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Main

Viruses are unanimously omnipresent in the biosphere (Cobián Güemes et al., 2016).

While fungi are a major cause of human, animal, and plant disease, they too can be

infected by viruses. Mycoviruses are viruses that use the fungal molecular machinery for

self-replication and sustainability (Son et al., 2015). Mycoviruses are widespread in the

fungal kingdom, infecting over 20% of tested isolates. The vast majority of so-far

identified mycoviruses have (+)ssRNA or dsRNA genome organization, with a smaller

representation of (−)ssRNA and ssDNA viruses (reviewed in [Kondo et al., 2022)]. While

some mycoviral infections are benign, there are examples of mycoviruses having both

beneficial and detrimental effects on their fungal host, such as modified virulence (hypo

or hyper virulence) (Melzer et al., 2002; Lau et al., 2018), mycotoxin production (Nerva

et al., 2019), and adaptation to new environments (Nerva et al., 2017).

To date, there’s no evidence of a mycoviral lytic extracellular phase. While

mycoviruses’ size ranges from 30-80 nm, the fungal cell wall pores only measure ~5.8

nm (De Nobel et al., 1990). Thus, the absence of an extracellular transmission route is

attributable to the virtually impervious fungal cell wall (Kotta-Loizou and Coutts, 2017).

For this reason, contact transmission is very rare, and mycoviruses transmission occurs

chiefly vertically via sexual and asexual spore production and horizontally via

cytoplasmic exchange following hyphal anastomosis thus, they generally rely on their

fungal hosts for survival and proliferation (Kotta-Loizou and Coutts, 2017). One

important caveat is that this transmission paradigm cannot explain the widespread

prevalence and the frequent interspecies transmission between genetically incompatible

groups (Melzer et al., 2002; Liu et al., 2003; Brasier et al., 2004; Ikeda et al., 2005; Charlton

et al., 2008). Perhaps, mycoviruses can be spread by contact between wounded fungal

cells, or by insect vectors that can breach the fungal cell wall, similar to plant viruses. As a

precedent for this proposition, Sclerotinia sclerotiorum hypovirulence-associated DNA
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virus 1 (SsHADV-1) uses the mycophagous insect Lycoriella

ingenua as a transmission vector (Liu et al., 2016).

This key feature of mycoviruses, namely the lack of

extracellular phase, resembles the lifestyle of lysogenic or

latent infections, which transmit vertically from generation to

generation (Feiner et al., 2015). This phenomenon generates

predation pressure since mycoviral reproductive success is

intimately linked to that of their fungal hosts. Fungal

acquisition of an anti-mycoviral defense mechanism may

demolish the mycovirus, and conversely, an increased

mycoviral virulence risks the extinction of the fungal host.

With this in view, it is to be expected that mutualistic

interactions that support both mycoviral and fungal

reproduction have evolved. Pathogenic fungi need to survive

extremely inhospitable environments such as oxidative burst

(plants and phagocytes), and elevated body temperatures that

are known to induce genetically regulated cell death (RCD) and

stress pathways in fungal cells (Shlezinger et al., 2011a;

Shlezinger et al., 2017). In this context, we predict that

symbiotic mycoviruses that aim to keep their hosts alive will

strive to prevent the induction of fungal cell death by targeting

fungal stress and survival pathways, thereby governing fungal

virulence and adaptation to new environments and new hosts.

In this opinion article, we focus on favorable mycovirus-

fungus interactions and propose that mycoviruses hijack

fungal survival pathways and thereby modify fungal virulence

and host adaptation. These mycovirus-derived traits that

enhance fungal fitness in specialized niches underlie fungal

virulence and adaptation and may account for host-jumps and

crossover events.
Microbial hacking: Stress and
cell death pathways in
virus-host interactions

Control of cell death pathways plays a central role in

immunity to infection in animals and plants, through the

elimination of infected host cells, or extension of host cell

survival, depending upon the pathogens’ infection strategy

(Coll et al., 2011; Jorgensen et al., 2017). In turn, numerous

microbes have evolved evasion strategies to modulate host cell

death and survival pathways, to generate replicative niches, or to

facilitate tissue invasion (Navarre and Zychlinsky, 2000).

In the broadest sense, viruses can be categorized according to

their pathogenic lifestyle into lytic and latent viruses. During the

lytic phase, viruses enter a productive cycle leading to virion

release by cell lysis, while latent viruses persist within the host

cell. Viruses have evolved to manipulate an array of metabolic

and survival mechanisms to their advantage by inducing or

preventing cell death, depending on their infection strategy

(Benedict et al., 2002). Accordingly, latent viruses often
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prevent the death of the host cell to establish a suitable

environment for long-term persistence (Connolly and

Fearnhead, 2017). Viruses employ diverse strategies including

viral mimicry and epigenetic reprogramming, to rewire host

cellular networks [reviewed in (Davey et al., 2011)]. A well-

studied example is the Epstein–Barr virus (EBV) latent

membrane protein 1 (LMP1) which is a constrictively-

expressed mimetic of host receptor CD40 that mediates the

activation of nuclear factor-kappa B (NF-kB) signaling, resulting
in RCD blockage and cell proliferation (Thorley-Lawson, 2001).

