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Three types of Leishmania
mexicana amastigotes:
Proteome comparison by
quantitative proteomic analysis
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Leishmania is the unicellular parasite transmitted by phlebotomine sand fly bite.

It exists in two different forms; extracellular promastigotes, occurring in the gut

of sand flies, and intracellular, round-shaped amastigotes residing mainly in

vertebrate macrophages. As amastigotes originating from infected animals are

often present in insufficient quality and quantity, two alternative types of

amastigotes were introduced for laboratory experiments: axenic amastigotes

and amastigotes from macrophages infected in vitro. Nevertheless, there is

very little information about the degree of similarity/difference among these

three types of amastigotes on proteomic level, whose comparison is crucial for

assessing the suitability of using alternative types of amastigotes in

experiments. In this study, L. mexicana amastigotes obtained from lesion of

infected BALB/c mice were proteomically compared with alternatively

cultivated amastigotes (axenic and macrophage-derived ones). Amastigotes

of all three types were isolated, individually treated and analysed by LC-MS/MS

proteomic analysis with quantification using TMT10-plex isobaric labeling.

Significant differences were observed in the abundance of metabolic

enzymes, virulence factors and proteins involved in translation and

condensation of DNA. The most pronounced differences were observed

between axenic amastigotes and lesion-derived amastigotes, macrophage-

derived amastigotes were mostly intermediate between axenic and lesion-

derived ones.
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proteome, Leishmania (L) mexicana, amastigote, axenic, macrophage, lesion, tandem
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Introduction

Leishmania spp. are protozoan parasites from the

trypanosomatid family and causative agents of wide spectrum

of diseases called leishmaniases. More than 1 billion people are

living in areas of risk, with an estimated 0.7-1million new cases

annually (Burza et al., 2018; Ruiz-Postigo and Grout, 2020).

The manifestation and severity of the diseases varies

depending on the species and strain of Leishmania parasites as

well as on the genetic background and the state of host immune

system (Loeuillet et al., 2016). New World species Leishmania

mexicana, used in this study, is typically associated with

cutaneous leishmaniasis, the most common form of this

disease, usually manifested by an ulcer that develops at the site

of inoculation. While lesion is usually self-healing, it leaves life-

long stigmatizing scar (Steverding, 2017; Maxfield and

Crane, 2019).

The life cycle of Leishmania is digenetic; it alternates

between a vertebrate host and an insect vector, a female

phlebotomine sand fly of the genera Phlebotomus (Old World)

or Lutzomyia (NewWorld) (Maroli et al., 2013). After transition

from the insect vector to the mammalian host, the extracellular

elongated motile promastigotes transform into round,

aflagelated, non-motile intracellular amastigotes that reside in

phagolysosome of a mammalian macrophage. This

differentiation is triggered by temperature, pH, availability of

nutrients and results in changes in gene expression including

virulence factors and metabolism (Coombs et al., 1982; Hart and

Coombs, 1982; Nugent et al., 2004; Paape et al., 2008;

McConville et al., 2015).

Transformation to amastigote form is associated with

changes in carbon source utilization. Fatty acids, glucose and

amino acids in particular are important sources of carbon for

amastigotes (Hart and Coombs, 1982). Despite the necessity of

these nutrients, their intake is reduced in amastigotes compared

to promastigotes (Saunders et al., 2014). In amastigotes living

naturally in sugar-poor conditions, the glycolysis is

downregulated while gluconeogenesis is upregulated and

remains active even when the sugar is available (Rodrıǵuez-

Contreras and Landfear, 2006). Catabolic pathways like b-
oxidation of fatty acids, oxidative phosphorylation,

tricarboxylic acid cycle (TCA) and amino acid oxidation are

also upregulated in amastigotes (Mottram and Coombs, 1985;

Nugent et al., 2004; Lahav et al., 2011). Inhibition of TCA or

glutamine synthase leads to growth arrest in both axenic and

macrophage-derived amastigotes (Saunders et al., 2014).

These inter-stage changes in metabolism are not exclusively

due to the availability of different nutrients, but this effect is

rather tied to various signals. Amastigotes cultivated axenically

in vitro possessed the same pattern of changes as lesion-derived

amastigotes despite the abundance of nutrients in medium

(Saunders et al., 2014).
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While the cultivation of promastigotes is relatively simple

and easily performed in an appropriate medium, a study of

amastigote form lags behind due to complicated isolation from

the host tissue resulting in low numbers of parasite and massive

host tissue contamination. Therefore, a method of axenic

cultivation has been developed for some Leishmania species

including L. mexicana used in present study (Bates et al., 1992;

Pan et al., 1993; Debrabant et al, 2004).

Axenic amastigotes of L. mexicana are prepared by imitating

the environment of phagolysosome by lowering pH and

subsequent cultivation in higher temperatures (Bates et al.,

1992; Bates and Tetley, 1993). Advantage of this method is

that it reduces the use of laboratory animals and the

contamination by host tissue and it provides high numbers of

amastigotes. Axenic amastigotes are criticized because they are

not equal to lesion-derived amastigotes most likely because the

process in vitro is not exactly reflecting what happens in

macrophages (Holzer et al., 2006; Pescher et al., 2011). For

this reason, amastigotes isolated from in vitro infected

macrophages have been used in some studies with

experimentally infected sand flies (Sadlova et al., 2017;

Pruzinova et al., 2018). This type of amastigote undergoes

selective pressure of a macrophage, but still is not exposed to

any other component of host immunity.

Studies comparing alternative sources of amastigotes with

natural ones, isolated from infected hosts, are very limited,

focused either only on its external features (morphology,

ultrastructure) (Pan and Pan, 1986; Eperon and Mcmahon-

Pratt, 1989; Bates et al., 1992; Pral et al., 1993; Ueda-

Nakamura et al., 2007), or on their transcriptomes (Holzer

et al., 2006; Fiebig et al., 2015). Nevertheless, regulation of

protein expression in trypanosomatids is mediated largely

post-transcriptionally (Ivens et al., 2005; Peacock et al., 2007;

Lahav et al., 2011; De Pablos et al., 2019) and therefore, it is

essential to compare proteomes rather than genomes and

transcriptomes to understand complex processes such as

cellular function or disease outcome.

We applied quantitative proteomics with isobaric labeling to

compare the protein levels from axenically cultivated

amastigotes, macrophage-derived and lesion-derived

amastigotes and revealed differences in virulence factors and

metabolic pathways like glycolysis, fatty acid or amino acid

metabolism and other cellular processes like vesicular trafficking.
Materials and methods

Ethics statement

BALB/c mice were maintained and handled in the animal

facility of Charles University in Prague in accordance with

institutional guidelines and Czech legislation (Act No. 246/
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https://doi.org/10.3389/fcimb.2022.1022448
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Pacakova et al. 10.3389/fcimb.2022.1022448
1992 and 359/2012 coll. on Protection of Animals against

Cruelty in present statutes at large), which complies with all

relevant European Union and international guidelines for

experimental animals.

