-sum

tests with CLR transformation data for discovering BC-related

biomarkers in the tissue and gut microbiome, respectively.

Among the more notable genera, Clostridium_XlVa is

enriched in BC patients both in the tissue and gut

environment and has the potential to be a biomarker of BC

(Figures 6A, B).
A B

DC

FIGURE 4

Key components of the random forest (RF) model constructed to distinguish BC from non-cancer controls. The AUC of the BC vs. non-cancer
RF model constructed with key genera in breast tissues (A) and the gut (C) environment. The rank in (B) and (D) indicates the order of feature
importance in the tissue and gut microbial RF model. BC, breast cancer.
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We attempted to assess the proliferation role of Clostridium-

specific DCA in the human breast cancer cells MDA-MB-231

and SK-BR-3 by performing the CCK8 assay. DCA increased the

proliferation of HER2-positive SK-BR-3 cells compared with

that of untreated cells (control), exerting the strongest effect at

80 mM (Figure 6C). However, no significant role of DCA was

determined in triple-negative MDA-MB-231 breast cancer cell

proliferation (Figure 6D). As shown in Figure 6E, the number of

colonies increased in cells treated for 36 h with 80 mM of DCA

compared with that in untreated cells. We subsequently verified,

through flow cytometry analysis, whether the DCA-induced

proliferation of breast cancer cells was associated with

variations in the cell cycle. Treatment with DCA (0, 40, 60, 80

mM) decreased the G0/G1 phase percentage from 36.0% to

27.1% and increased the S phase percentage from 31.4% to

43.3% in a dose-dependent manner (Figures 6F, G), thus

facilitating G1/S progression. Furthermore, no significant effect

of DCA was observed in the apoptosis of HER2-positive BC cells.

The total apoptotic cell rates of SK-BR-3 cells were 3.3%, 3.0%,

2.5%, and 2.5% (Figures 6H, I). These data suggested that DCA

stimulates the proliferation and growth of HER2-positive BC

cells and promotes cell cycle progression into the S phase but

does not contribute to HER2-positive BC cell apoptosis.
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Quantitative proteomic analysis revealed
changes in protein expression in DCA-
treated SK-BR-3 BC cells

We performed quantitative tandem mass spectrometry

experiments using 4D label-free labeling of DCA-treated and

untreated SK-BR-3 BC cells. In total, we identified 5,331

proteins in both groups. Of these, 24 differentially expressed

proteins (5 upregulated and 19 downregulated) were identified

(P < 0.05 after t-test, fold change ≥2.0, Figure 7A). The heatmap of

the hierarchical cluster analysis showed that these proteins were

well distinguished, which helped clearly visualize the changes in

protein expression (Figure 7B). GO and KEGG pathway

enrichment analyses were performed between DCA-treated and

untreated SK-BR-3 BC cells. The most enriched GO terms of

biological processes (BP), molecular functions (MF), and cellular

components (CC) were annotated as protein O-linked

fucosylation (two proteins, richFactor = 148.08), peptide-O-

fucosyltransferase activity (two proteins, richFactor = 222.12),

and endoplasmic reticulum lumen (seven proteins, richFactor =

12.54), respectively (Figures 7C, D, Table 3). The results of the

KEGG pathway analysis reveal that neuroactive ligand–receptor

interaction emerged as the most drastically enriched pathway and

was linked to three upregulated proteins in DCA-treated BC cells,

namely, nicotinic acetylcholine receptor alpha-9, P2X

purinoceptor 5, and partitioning defective protein 3 (Figure 7E,

Table 3). A complex network of proteins with high expression and

significant differences in expression is shown in Figure 7F.
Discussion

Multiple studies worldwide have provided evidence on the

close association between BC and microbial dysbiosis (Xuan

et al., 2014; Goedert et al., 2015; Hieken et al., 2016; Costantini

et al., 2018; Plaza-Diaz et al., 2019; Nejman et al., 2020; Bobin-

Dubigeon et al., 2021; Byrd et al., 2021), and the abundances of

specialized microorganisms are also correlated with an immune

signature and prognostic characteristics (Gopalakrishnan et al.,

2018; Terrisse et al., 2021; Tzeng et al., 2021). However, there

exists a significant lack of agreement in the types of breast

tumor-associated microorganisms identified in published

studies. Here, we first presented a large-scale, integrative meta-

analysis on public 16S rRNA datasets to characterize the breast

tissue and gut microbiota signatures of patients with breast

tumors and assess the potential of important microbial

signatures for distinguishing BC from health statuses.