In multipartite “Russian doll” pathosystems in which a virus

is infecting a pathogen, infecting an animal or a plant (virus-

microbial host-multicellular host), the fungal pathogen has to

survive within the hostile host environment (Figure 1). Both,

plant and animal defenses generate a robust oxidative burst and

antimicrobial peptides that have the potential to induce

microbial cell death, and particularly RCD (Madeo et al., 1999;

Andres et al., 2008; Shlezinger et al., 2011b). Under these

circumstances, the fungal pathogen will benefit from the

presence of latent/chronic viruses that provide competitiveness

by fortifying stress resistance.

Accordingly, the selective pressure imposed by the animal/

plant host serves as a vital factor for maintaining viral latency.

Indeed, while very prevalent in pathogenic interactions, biofilms,

and harsh environments, lysogeny-derived traits of phages are

dispensable under standard laboratory conditions (Wang et al.,

2010). Cryptic lysogens bestow a wealth of beneficial traits to

their bacterial hosts such as enhanced antibiotic resistance,

oxidative stress, and osmotic resistance (to name a few)

(Wang et al., 2010). The bacterial host reprogramming is

mediated, at least in part, by the inhibition of bacterial pro-

death modules (Engelberg–Kulka et al., 1998; Engelberg-Kulka

and Kumar, 2015).
Mycoviral infection and its
numerous fitness benefits

Similar to lysogenic or chronic phages, mutually beneficial

interactions that support mycoviral propagation and fungal

fitness have evolved. The most well-studied favorable

interaction is the killer phenotype conferred by mycoviral-

encoded secreted toxins, similar to phage-derived bacterial

toxins such as diphtheria, botulinum, and cholera (Freeman,

1951; Barksdale and Arden, 1974; Waldor and Mekalanos,

1996). This mutualistic interaction leads to the production of a

toxin that kills susceptible competitors (Allen et al., 2013;

McBride et al., 2013).

Recent studies suggest that similar to mammalian viruses

and bacteriophages, mycoviruses may control the survival and

fate of their fungal host by modulating stress and RCD

pathways to suit their needs and complete their replication
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cycle. For instance, MrV40, a dsRNA mycovirus infecting

Malassezia species, was shown to upregulate host genes that

are involved in RCD (Park et al., 2020). This includes HOG1

and ATG101 (osmotic stress and autophagy-related proteins).

Moreover, Clancey et al., 2020 reported enhanced colonization

by MsMV1-containing Malassezia isolates in an epicutaneous

murine model. Similarly, Talaromyces marneffeipartitivirus-1

(TmPV1) is highly abundant in clinical T. marneffei isolates

and the mycoviral infection exacerbates disease in a murine

systemic talaromycosis model. While the underlying

mechanism is yet to be clarified, TmPV1 is associated with

upregulat ion of potential virulence factors (GABA

transaminase, nitrate transporter, nitrite reductase) and

downregulation of RNAi-related genes (Lau et al., 2018).

White-nose syndrome (WNS) is a devastating fungal disease

that is killing off the bat population of North America (Blehert

et al., 2009). The microbial culprit is the mycovirus-infected

fungus Pseudogymnoascus destructans , harboring the

Pseudogymnoascus destructans partitivirus (PdPV). PdPV is

associated with P. destructans strains accountable for WNS,

and was shown to confer P. destructans a growth advantage on

a porcine ear model (Thapa et al., 2016; Thapa et al., 2022).

Conversely, Sclerotinia sclerotiorum hypovirulence-associated

DNA virus 1 (SsHADV-1) can modulate the virulence of its

phytopathogenic fungal host S. sclerotiorum converting its

pathogenic lifestyle from necrotrophic to endophytic. The

observed endophytic conversion is associated with

downregulation of plant cell wall-degrading enzymes (Zhang

et al., 2020). Some mycoviruses confer enhanced tolerance to

abiotic stresses that are known to induce fungal RCD. The
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dsRNA virus Curvularia thermal tolerance virus (CThTV)

bestows its fungal host Curvularia protuberate and its host

plant enhanced thermal protection (Márquez et al., 2007).

Furthermore, infection of the phytopathogenic fungus

Cryphonectria parasitica with Penicillium aurantiogriseum

partiti-like virus 1 (PaPLV1) results in improved osmotic

stress tolerance (Huh et al., 2002; Nerva et al., 2017). These

studies support the notion that mycoviral infections account

for strain-specific virulence and host adaptation.

Similar to animal, plant, and bacterial innate immune systems,

fungi have evolved a non-self surveillance system termed

heterokaryon incompatibility (HI) to eliminate cytoplasmic

mixing and transmission of mycoviruses and other deleterious

cellular components upon hyphal anastomosis (Saupe, 2000).