The animal study was reviewed and approved by The

Committee on Ethics of Laboratory Experiments, Faculty of

Science, Charles University, Czech Republic.

Investigators are certificated for experimentation with

animals by the Ministry of Agriculture of the Czech Republic

(certificate no. CZ 03744). All efforts were made to minimize the

number and suffering of experimental animals during the study.
Leishmania cell culture and amastigotes

L. mexicana (MNYC/BZ/62/M379) promastigotes were

cultured in RPMI 1640 HEPES (Sigma-Aldrich) supplemented

with 10% fetal bovine serum (FBS) (Sigma-Aldrich), 0.1%

amikin (Sigma-Aldrich), 1% BME vitamins (Sigma-Aldrich)

and 0.5% sterile human urine. For mice and macrophage

infections low passage of parasites was used (maximally P4)

due to its decreasing virulence caused by long-term passaging

(Ali et al., 2013).

Macrophage-derived amastigotes were obtained as described

previously (Pruzinova et al., 2018). Macrophages were

differentiated from precursor cells of mouse bone marrow by

adding macrophage colony stimulating factor (M-CSF)

contained in L929 fibroblast supernatant. Cells were

stimulated to transformation in 37°C and 5% CO2 for 7-10

days in RPMI 1640 HEPES supplemented with 20% M-CSF

medium, 10% FBS, 50 mM mercaptoethanol, mixture of

antibiotics and amino acids (L-glutamine 200 mM-peniciline

10 000 U-streptomycine 10 mg/ml), (Sigma-Aldrich).

Macrophages were infected with stationary phase of

promastigotes in a ratio of 6 parasites per 1 macrophage. After

72h macrophages were disrupted by lysis buffer (M199 (Sigma-

Aldrich) + 0,016% SDS for maximum of 7 minutes) and lysis was

stopped by M199 medium supplemented with 20% FBS.

Disruption was completed mechanically by rubbing a syringe

plunger and amastigotes were released by repeated aspiration

into a 1 ml insulin syringe and washed three times by

centrifugation at 3010 x g for 10 min.

Axenic amastigotes were established from amastigotes

obtained from in vitro infected macrophages. Macrophage-

derived amastigotes were passaged into RPMI medium

(described above) and cultivated at 23°C for reverse

transformation to flagellated promastigotes. After 72h,

promastigotes were kept in medium composed of Grace´s

insect medium (Sigma-Aldrich) supplemented with 20% FBS

(Sigma-Aldrich), amikin (0.1%) (Sigma-Aldrich), at pH 5.4 and

temperature of 25°C for 6 days to induce metacyclogenesis

(Bates and Tetley, 1993). Subsequently, metacyclic

promastigotes were transferred into fresh „amastigote RPMI”
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medium and cultivated in 33°C (Bates, 1994). First passage of

axenic amastigotes was collected after nine days and further

subpassaged every 7-10 days.

Lesion-derived amastigotes were obtained from BALB/c

mice infected with 1x107 of promastigotes from a culture in

stationary phase of growth and injected subcutaneously to the

base of tail in 50 ml sterile saline.
Mice were sacrificed 20 weeks after infection. Lesion area

was sterilized by 70% ethanol, excised under sterile conditions

and homogenized using glass Potter homogenizer in saline.

Larger pieces of tissue were removed by filtering through

sterile monofile into polypropylene tube (Thermo Fisher

Scientific) kept on ice. Homogenate was washed twice by

centrifugation at 3010 x g for 10 min, 4°C and after second

washing step, the pelett was resuspended in 2-4 ml of erythrocyte

lysis buffer (155 mMNH4Cl, 10 mM KHCO, 3.1 mM EDTA, pH

7.4) for 2 min to eliminate red blood cells responsible for the

host hemoglobin contamination (de Rezende et al, 2017). Lysis

was stopped by repeated washing in sterile saline. Between

individual washing steps, amastigotes were released by

repeated aspiration to insulin syringe. Pellet was kept in -80°C

until use.

Each amastigote type was analysed in triplicates during

single measurement. Each sample of lesion amastigotes was

isolated from different mouse. Axenic amastigotes were

collected at three consecutive passages. Macrophage-derived

amastigotes were obtained by using three consecutive passages

of promastigote culture to initiate macrophage infection.

Cultivation of each particular type of amastigote was

performed under the same cultivation and isolation

conditions. Each of the 9 samples was labeled with different

isotopic variant of the label TMT 10-plex (Figure 1).
Proteomic analysis

Cell pellets were lysed in 100 mMTEAB containing 2% SDC,

10 mM TCEP, and 40 mM chloroacetamide and boiled at 95°C

for 5 min. Protein concentration was determined using BCA

protein assay kit (Thermo) and 20 µg of protein per sample was

used for MS sample preparation. Samples were digested with

trypsine (trypsin/protein ratio 1:20) at 37°C overnight. After

digestion, samples were acidified with TFA to 1% final

concentration. SDC was removed by extraction to ethylacetate

(Masuda et al, 2008) and peptides were desalted using in-house

made stage tips packed with C18 discs (Empore) according to

(Ishihama et al., 2006).

Samples were measured by LC/MS Orbitrap Fusion with

protein label-free quantification with MaxQuant software (Cox

et al., 2014). Ratios of the sum of intensities for mice proteins

and L. mexicana proteins were determined for each sample to

allow for subsequent normalization based on the amount of L.

mexicana proteins. Tandem mass tag (TMT) reagents were
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added to each sample, according to the manufacturer’s protocol

(Thermo Scientific Pierce), and after 60 min, the reaction was

stopped by the addition of 0.5% hydroxylamine. Labeled samples

were pooled in ratios determined from label-free quantification

runs; as a result, the pooled sample contained equal amounts of

L. mexicana proteins from each individual sample.

100 mg of peptides of pooled sample were injected on to C18

column (YMC 1.9 mm, C18, 300x0.3 mm) and separated with

linear gradient from 0% A (of 20 mM ammonium formate, 2%

acetonitrile pH 10) to 50% B (of 20 mM ammonium formate,

80% acetonitrile pH 10) in 60 minutes, flow 3ml/min. 64

Fractions were collected and pooled in to 8 fractions (Kulak

et al., 2017). The resulting fractions were dried and resuspended

in 20ml of 1% TFA.