Compared with datasets from a single study, pooled datasets

of breast tissues and gut microbiota from multiple studies

enabled the identification of microbiota signatures more

accurately and comprehensively.
FIGURE 5

Cross-prediction matrix detailing the prediction AUC values for
the four cohorts themselves and between them for the
prediction of BC using important features. Values on the
diagonal refer to the results of cross-cohort validation within
each study (70% of the samples were randomly selected as the
training set, whereas the remaining 30% were used as the testing
set). The non-diagonal AUC values were obtained by training the
classifier on the study in each row and tested on the study in the
corresponding column. In the LOCO validation, data from one
cohort (column) were used as the testing set to assess the
training set, which were set by pooled data from the remaining
cohorts. BC, breast cancer.
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This meta-analysis revealed significant changes in the

microbial flora of patients with BC, and we also found that

critical microbial characteristics can be used to diagnose BC. In

pooled RF models, specific microbes from malignant breast

tissue could be used to discriminate between BC and non-

cancer populations and yielded AUCs of 74.27% in the

training module. Cohort heterogeneity is critical in trans-

cohort generalization. In our work, important microbial

features were validated for effectiveness via cohort-to-cohort

transfer (average AUC = 0.65) as well as LOCO validation

(average AUC = 0.66) while underscoring the adverse impact

of technical and geographical discrepancies on the model’s

generalizability. Consistent with our hypothesis, microbial

components are similar in malignant breast and lesion-

adjacent tissues. The AUC was 75.29% in cancer-adjacent

tissues vs. non-cancer control RF models, which was similar to

that in cancer vs. non-cancer population models (AUC =

74.27%). The result indicates that the lesion-adjacent tissue
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microbiome is sufficient for BC prediction, and lesion-adjacent

tissues could be used for sampling during BC screening.

It is generally known that intestinal microbes actively

participate in the development of various cancers, such as

ovarian (Cheng et al., 2020; Laniewski et al., 2020), prostate

(Fujita et al., 2022; O'Rourke, 2022), breast (Ingman, 2019;

Hossain et al., 2021; Zhang et al., 2021), and colorectal cancers

(Wong and Yu, 2019; Song et al., 2020; Rebersek, 2021). The

known microbial mechanisms of action can modulate the tumor

microenvironment by regulating the non-hematopoietic and

hematopoietic components of the intestinal epithelial barrier

and primary and secondary lymphoid organ activities, thereby

affecting cancer occurrence and development (Sepich-Poore et al.,

2021). Recent findings have revealed that mammary microbiota

may be derived from the gut. Intestinal bacteria have easy access to

the mammary gland via the entero-mammary pathway. This

mechanism involves CD18+ cells and dendritic cells, which have

the capacity to transmit intestinal microbes into the mammary
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FIGURE 6

(A) The BC-related biomarkers in breast tissue and the gut environment (only BC and healthy controls are considered here). Venn plot (B) displays the
Clostridium_XlVa as the overlap biomarker in both breast tissue and the gut environment. The SK-BR-3 and MDA-MB-231 cells were cultured in DMEM
for 12 h and then treated with various concentrations of deoxycholic acid (DCA). The bar graph shows the percentage of viable SK-BR-3 (C) and MDA-
MB-231 (D) cells after treatment with DCA for 24 h, as determined in the CCK8 assay. (E) Light microscopy showed proliferation-related changes in SK-
BR-3 cells treated with 80 mM of DCA for 36 h. (F, G) Distribution of SK-BR-3 cells, treated for 24 h with 0, 40, 60, and 80 mM of DCA, in the G0/G1, S,
and G2/M phases, determined using flow cytometry. (H, I) SK-BR-3 cells were stained with Annexin V/PI and analyzed by flow cytometry after being
treated with for 24 h with 0, 40, 60, and 80 mM of DCA. The percentage of apoptotic cells is shown in the histogram. The different quadrants Q1, Q2,
Q3, and Q4 represent necrotic cells, early apoptotic cells, late apoptotic cells, and viable cells, respectively. Results are presented as means ± SEM from
at least three independent experiments. *P < 0.05, **P < 0.01 vs. control in each group. ns, no significance.
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FIGURE 7