Allorecognition in filamentous fungi is genetically controlled and

relies on the induction of spatiotemporally localized RCD upon

fusion events between genetically incompatible strains determined

by the het loci. The het genes are highly polymorphic belonging to

the NOD-like receptors (NLRs) family. Animal and plant NLRs are

intracellular nucleotide-binding site and leucine-rich repeats

containing proteins controlling cell survival in response to

immunogenic cues. Thus, HI may represent an ancestral form of

allorecognition and antimicrobial innate immunity. The ultimate

goal of a dweller mycovirus is the subversion of HI to prevent the

host cell from dying and to facilitate horizontal transmission by

hyphal fusion. Indeed Sclerotinia sclerotiorum mycoreovirus 4

(SsMYRV4) suppresses HI-induced RCD in vegetatively

incompatible S. sclerotiorum enabling heterologous mycoviral

transmission by downregulating G proteins het-domain related

genes (Wu et al., 2017).
FIGURE 1

The “Russian doll” model of multipartite RCD-driven pathosystem: Mycovirus, fungal pathogen, animal/plant host. 1. Animal/plant host induction
of regulated cell death (RCD) pathways in the fungus to eliminate fungal spread. 2. Mycoviral-mediated inhibition of RCD or activation of
survival mechanisms in fungal cells to prevent fungal host cells from dying. 3.Mycoviral immunomodulation. Mycoviral proteins may serve as
PAMPs sensed by animal/plant cell PRRs and directly stimulate or block multiple inflammatory and cell death signaling pathways.
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Mycoviruses: Backseat drivers of
fungal disease

To add another layer of complexity, microbial viruses of

bacteria, protozoa, and fungi, have the potential to

independently be immunogenic and stimulate multiple

inflammatory, cell death, and survival signaling pathways in

the animal or plant host. The immune system can be exposed to

viral components upon intracellular killing and degradation of

the carrier pathogen followed by recognition by pathogen

recognition receptors (PPRs). Endosomal TLRs recognize

nucleic acid motifs, with TLR9 recognizing DNA, TLR7

ssRNA, and TLR3 dsRNA (Doyle and O’Neill, 2006).

Intracellular RNA sensing is mediated by cytosolic RIG-I–like

receptors (RLR), composed of RIG-I, NLRs, and MDA5, that

work through the MAVS adaptor to activate IFN antiviral

responses (Rehwinkel and Gack, 2020). These pro-

inflammatory pathways can often unleash cell death

machinery. For instance, virus-stimulated TLR3 and TLR7 can

trigger autophagy (a form of RCD) by shifting the balance of

MyD88 and/or TRIF adaptor proteins interaction toward

Beclin-1 and reducing the binding of Beclin-1 to the anti-

apoptotic protein Bcl-2 (Delgado et al., 2008; Shi and Kehrl,

2008). TLR3/4 recruitment of TIR domain-containing adapter

inducing IFN-b (TRIF) results in caspase 8-mediated apoptotic

cell death (Ruckdeschel et al., 2004). Moreover, cytoplasmic

recognition of viral RNA may trigger the formation of NLRP3

inflammasomes leading to host cell death by pyroptosis

(Kanneganti et al., 2006). While such interactions are

established for phages (Pajtasz-Piasecka et al., 2008; Kurzępa

et al., 2009; Huh et al., 2019), information on non-bacterial

microbial viruses is sparse. The dsRNA virus Leishmaniavirus

(LRV), a parasite of Leishmania spp., is among the few known

cases of non-bacterial microbial-virus that drives human disease.

LRV is a potent innate immunogen, stimulating a detrimental

TLR3-mediated hyperinflammatory response, and exacerbating

disease (Ives et al., 2011; de Carvalho et al., 2019). Precedence for

mycoviral immunogenicity was demonstrated for two

mycoviruses of Malassezia spp. Showing TLR3- dependent

(Park et al., 2020) and independent (Clancey et al., 2020)

elevated type-I and II interferon expression.

Given the commonalities between known oncogenes and viral-

targeted cellular pathways, it is not surprising that some

mammalian viruses can cause cancer by circumventing or

hijacking cell death modalities. Interestingly, a recent study

discovered that plasma from lymphoblastic leukemia (ALL)

patients, was reactive with supernatants from a mycovirus-

containing Aspergillus flavus isolate, while sera from healthy

controls were non-reactive, suggesting mycovirus-mediated

leukemogenesis in this group of patients (Tebbi et al., 2021). The

question arises, whether mycoviruses may impact human or animal

health directly or once internalized using the fungal cell as a carrier.
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Concluding remarks

So far, the study of mycoviruses has been dominated by the

search for pathogenic viruses, but this will need to change if we

are to appreciate the diverse ways that viruses affect life on earth.

It is becoming apparent that mycoviruses play a prominent role

in various facets related to fungal virulence. This notion extends

beyond the outlined examples and may represent an Achilles’

heel for many pathogens. Accordingly, the fungal and

mammalian hosts’ anti-viral pathways may be instrumental in

regulating fungal virulence and pathogenesis. Moreover, because

stress and RCD pathways are likely to play a central role in all

types of fungus–mycovirus interactions, key players identified in

these pathways bear a substantial therapeutic potential,

providing new targets that operate in an entirely unexploited

target space. As fungal genomes are treasure troves of untapped

compounds, further exploration of the molecular mechanisms

governing mycoviral-mediated fungal fitness and virulence may

lead to the development of novel viral-selective, pan-

antiviral drugs.
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