Peptides were separated and analyzed by an UltiMate 3000

RSLC nano system coupled to an Orbitrap Fusion Tribrid mass

spectrometer (both from Thermo Scientific). Peptides were

firstly loaded onto an Acclaim PepMap300 trap column (300
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µm x 5 mm) packed with C18 (5 µm, 300 Å) in loading buffer

(0.1% trifluoroacetic acid in 2% acetonitrile) for 4 min at 15 mL/
min and then separated in an EASY-Spray column (75 µm x

50 cm) packed with C18 (2 µm, 100 Å, Thermo Scientific) at a

flow rate of 300 nL/min. Mobile phase A (0.1% formic acid in

water) and mobile phase B (0.1% formic acid in acetonitrile)

were used to establish a 60-min gradient from 4% to 35% B.

Eluted peptides were ionized by electrospray.

Spectra were acquired by Orbitrap Fusion mass

spectrometer (Thermo Scientific) with 3 seconds duty cycle.

Full MS spectra were acquired in orbitrap within mass range

350- 1400 m/z with resolution 120 000 at 200 m/z and maximum

injection time 50 ms. Most intense precursors were isolated by

quadrupole with 1.6 m/z isolation window and fragmented using

collision induced dissociation (CID) with collision energy set to

30%. Fragment ions were detected in ion trap with scan range

mode set to normal and scan rate set to rapid with maximum

injection time 50 ms. Fragmented precursors were excluded
A

B

D

E

F

C

FIGURE 1

Experimental workflow. (A) Biologic triplicates of axenic, macrophage-derived and lesion-derived amastigotes were homogenized. (B) Extracted
proteins from each sample were digested with trypsin and subjected to label free analysis to determine the percentage of Leishmania protein in
each sample. (C) Each sample was labeled with a unique TMT10-plex reagent. (D) Resulting peptides were combined at equal ratios of parasite
protein. (E) Peptides were fractionated via basic RP-HPLC separation. (E) Reversed-phase HPLC was performed prior to tandem MS analysis.
(F) Identification and quantification of the proteins were performed using bioinformatics and statistical analysis.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1022448
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Pacakova et al. 10.3389/fcimb.2022.1022448
from fragmentation for 60 seconds. For quantificative

information of TMT label, 10 most intense fragments were

isolated (simultaneous precursor selection) and fragmented in

higher-energy C-trap dissociation (HCD) on 65% energy, max

accumulation time 140 ms, and fragments were measured in

orbitrap on 60 K resolution (McAlister et al., 2014).

Raw data were processed in Max Quant 2.1. TMT reporter ions

ratios were used for estimation of relative amount of each protein.

The search was done against Mus musculus (Uniprot, 16981

entries), L. mexicana protein database (NCBI, 16299 entries), and

common contaminant database. Modification was set: peptide N

terminus, lysine (unimod nr:737) and cysteine (unimod nr:39) as

static, and methionine oxidation (unimod: 1384), and protein N

terminus acetylation (unimod: 1) as a variable. FDR threshold for

peptide and protein identification was set to 1%. Proteins frommice

and common contaminants were filtered off from the results. After

filtering data were normalized to the median and transferred into

binary logarithm. The differences between the individual samples

(axenic – lesion-derived, axenic – macrophage-derived,

macrophage-derived – lesion-derived) were investigated.

Furthermore, only proteins whose content in the samples differed

significantly by at least two-fold were selected. As a statistical test we

used permutation-based false discovery rate analysis (FDR), FDR

0.05. Significance was considered as p < 0.05. Proteins without

annotation or without known function were searched with BlastP

on NCBI site https://blast.ncbi.nlm.nih.gov.

Proteins were divided into several functional groups

(virulence factors, glycolysis, lipid metabolism, oxidative

phosphorylation, amino acid metabolism, oxidative stress

response, molecular motors, vesicular transport, cytoskeleton,

transmembrane transport).
Results

Isobaric tag proteomic analysis

The proportions of L. mexicana, mouse and common

contaminant proteins were determined in all samples by label

free proteomic analysis. Leishmania peptides represent 70 to

90% and 30% of the total protein extract in axenic and

macrophage-derived amastigotes, respectively. The percentage

of peptides from lesion-derived amastigotes ranges from 9 to

14%, depending on the quality of the lesion and the accuracy of

excision. The minimal content of Leishmania peptides in

samples selected for our experiments was 10%.

A total of 3797 proteins were detected by proteomic analysis

using isobaric tags. After filtering off common contaminants, mouse

proteins and proteins assigned to both Leishmania and mouse

identification, 1479 proteins of L. mexicana origin were obtained

[Leishmania mexicana MHOM/GT/2001/U1103]. Hierarchical

clustering of significantly altered proteins in at least one pairwise

comparison was performed in ANOVA test and top 50most altered
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proteins were represented as a heatmap using a platform

MetaboAnalyst 5.0 (Pang et al., 2022). A heat map with

clusterization shows that both alternative amastigotes are closer to

each other than to lesion amastigotes (Figure 2A). Overlap between

differentially expressed proteins between amastigote types is

presented as Venn diagram (Figure 2B). The difference of various

amastigote types was evaluated by Jaccard similarity index for each

comparison (axenic-les-der = 72.01%, axenic-mac-der = 22.97%,

mac-der-les-der = 54.42%. Reproducibility and uniformity of

biological replicates preparation is demonstrated by principal

component analysis (PCA) (Figure 3).

Proteins showing fold changes ≥ 2 and p-value < 0.05 for

each set of comparison were considered and displayed by

volcano plots (Figure 4). Compared to axenic amastigotes 296

and 130 proteins were at least 2-fold more and less abundant in

lesion-derived amastigotes (Figure 4A). In macrophage-derived

amastigotes, 106 proteins were more abundant and 69 showed

reduced abundance when compared to axenic amastigotes

(Figure 4B). In lesion-derived amastigotes, 241 proteins were

more abundant while 103 were decreasing compared to

macrophage-derived amastigotes (Figure 4C).
Basic functional groups of proteins

The 194 proteins quantified in our proteomic comparison

were classified in functional groups (Tables 1–10) and revealed

significant differences in protein abundance for several

functions. Because the protein database [Leishmania mexicana

MHOM/GT/2001/U1103] (Rogers et al., 2011) is relatively

poorly annotated, several unassigned peptides had to be traced

based on sequence similarity via https://blast.ncbi.nlm.nih.gov.