Quantitative proteomic analysis of SK-BR-3 breast cancer cells from DCA-treated and untreated control groups. (A) The volcano plot shows the
variation in protein expression. Proteins significantly upregulated are labeled red and those significantly downregulated were labeled green. Gray
spheres indicate no significance between the group differences, P > 0.05. (B) Hierarchical clustering of differentially expressed proteins between
the DCA-treated and untreated group, n = 3 samples for each group (three data points for each bar). Each row represents one significant
protein. The color key represents the log2-transformed intensity values of each protein. (C, D) The top 10 significantly enriched gene ontology
terms in BP (blue), MF (orange), and CC (red). The numbers above the bar charts represent the richFactor. (E) The top 20 significantly enriched
KEGG pathways and the richFactor shown on bar charts. (F) Protein–protein interaction network of the proteins in the module. The blue node
indicates the most strongly upregulated protein, and the red node indicates the most strongly downregulated protein. The larger the area of the
nodes, the more important the nodes. BP, biological processes; MF, molecular functions; CC, cellular components.
TABLE 3 Distribution of proteins and signaling pathways after DCA treatment based on GO and KEGG analyses.

Database Term Count P-value FDR richFactor Protein names

GO (BP) protein O-
linked

fucosylation

2 5.81203E
−05

0.0041 148.08 POFUT1 (O-fucosyltransferase 1), POFUT2 (O-fucosyltransferase 2)

(MF) Peptide-O-
fucosyltransferase

activity

2 1.94269E
−05

0.0028 222.12 POFUT1 (O-fucosyltransferase 1), POFUT2 (O-fucosyltransferase 2)

(CC) endoplasmic
reticulum lumen

7 7.74755E
−07

0.0002 12.54 FKBP7 (peptidyl-prolyl cis-trans isomerase FKBP7), ERAP1 (endoplasmic reticulum
aminopeptidase 1), SUMF2 (inactive C-alpha-formylglycine-generating enzyme 2),
POGLUT2 (O-glucosyltransferase 2), CNPY3 (canopy homolog 3), CNPY4 (canopy

homolog 4), FKBP2 (peptidyl-prolyl cis-trans isomerase FKBP2)

KEGG Neuroactive
ligand–receptor
interaction

3 0.003067213 0.2688 9.85 CHRNA9 (nicotinic acetylcholine receptor alpha-9), P2RX5 (P2X purinoceptor 5),
PARD3 (partitioning defective protein 3)
Frontiers in
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BP, biological processes; MF, molecular functions; CC, cellular components; FDR, false discovery rate.
frontiersin.org13

https://doi.org/10.3389/fcimb.2022.1029905
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2022.1029905
gland (Angelopoulou et al., 2018; Chadha et al., 2021; Wang et al.,

2021). In the present study, we showed that the abundance of

Bacteroides in patients with BC was significantly higher than that

in controls. This result is consistent with the findings from

previous studies, which suggested Bacteroides associations with

BC (Zhu et al., 2018; Byrd et al., 2021; Hou et al., 2021).

Enterotoxigenic Bacteroides fragilis accelerated tumor cell

growth in the mammary glands or intestines and metastatic

progression in breast ducts using secretory B. fragilis toxins.

Parida et al. (2021) showed that compared with control mice,

mice harboring gut enterotoxigenic B. fragilis showed an almost

3.3-fold increase in the tumor volume over 7 weeks. It is

promising that not all bacteria species are detrimental.