We highlight those with known or expected function. The

proteomic analysis revealed us some significant differences in

protein expression among individual types of amastigotes.
Virulence factors

Higher expression of amastins, glucose transporter 3 (GT3),

cysteine proteinases (CP) and propyl oligopeptidase family

proteins was observed in lesion-derived amastigotes compared

to axenic and macrophage-derived ones. Conversely, the highest

expression of gp63 was shown in axenic amastigotes and lowest

in lesion-derived amastigotes. Protein A600-3, showed higher

expression in lesion-derived amastigotes than in axenic

amastigotes (Table 1).
Glycolysis

Generally, the most pronounced expression of glycolytic

enzymes was observed in axenic amastigotes and amastigotes
frontiersin.org
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isolated from macrophages (e.g., enolase, phosphoglycerate

kinase). An exception was found among some glycolytic

enzymes located in glycosomes that were more expressed in

amastigotes from the lesion compared to axenic and

macrophage-derived ones (e.g., glucose-6-phosphate isomerase,

glycerol-3-phosphate dehydrogenase). Expression of 2,3-

phosphoglycerate mutase was significantly higher in axenic

amastigotes compared to macrophage-derived amastigotes.

Aldose 1-epimerase was upregulated in macrophage-derived

amastigotes compared to lesion-derived and axenic

amastigotes (Table 2).
Lipid metabolism

Expression of enzymes involved in lipid metabolism was

mostly higher in lesion-derived amastigotes compared to both

alternative types of amastigotes. An example is in basic beta-

oxidation enzymes (e.g. enoyl-CoA hydratase/isomerase, 3,2-
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trans-enoyl-CoA isomerase, acyl-CoA dehydrogenase) as well as

in other enzymes involved in b-oxidation indirectly (lipase, acyl

CoA synthetase, acyltransferase, C-14 sterol reductase,

propionyl-CoA carboxylase and long-chain-fatty-acid-CoA

ligase). Furthermore, some anabolic enzymes (e.g. glycerol

kinase) were upregulated in lesion-derived amastigotes

compared to axenic and macrophage-derived ones (Table 3).
Oxidative phosphorylation

Enzymes of respiratory chain were generally more expressed

in lesion-derived amastigotes compared to other types of

amastigotes. This applies for example to ATP synthase,

succinate dehydrogenase, cytochrome c reductase. Interestingly

most peptides identified as cytochrome c oxidase subunits

showed downregulation in macrophage-derived amastigotes in

comparison to axenic amastigotes and lesion-derived ones.

Axenic amastigotes expressed the highest amount of the
A

B

FIGURE 2

(A) Hierarchical Clustering Heat map representing the top 50 differentially expressed proteins in different amastigote type with biological
triplicate. The protein abundance was normalized to enable the comparison of data obtained from LC-MS/MS. The MetaboAnalyst 5.0 website
was used for data normalization and to generate the figure. The lines in the heatmap represent the relative abundance of metabolites across the
samples of the three compared groups (lesion-derived, macrophage-derived, and axenic amastiogtes); each protein ID is indicated on the right
side of the figure. The columns corresponding to the amastigote type are indicated at the top by color (blue for les-derived amastigotes, green
for macrophage-derived amastigotes, and blue for axenic amastigotes). Each of the nine columns corresponds to one biological replicate (three
per amastigote type). On the upper right side of the figure is a scale indicating the color code relative to the normalized protein abundance
(ranging from -1.5 to 1.5). (B) Venn diagram indicates the overlap of differentially expressed proteins between amastigote types.
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electron carrier protein cytochrome c and ubiquinone

biosynthesis methyltransferase (Table 4).
Amino acid metabolism

The most of detected enzymes of amino acid catabolism was

upregulated in lesion-derived amastigotes in comparison to axenic

and macrophage-derived ones. In general, expression of catabolic

enzymes was lowest in axenic amastigotes. Detected enzymes

involved in amino acid catabolism are e. g. serine hydroxymethyl

transferase, methylmalonyl CoA mutase, dihydrolipoamide
Frontiers in Cellular and Infection Microbiology 07
branched chain transacylase, 2-oxoisovalerate dehydrogenase,

delta-1-pyrroline-5-carboxylate dehydrogenase, glutamate

dehydrogenase, methylthioadenosin phosphorylase, lysine

decarboxylase. The most upregulated anabolic enzyme of lesion-

derived amastigotes was methionine synthase. In macrophage-

derived amastigotes, anabolic cystathione gamma lyase and

5-methyltetrahydropteroyltriglutamate-homocysteine

methyltransferase involved in methionin metabolism and catabolic

N-acyl-L-amino acid amidohydrolase were upregulated. In axenic

amastigotes, mostly anabolic enzymes such as glutamine synthetase,

asparagine synthetase and S-adenylmethionine synthetase were

upregulated (Table 5).
FIGURE 3

Clustering of samples after isobaric quantitative proteomics. Principal component analysis of axenic (green dots), macrophage-derived (blue
dots) and lesion-derived (red dots) amastigotes prepared from 3 biological replicates.
A B C

FIGURE 4

Quantitative proteomic analysis. Volcano plot visualization of differentially expressed proteins between (A) lesion-derived amastigotes vs. axenic.
(B) macrophage-derived vs. axenic amastigotes. (C) macrophage-derived vs. lesion-derived amastigotes. Green dots correspond to proteins
showing increased or reduced abundance (fold change ≥2, p-value < 0.05). Blue dots represent proteins that didn’t differ in each comparison.
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Oxidative stress response

Gamma-glutamylcysteine synthetase was upregulated in

lesion-derived amastigotes and least expressed in axenic

amastigotes. The same pattern of expression shows

dihydrolipoamide dehydrogenase. Tryparedoxin, thioredoxin,

type II (glutathione peroxidase-like) tryparedoxin peroxidase

and ascorbate-dependent peroxidase manifested upregulation in

axenic amastigotes. Macrophage-derived amastigotes possessed

very similar expression pattern as axenic amastigotes (Table 6).
Molecular motors, vesicular transport
and cytoskeleton

Molecular motors were highly expressed in lesion-derived

amastigotes. Dynein and kinesin were both upregulated in
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lesion-derived amastigotes, while dynein was least expressed in

axenic amastigotes. Kinesin was least expressed in macrophage-

derived amastigotes (Table 7). Generally, the highest expression

of proteins associated with vesicle transport was observed in

lesion-derived amastigotes (Table 8). A similar trend was seen in

cytoskeleton-associated proteins (Table 9).
Transmembrane transport

Expression of most proteins associated with transmembrane

transport was upregulated in lesion-derived amastigotes. The most

abundant proteins found upregulated in lesion-derived amastigotes

were ATP binding cassette (ABC) transporters (Table 10).

For a better clarity and comprehensive insight, differences in

energy metabolism have been shown in a metabolic map (Figure 5).
TABLE 1 Virulence factors identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual amastigote types.

Virulence factors

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003872640.1 putative amastin-like protein -5,3 -2,5 -2,1

XP_003874986.1 glucose transporter, lmgt3 -6,1 -3,2 -1,9

XP_003872328.1 cysteine peptidase, Clan CA, family C19, putative -4,6 -2,6 -1,8

XP_003877237.1 putative surface protein amastin -3,3 -2,4 -1,4

XP_003872630.1 putative amastin-like protein B5 -13,4 -1,9 -7,2

XP_003874822.1 Prolyl oligopeptidase family protein [L. donovani] -4,2 -1,5 -2,7

XP_003872658.1 putative cathepsin L-like protease -4,1 1,1 -4,3

XP_003886592.1 amastin-like surface protein, putative [L. donovani] -2,4 -1,1 -2,1

XP_003873649.1 cysteine peptidase, Clan CA, family C19,putative -2,0 1,0 -2,1

XP_003878921.1 A600-3 -2,4 -1,7 -1,4

XP_003872625.1 Amastin surface glycoprotein, putative [L. donovani] -1,4 -9,4 6,9

XP_003878670.1 elongation factor 1-beta 2,2 1,2 1,9

XP_003876071.1 cysteine peptidase, Clan CA, family C12,putative 2,2 1,7 1,3

XP_003876623.1 putative calpain-like cysteine peptidase, partial 2,8 1,4 2,0

XP_003873458.1 putative calpain-like cysteine peptidase 3,2 -1,2 4,0

XP_003872882.1 GP63, leishmanolysin 4,4 1,9 2,3
Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
TABLE 2 Glycolytic proteins identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual amastigote types.

Glycolysis

Protein ID's Protein name ax-les ax-mo mo-les

XP_003873158.1 glucose-6-phosphate isomerase -2,5 1,1 -2,8

XP_003872889.1 glycerol-3-phosphate dehydrogenase [NAD+],glycosomal/mitochondrial -2,2 -1,3 -1,7

XP_003875668.1 aldose 1-epimerase-like protein 1,4 2,4 -1,7

XP_003875025.1 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 1,8 2,3 -1,3

XP_003873490.1 enolase 2,2 1,2 1,8

XP_003875074.1 phosphoglycerate kinase C, glycosomal 3,7 1,2 3,1
Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
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Discussion

Previous comparative studies on Leishmania stages were

mostly based on genomic and transcriptomic methods (Peacock

et al., 2007; Fiebig et al., 2015; De Pablos et al., 2019). Nevertheless,

proteomic studies in kinetoplastids are essential because

regulation of gene expression occurs mainly post-

transcriptionally (Karamysheva et al., 2020; Piel et al., 2022).

First proteomic studies were focused especially on comparison

of promastigote and amastigote stages and were based on 2 DE-gel

and subsequent mass spectrometer analysis (Walker et al., 2006;

Paape et al, 2008). However, this method allows only comparison

of proteins with high abundancy while membrane proteins are

highly underrepresented. Advances in proteomic methods

allowed comparison of relative protein abundances and isobaric
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labeling used in this manuscript started to be used for protein

quantification. A big advantage of this „shotgun” proteomic

method is that it allows parallel detection of thousands of

peptides in a single mass spectrometry run. Quantification via

tandem mass tags benefits from sample multiplexing, it allows to

detect fewer missing values compared to label free methods as well

as detection of peptides with low abundancy in a cell (Thompson

et al, 2003). This method has been previously used in order to

compare differential expression of proteins in membranes of

promastigote and amastigote or changes in protein expression

in different time points of promastigote to amastigote

transformation (Rosenzweig et al., 2008; Lynn et al., 2013). We

used this proteomic approach to evaluate differences in proteome

of lesion-derived amastigotes in comparison to axenic and

macrophage-derived ones widely used in experimental assays.
TABLE 3 Proteins involved in lipid metabolism identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual
amastigote types.

Lipid metabolism

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003877335.1 succinyl-coa:3-ketoacid-coenzyme a transferase-like protein -29,5 -12,9 -2,3

XP_003876034.1 Glycerophosphoryl diester phosphodiesterase family protein [L. donovani] -7,2 -2,3 -3,1

XP_003877379.1 sphingosine phosphate lyase-like protein,putative -3,7 -1,5 -2,5

XP_003876021.1 3-oxoacyl-(acyl-carrier protein) reductase,putative -5,8 -3,8 -1,6

XP_003874641.1 putative ATP-binding cassette protein -5,4 -3,9 -1,4

XP_003872327.1 enoyl-CoA hydratase/isomerase-like protein -4,1 -4,4 1,1

XP_003877753.1 putative 3,2-trans-enoyl-CoA isomerase, mitochondrial precursor -2,5 -4,4 1,8

XP_003878080.1 putative C-14 sterol reductase -4,3 -1,8 -2,4

XP_003875417.1 choline dehydrogenase, like protein -3,7 -1,2 -3,1

XP_003876882.1 putative propionyl-coa carboxylase beta chain -3,4 1,0 -3,5

XP_003877631.1 putative monoglyceride lipase -3,4 -1,3 -2,6

XP_003874681.1 Enoyl-CoA hydratase/isomerase family [L. donovani] -3,3 1,5 -5,1

XP_003879304.1 putative glycerol kinase, glycosomal -3,0 -1,2 -2,5

XP_003873444.1 putative fatty acid elongase -2,7 1,1 -3,0

XP_003872330.1 Acyltransferase, putative [L. donovani] -2,7 -1,3 -2,1

XP_003877766.1 putative lipase -3,2 -1,7 -1,8

XP_003877159.1 alkyl dihydroxyacetonephosphate synthase -3,0 -1,5 -2,0

XP_003875399.1 2-oxoisovalerate dehydrogenase alpha subunit, putative -3,0 -1,8 -1,7

XP_003871679.1 glycerol-3-phosphate acyl transferase -3,0 -1,8 -1,7

XP_003877464.1 3-hydroxy-3-methylglutaryl-CoA reductase,putative -2,7 -1,5 -1,8

XP_003874072.1 putative peroxisomal enoyl-coa hydratase -2,4 -1,4 -1,7

XP_003877746.1 putative 3,2-trans-enoyl-CoA isomerase, mitochondrial precursor -1,9 -2,3 1,2

XP_003873231.1 Lipase_(class_3)_-_putative [L. infantum] -1,5 -2,7 1,8

XP_003876456.1 trifunctional enzyme alpha subunit, mitochondrial precursor-like protein -1,8 1,2 -2,3

XP_003878332.1 putative 2,4-dienoyl-coa reductase fadh1 -1,6 1,6 -2,6

XP_003871572.1 putative fatty acyl CoA syntetase 1 1,1 2,6 -2,3

XP_003875783.1 DHHC palmitoyltransferase family protein [L. donovani] 1,2 2,1 -1,7

XP_003873926.1 acyl-CoA-binding protein, putative [L. panamensis] 5,7 3,3 1,7
Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
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Although the level of protein doesn’t systematically reflect

the mRNA abundance, study made by Fiebig et al. (2015)

presented transcriptomic data suggesting closer resemblance of

axenic amastigotes to promastigotes rather than to macrophage-

derived amastigotes. Another transcriptomic study showed that

lesion-derived amastigotes significantly differ in expression of

proteins compared to promastigotes and, importantly, axenic

amastigotes were again closer to promastigotes (Holzer

et al., 2006).