Prevotella is considered a beneficial bacteria based on its low

levels in patients with BC and is the only co-differential bacterium

present in breast tissues and the intestinal environment in cancer

and non-cancer populations. Evidence from existing literature

suggests that Prevotella potentially exerts an antitumor effect

through its metabolites. Acetic acid, the major metabolic

product of Prevotella, significantly inhibited the synthesis of

nitric oxide in AGS cells (Dong et al., 2017), which could

enhance protooncogene expression and inhibit the apoptosis of

tumor cells (Li et al., 1997; Ambs et al., 1998).

With respect to cancer diagnosis, critical intestinal microbial

characteristics can help discriminate between cancer and non-

cancer populations. In our study, RF models constructed using

data on important gut microbiota (AUC = 68.08%) could provide

insights on BC diagnosis. However, gut microbiota-related RF

models yield a lower accuracy than tissue microbes in

distinguishing cancer from non-cancer controls (AUC = 74.27%).

This is likely because tissue-based samples are invasive and assess

microbial structure at the lesion site more accurately than stool-

based samples. Zhu et al. (2018) showed that the training set of fecal

samples performed remarkably when patients with BC and healthy

controls were compared, and the AUC value achieved was 85.52%,

which was greater than the value obtained in the present study. One

explanation is that in the stool samples frommultiple studies, ethnic

heterogeneity, varied dietary habits, and different exposure factors

within groups could contribute to the discrepancies in the intestinal

microbial communities, thus affecting model performance.

Furthermore, the performance is potentially influenced by the

different sequencing procedures, such as shotgun metagenomic

sequencing and 16S rRNA sequencing. Shotgun metagenomic

sequencing data are well-recognized to be advantageous for the

identification of special microbes up to the species and even the

strain level, which is more conducive to improving accuracy in BC

diagnostic models. More importantly, the AUC value of the BC

health model based on stool microbiota reported by Zhu et al. was

greater than 80%, which further illustrates that the specific intestinal

microbiota has BC diagnostic potential comparable to breast tissue

microbiota, even if it is present far from the breast lesion site.

Currently, BC diagnosis is mainly based on imaging

examinations, and mammography, magnetic resonance imaging
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(MRI), ultrasound imaging, and computed tomography (CT) are

the most common methods used in clinical applications, with a

sensitivity of more than 80% (Jafari et al., 2018). However, despite

the various benefits of imaging techniques, they have some

limitations, such as costs and potential radiation risks. The most

important caveat is that imaging modalities may yield false-

positive and false-negative errors. For example, if lesions labeled

as BI-RADS category ≥4b are considered to be malignant, the

rates of misdiagnosis under mammography, ultrasound, and MRI

would be 17.9%, 17.5%, and 35.3%, respectively (Tan et al., 2019).

Although the AUCs are low owing to the influence of the

sequencing platform, region, and other factors, BC and non-

cancer states can be assessed using characteristic microorganisms.

Particularly, gut microbes, as a non-intrusive and convenient

method, are easily applicable in clinical settings.

As for the BC-associated biomarker Clostridium_XlVa, Huang

et al. (2020) provided that Clostridium XIVa was enriched in non-

small hepatocellular carcinoma. Based on the transcriptome and

fecal microbiota data, the increased abundance of Clostridium XIVa

accompanied by a decrease in CCL21, which facilitates tumor

growth, indicates an unfavorable prognosis. Clostridium XIVa is

highly potent in enhancing Treg cell abundance and inducing

important anti-inflammatory molecules such as interleukin-10

(Atarashi et al., 2013), as well as affecting bile acid-controlled

NKT cell accumulation. Changes in the Clostridium XIVa may

result in alterations of the tumor microenvironment, which

highlight the potential of Clostridium XIVa as a biomarker for

breast cancer. Recent data suggest that the human microbiota

contributes to several common types of cancer, not only by

playing procarcinogenic roles of specific pathogens but also via

the influence of their metabolome. For example, the intestinal

microbiome–metabolite formate drives CRC tumor invasion via

triggering AhR signaling while increasing cancer stemness (Ternes

et al., 2022). Obesity induces changes in the gut microbiota, thereby

increasing the levels of the gut bacterial metabolite DCA. The

enterohepatic circulation of DCA stimulates the SASP phenotype in

hepatic stellate cells, which in turn secretes various inflammatory

and protumor factors in the liver (Yoshimoto et al., 2013).