In our study, lesion-derived amastigotes showed

upregulation of some important virulence factors and

metabolic pathways typical for amastigote stage, particularly

amastins, GT3 and A600-3 protein and CP´s. The highest

GT3 expression in amastigotes from an infected animal can be

considered as an adaptation to lower sugar levels in the

environment, to cover necessary sugar intake for the

amastigote stage. This was supported by Feng et al. (2011),

suggesting that the expression of GT3 and other similar proteins

is regulated by the availability of glucose in the environment.

A600-3 protein, a potential virulence factor (Murray et al., 2010),

showed significantly higher expression in these amastigotes

compared to axenic amastigotes. Higher expression of cysteine

proteinases was also observed in amastigotes from the lesion.

This is consistent with the fact that most CPs had higher

expression in amastigotes compared to promastigotes

(Mottram et al., 1992; Souza et al., 1992); increased expression
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is probably required for modulation of the host cellular response

(Cameron et al., 2004). CPB inhibits Th1 protective immune

response in mice (Buxbaum et al., 2003) and its function is also

associated with autophagy, a process that is required for

transformation to amastigote form (Denise et al., 2003;

Williams et al., 2006). A higher CPB expression in lesion-

derived amastigotes could be also related to larger megasome

volumes in amastigotes from the infected animal (Ueda-

Nakamura et al., 2007). Prolyl oligopeptidase family protein is

another potential virulence factor upregulated in lesion-derived

amastigotes compared to axenic and macrophage-derived ones,

it seems to be involved in macrophage invasion process as found

in L. infantum (Lasse et al., 2020).

As a carbon source, amastigotes prefer sugars, if available

(McConville et al., 2015). Due to lower availability of sugars in

parasitophorous vacuole, their supply to the amastigote cell is

significantly reduced. In our comparative study, lower

expression of glycolytic enzymes was generally observed in

lesion-derived amastigotes compared to axenic and

macrophage-derived ones, as expected by the higher

availability of sugars in media supplemented with bovine

serum compared to host environments where sugar intake

may fluctuate. As an exception, some glycolytic enzymes

located in glycosomes were more expressed in amastigotes

from the lesion (e. g. glucose-6-phosphate isomerase). This is

consistent with a study of Rosenzweig et al. (2008), where
TABLE 4 Proteins of oxidative phosphorylation identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual
amastigote types.

Oxidative phosphorylation

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003875391.1 putative ATP synthase -6,3 -1,1 -5,5

XP_003877677.1 putative cytochrome c oxidase VIII (COX VIII) -3,9 1,6 -6,3

XP_003872264.1 ATP synthase subunit C family protein [L. donovani] -3,1 -1,1 -3,0

XP_003876168.1 putative cytochrome c oxidase VII -2,9 1,6 -4,8

XP_003876210.1 putative ATPase of the ABC class family protein [L. donovani] -2,8 -1,4 -2,0

XP_003875445.1 putative ATP synthase F1 subunit gamma protein -2,2 -1,1 -2,0

XP_003873529.1 putative cytochrome-b5 reductase -2,4 -1,4 -1,7

XP_003872150.1 putative cytochrome c1, heme protein, mitochondrial precursor -1,7 2,0 -3,4

XP_003879149.1 putative reiske iron-sulfur protein precursor -1,2 2,0 -2,3

XP_003875062.1 cytochrome c oxidase subunit I -2,0 2,3 -4,6

XP_003873171.1 cytochrome c oxidase subunit IV -1,6 2,1 -3,4

XP_003876472.1 putative cytochrome c oxidase subunit V -1,3 2,2 -2,8

XP_003875663.1 putative cytochrome c oxidase subunit 10 [L. braziliensis] -1,2 2,2 -2,8

XP_003875439.1 putative cytochrome c oxidase subunit VI -1,2 2,7 -3,3

XP_003872832.1 putative cytochrome b5-like protein 1,5 3,1 -2,0

XP_003877776.1 ubiquinol-cytochrome-c reductase-like protein 2,2 2,3 -1,0

XP_003874894.1 ubiquinone biosynthesis methyltransferase,putative 4,1 2,1 2,0

XP_003873820.1 putative cytochrome c 48,3 5,2 9,2
Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
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TABLE 5 Amino acid metabolism enzymes identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual
amastigote types.

Amino acid metabolism

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003875729.1 cytosolic leucyl aminopeptidase -15,7 -2,4 -6,4

XP_003877079.1 serine hydroxymethyltransferase -7,0 -2,5 -2,8

XP_003873031.1 3-methylcrotonoyl-CoA carboxylase beta subunit,putative -5,2 -1,3 -4,0

XP_003876604.1 putative methylmalonyl-coenzyme a mutase -4,2 -2,7 -1,6

XP_003871691.1 delta-1-pyrroline-5-carboxylate dehydrogenase, putative -3,3 -2,2 -1,5

XP_003871906.1 dihydrolipoamide branched chain transacylase, putative -3,1 -2,1 -1,5

XP_003873627.1 glutamate dehydrogenase -2,7 -3,2 1,2

XP_003878903.1 amidinotransferase, putative [L. panamensis] -2,4 -2,5 1,0

XP_003877832.1 methylcrotonoyl-coa carboxylase biotinylated subunitprotein-like protein -4,7 -1,7 -2,8

XP_003871917.1 putative protein tyrosine phosphatase -4,6 -1,7 -2,7

XP_003873824.1 Amidase, putative [L. donovani] -4,4 -1,3 -3,5

XP_003878177.1 putative glucosamine-6-phosphate deaminase -3,5 1,0 -3,6

XP_003871973.1 putative methylthioadenosine phosphorylase -3,4 -1,5 -2,3

XP_003875991.1 Aminomethyltransferase folate-binding domain, putative [L. donovani] -3,2 -1,5 -2,1

XP_003872153.1 cobalamin-dependent methionine synthase, putative -2,8 -1,0 -2,7

XP_003876680.1 putative cysteine desulfurase -2,7 1,1 -3,1

XP_003877095.1 putative acyl-CoA dehydrogenase -2,5 -1,2 -2,1

XP_003878111.1 putative cystathionine beta-lyase -3,5 -1,7 -2,0

XP_003879269.1 putative acyl-CoA dehydrogenase -2,8 -1,9 -1,4

XP_003879010.1 putative 2-oxoisovalerate dehydrogenase beta subunit, mitochondrial precursor -2,3 -1,8 -1,3

XP_003872473.1 putative guanine deaminase -1,9 1,1 -2,1

XP_003879319.1 putative cystathione gamma lyase 1,4 -1,9 2,7

XP_003877520.1 putative 5-methyltetrahydropteroyltriglutamate–homocystein emethyltransferase 1,6 -9,7 15,8

XP_003877630.1 putative N-acyl-L-amino acid amidohydrolase 2,3 -3,9 8,7

XP_003872049.1 putative glutamine synthetase 3,6 1,9 1,9

XP_003876383.1 putative asparagine synthetase a 8,3 1,3 6,6

XP_003877497.1 S-adenosylmethionine synthetase 4,4 2,3 1,9
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Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
TABLE 6 Oxidative stress response enzymes identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual
amastigote types.

Oxidative stress response

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003874178.1 putative gamma-glutamylcysteine synthetase -23,1 -3,6 -6,5

XP_003872375.1 putative dihydrolipoamide dehydrogenase -8,2 -1,7 -4,9

XP_003872443.1 tryparedoxin-like protein -2,5 -1,1 -2,2

XP_003872441.1 tryparedoxin 2,1 1,7 1,3

XP_003876381.1 type II (glutathione peroxidase-like) tryparedoxin peroxidase 3,1 1,3 2,4

XP_003876382.1 type II (glutathione peroxidase-like) tryparedoxin peroxidase 3,8 1,5 2,6

XP_003878590.1 putative ascorbate-dependent peroxidase 6,0 6,2 -1,0
Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
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TABLE 7 Molecular motors identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual amastigote types.

Molecular motors

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003879287.1 dynein light chain, putative [L. panamensis] -101,6 -4,8 -21,1

XP_003876894.1 putative dynein heavy chain -79,2 -11,4 -7,0

XP_003874247.1 putative kinesin -3,6 -1,0 -3,6

XP_003874115.1 putative dynein light chain 2B, cytoplasmic -3,2 -1,8 -1,8

XP_003878689.1 putative myosin IB heavy chain -2,1 -1,4 -1,5

XP_003876152.1 putative dynein heavy chain 1,0 -3,6 3,6

XP_003873485.1 putative kinesin K39 3,9 1,8 2,2

XP_003886543.1 putative kinesin [L. major] 3,9 2,1 1,8
Frontiers in Cellular and Infec
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Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
TABLE 8 Vesicular transport proteins identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual
amastigote types.

Vesicular transport

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003879239.1 putative phosphoinositide-binding protein -3,2 -2,9 -1,1

XP_003875197.1 putative coatomer beta subunit -2,7 -4,9 1,8

XP_003878817.1 putative adaptor complex subunit medium chain 3 -15,6 -1,9 -8,3

XP_003878137.1 putative SNAP protein [L. major] -2,4 1,1 -2,7

XP_003872565.1 putative Qc-SNARE protein -2,2 -1,5 -1,5

XP_003876120.1 putative epsin 2,7 1,2 2,3

XP_003875036.1 putative beta-adaptin 3,0 -1,2 3,6

XP_003878067.1 COP9 signalosome, subunit CSN8 family protein [L. donovani] 2,9 1,5 1,9
Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
TABLE 9 Cytoskeleton proteins identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual amastigote types.

Cytoskeleton

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003875956.1 LIM domain family protein [L. donovani] -30,0 -1,8 -16,7

XP_003875419.1 microtubule-binding protein, putative [L. panamensis] -2,1 -2,3 1,1

XP_003879352.1 CRAL/TRIO domain family protein [L. donovani] -1,1 -2,0 1,8

XP_003878744.1 p25-alpha, putative [L. donovani] 1,3 -2,8 3,5

XP_003872679.1 beta tubulin 2,6 -1,9 5,1

XP_003878782.1 putative G-actin binding protein 2,9 -1,6 4,7

XP_003878811.1 flagellar_attachment_zone_protein_putative|GeneDB : LmjF.34.2530 [L. donovani] 2,2 1,6 1,4
Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
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expression of glycolytic enzymes located in the glycosome of L.

donovani was increased during transformation into amastigotes,

while the expression of cytosolic glycolytic enzymes was

decreased (e. g. enolase, phosphoglycerate mutase). Enzymes

co-located in glycosomes may be important in the rapid

response to a change in carbon source availability (Rosenzweig

et al., 2008).

Since glyoxylate cycle is absent in Leishmania parasites, they are

unable to switch to the utilization of fatty acids as a sole carbon

source (Saunders et al., 2014; McConville et al., 2015). Amastigotes,

contrary to promastigotes, overexpress enzymes involved in

metabolism of fatty acids, which are the second preferred source

of carbon (Hart and Coombs, 1982; Paape et al., 2010; Saunders

et al., 2011; Saunders et al., 2014). Results of this study indicate the

most pronounced expression of b-oxidation enzymes in

amastigotes from the host lesion in comparison with the

remaining types of amastigotes, which is in accordance with

Rosenzweig et al., (Rosenzweig et al., 2008). The expression of

other enzymes involved in b-oxidation indirectly (lipase, acyl CoA

synthetase) was also increased in lesion-derived amastigotes

compared to alternatively cultured amastigotes. Expression of

glycerol kinase was increased in lesion amastigotes, suggesting

that glycerol produced by lipases is further processed in

gluconeogenesis (Opperdoes and Coombs, 2007; Rodriguez-

Contreras and Hamilton, 2014), which is essential in amastigote

stage living in sugar depleted conditions (Naderer et al., 2006).

Amastigotes proliferate in amino acid rich environment

(Naderer and McConville, 2008) and therefore catabolism of
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some amino acids is increased compared to promastigote stages

(Rosenzweig et al., 2008). This fact was reflected in lesion-

derived amastigotes, where expression of most enzymes

connected with amino acid catabolism was increased. An

example is glutamate dehydrogenase, where increased

expression has been measured in L. donovani amastigotes

(Rosenzweig et al., 2008).

Furthermore, the fact that enzymes of oxidative

phosphorylation and enzymes of energetic metabolism were

more highly expressed in lesion-derived amastigotes compared

to other types of amastigotes is in accordance with previously

done studies (Rosenzweig et al., 2008; Saunders et al., 2014). The

pathways of oxidative phosphorylation and b-oxidation are

essential for the virulence of amastigotes, and when they are

disrupted, virulence is lost (Dey et al., 2010; Gannavaram

et al., 2012).

Overall higher expression of proteins involved in

signalization, vesicular trafficking and membranous transport

was observed in lesion-derived amastigotes in comparison to

alternative types. Vesicular transport has been shown to be very

important for survival in the intracellular environment due to

the extraction of nutrients from the extracellular environment,

the release of virulence factors, metabolites and drug resistance

molecules in pathogens generally as well as hijacking the

immune response (Silverman et al., 2010; Atayde et al., 2015;

Bouvy et al., 2017; Coakley et al., 2017). In a study comparing

protein expression of promastigote vs. amastigote, an increased

expression of dynein was observed in amastigote form (Biyani
TABLE 10 Transmembrane transport proteins identified in all 3 comparisons that differ by at least 2-fold (T-test significant) between individual
amastigote types.