(Costarelli and Sanders, 2002) reported that plasma DCA

concentration in patients with breast cancer was 52% higher than

that in healthy women, supporting the hypothesis that DCA might

be related to the occurrence and development of breast cancer. In

this study, we demonstrated that Clostridium-specific DCA plays a

molecule type-specific role in the proliferation of BC cells,

significantly promoting the proliferation of HER2-positive BC

cells but not affecting triple-negative BC cells. As a secondary

metabolite of bile acids, DCA increases ROS production and

DNA damage, which could cause K-RAS mutations, aneuploidy,

and micronuclei formation (Si et al., 2021). Bile acids are also

present in breast tissues and may originate from the gut (Rezen

et al., 2022). Findings from proteomics analysis indicate that DCA

promotes the activation of peptide-O-fucosyltransferase activity and

triggers the neuroactive ligand–receptor interaction pathway, which
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may play a role in cancer progression. Meanwhile, POFUT1 and

POFUT2 genes, involved in cancer-related pathways, have been

screened. The overexpression of POFUT1 leads to Notch1 signaling

dysregulation associated with poor prognosis (Wan et al., 2017;

Deschuyter et al., 2020). Leng et al. (2018) stated that genes

encoding proteins associated with fucosylation, including

POFUT1 and POFUT2, may serve as circulating biomarkers of

lung cancer. Objectively, the findings suggest that POFUT1 and

POFUT2 are worthy of further investigation for their functions

in BC.

Unlike previous studies, ours is the first to use comprehensive

datasets to investigate the microbial community in both breast and

gut samples of patients with BC. Based on the findings from the

meta-analysis of eight studies, the interference of biotechnology and

regional differences were reduced, and we identified a consistent

and reliable variation in the microbiome of patients with BC.

Additionally, important microbial features of the tissue or

intestinal environment were useful for the diagnosis of BC and

could provide a new approach for cancer screening. We recognize

that the study had limitations in validation, such as the lack of

additional validation using actual clinical patient samples. To

overcome this drawback, we strived to strengthen the evidence

from other perspectives of the study design and used interstudy

cross-validation and within-study validation simultaneously to

verify the stability of important microbial features in BC

diagnosis. Lastly, the interaction between microorganisms and the

occurrence and progression of cancer is very complex, and a variety

of bacteria or its metabolites may promote or inhibit the

development of breast cancer. Herein, we only examined the

effect of Clostridium-specific metabolite DCA on the proliferation,

cycle, and apoptosis of breast cancer cells. More microorganisms

and its metabolites are still worth exploring. In our future studies,

external validation in large clinical populations will be necessary,

and we would also like to integrate additional factors, such as lymph

node metastasis, Ki67 expression, molecular subtypes of breast

cancer, and progression-free survival to determine the

microbiome associated with breast cancer prognosis.

By re-analyzing raw 16S rRNA gene sequence data from fecal

and tissue samples, we suggested a strong association between the

microbiota and breast tumorigenesis. The overlapping specific

microbes of the breast tissue and gut environment may provide

biomarkers of BC, and the similarities between the carcinoma and

adjacent normal tissues indicate that microorganisms might pave

the way for our understanding of microbial roles in

carcinogenesis. We also found that the Clostridium-specific

metabolite DCA could stimulate proliferation by promoting cell

cycle progression into the S phase. From the perspective of disease

diagnostics, important microbial features could aid BC screening

at early stages. In conclusion, the findings of this study provide a

novel perspective for further insights on the role of the

microbiome in BC tumorigenesis and progression.
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SUPPLEMENTARY FIGURE 1-2

The total variance explained by disease status (BC, benign tumor, health)
are plotted against total explained by patient age, BMI in studies using

breast tissue and fecal samples.

SUPPLEMENTARY FIGURE 3-5

Results of the for differential microbial features in lesion-adjacent tissue
vs. normal tissue, cancer tissue vs. benign tissue, cancer stool vs. benign

stool groups (P<0.05).

SUPPLEMENTARY TABLE 1-2

Key components of the random forest model constructed in this study.
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