Transmembrane transport

Protein ID’s Protein name ax-les ax-mo mo-les

XP_003872500.1 putative ABC transporter -21,8 -6,5 -3,3

XP_003878160.1 putative ABC transporter -4,9 -2,6 -1,8

XP_003873076.1 SEC61-like (pretranslocation process) protein,putative -5,7 -1,5 -3,7

XP_003874210.1 intraflagellar transport protein component, putative -4,6 -1,5 -3,0

XP_003877640.1 putative vacuolar-type proton translocating pyrophosphatase 1 -4,2 -1,7 -2,5

XP_003875636.1 putative vacuolar type h+ ATPase subunit -3,1 1,1 -3,3

XP_003871665.1 putative mitochondrial carrier protein -2,6 1,1 -2,8

XP_003872210.1 putative vacuolar-type Ca2+-ATPase -2,4 1,1 -2,5

XP_003872932.1 Archaic_translocase_of_outer_membrane_12_kDa_subunit [L. braziliensis] -2,1 1,1 -2,3

XP_003879439.1 putative mitochondrial phosphate transporter -2,9 -1,5 -1,9

XP_003876106.1 putative ABC transporter -2,3 -1,4 -1,7

XP_003871558.1 putative poly(A) export protein -2,0 -1,5 -1,3

XP_003875664.1 ABC transporter-like protein -1,3 -2,2 1,7

XP_003874875.1 vacuolar protein sorting-associated protein-like protein 1,8 -1,1 2,0

XP_003871644.1 voltage-dependent anion-selective channel, putative [L. panamensis] 1,9 2,1 -1,1

XP_003874566.1 ER–golgi transport protein erv25 precursor, putative 2,2 1,3 1,7
Color shade shows relative protein abundances among individual groups of amastigotes; red/green color represents at least two-fold up-/down-regulated proteins, yellow means non
differing proteins.
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and Madhubala, 2012). Also in our study, most peptides

identified as dynein were more expressed in lesion-

derived amastigotes.

In contrast to lesion-derived amastigotes, axenically

cultivated amastigotes had downregulated some virulence

factors specific for amastigote stage. Good examples are

amastins with proven function in mediation of contact with

the membrane of parasitophorous vacuole which is absent in

axenic amastigotes (de Paiva et al., 2015). Lower expression of

A600 protein family in axenic amastigotes may indicate their

closer resemblance to promastigotes as A600 protein family is

typically expressed in amastigote stage (Bellatin et al., 2002). In

axenic amastigotes, there is no interaction with the host, and in
Frontiers in Cellular and Infection Microbiology 14
amastigotes isolated frommacrophages ex vivo, the environment

is depleted of interaction with other immune cell types which

could be the reason for the lowest expression of CPB. Other

cysteine proteinases (e. g. the CA clan) were also identified in our

samples, whose expression was higher alternately in all types of

amastigotes, but whose function in Leishmania parasites is not

yet well known (Siqueira-Neto et al., 2018) and therefore cannot

be further evaluated with respect to these results.

CPB regulates the expression of another virulence factor –

gp63 (Casgrain et al., 2016). Gp63 is present in both amastigotes

and promastigotes. It is known that the expression of surface

form of gp63 is higher in promastigotes compared to

amastigotes of L. mexicana (Medina-Acosta et al., 1989).
FIGURE 5

Metabolic map of central carbon metabolism and oxidative phosphorylation. Arrows indicates at least two-fold up- or downregulation (T-test
significant) of enzyme in lesion-derived amastigotes compared to axenic amastigotes (macrophage-derived amastigotes are usually
intermediate between the two). 1) glucose-6-phosphate isomerase 2) glycerol-3-phosphate dehydrogenase 3) glyceraldehyde-3-phosphate
dehydrogenase 4) fumarate reductase 5) phosphoglycerate kinase 6) phosphoglycerate mutase 7) enolase 8) succinate dehydrogenase 9) ATP
synthase 10) cytochrome c.
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Along with a function as a virulence factor gp63 plays a role in

evasion of complement-mediated lysis, induction of

phagocytosis by host macrophage, degradation of extracellular

matrix, inhibition of natural killer cellular functions,

degradation of macrophage cytosolic proteins and it helps

intracellular amastigotes to survive within parasitophorous

vacuole (Russell and Wilhelm, 1986; Chaudhuri and Chang,

1988; Chaudhuri et al., 1989; Brittingham et al., 1995; Seay et al.,

1996; Brittingham et al., 1999; McGwire et al., 2003; Kulkarni

et al., 2006; Hallé et al., 2009; Contreras et al, 2010). In our study,

the highest expression of gp63 was recorded in axenic

amastigotes. However, part of our experiments did not

determine the location of the identified proteins, so it is not

possible to say with certainty whether the overall higher

expression of gp63 is an indicator of the similarity of axenic

amastigotes with promastigotes. Elongation factor alpha found

in exosomes possesses immunosuppressive properties and also

plays a role in activation of host cells for invasion (Nandan et al.,

2002). We observed highest expression of elongation factor

alpha in macrophage-derived amastigotes. This protein has a

role in translation, apoptosis and regulation of ubiquitine-

mediated lysis (Gonen et al., 1996). It has been shown to

interact with host SHP-1 which leads to downregulation of

inducible nitric oxide synthase in activated macrophage

(Nandan et al., 2002). Compared to amastigotes from the

lesion, macrophage-derived amastigotes may have more active

translation and generally higher expression of translation

factors, that may explain their faster multiplication.

Some metabolic pathways are considered therapeutic targets

for potential antileishmanial drugs (Sundar and Singh, 2018).

Differential expression of proteins in alternative amastigotes´

metabolism may cause various reactions to the drug when

compared to natural conditions. The functional mechanism of

some drugs is based on the modulation of macrophage function,

supporting the need of intracellular amastigotes (Da-Silva et al.,

1999). Also, higher expression of ABC proteins in amastigotes

found in hosts can cause a different reaction to some drug

compounds (e.g. by a higher degree of resistance) compared to

alternative forms (Leprohon et al., 2006).

In conclusion, this study suggests that alternative methods of

obtaining amastigotes do not result in a complete conversion

equal to amastigotes developed in the host lesion. Expression

patterns of macrophage-derived amastigotes were mostly

between lesion-derived amastigotes and axenic amastigotes

which suggests that they may be closer to natural model of

infection and therefore more relevant model for experimental

studies than axenic amastigotes.
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