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Sepsis is one of the leading causes of mortality worldwide and is defined as life-

threatening organ dysfunction caused by a dysregulated host response to

infection. The early diagnosis and effective treatment of sepsis still face

challenges due to its rapid progression, dynamic changes, and strong

heterogeneity among different individuals. To develop novel strategies to

control sepsis, a better understanding of the complex mechanisms of sepsis

is vital. Extracellular vesicles (EVs) are membrane vesicles released from cells

through different mechanisms. In the disease state, the number of EVs

produced by activated or apoptotic cells and the cargoes they carry were

altered. They regulated the function of local or distant host cells in autocrine or

paracrine ways. Current studies have found that EVs are involved in the

occurrence and development of sepsis through multiple pathways. In this

review, we focus on changes in the cargoes of EVs in sepsis, the regulatory

roles of EVs derived from host cells and bacteria, and how EVs are involved in

multiple pathological processes and organ dysfunction in sepsis. Overall, EVs

have great application prospects in sepsis, such as early diagnosis of sepsis,

dynamic monitoring of disease, precise therapeutic targets, and prevention of

sepsis as a vaccine platform.
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1 Introduction

According to the latest guidelines, sepsis was defined as a dysregulated host immune

response caused by infection, which in turn causes a systemic inflammatory response and

even multiple organ dysfunction (Singer et al., 2016). Globally, the incidence of sepsis was

189 hospitalized sepsis cases per 100,000 person-years, and the mortality rate is

approximately 26.7%, presenting an enormous economic burden worldwide

(Fleischmann-Struzek et al., 2020).

Extracellular vesicles (EVs) are membrane vesicles that can be secreted by all cell

types and are a novel signal transduction method discovered recently. Currently, they
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are considered to be divided into three main categories:

exosomes, microvesicles and apoptotic bodies, and this

classification is mainly based on their biogenesis process (van

Niel et al., 2018). That is, microvesicles were formed by budding

and fission directly from the plasma membrane, while exosomes

were formed by a unique mechanism, mainly through two

invaginations of the plasma membrane, and finally existed in

maturation multivesicular bodies (MVB) in the form of

intraluminal vesicles (ILVs), which are then released

extracellularly by fusion with the plasma membrane (van Niel

et al., 2018). Most of the current research still focuses on

exosomes, mainly because of the particularity of their

biogenesis mechanism, which many scholars believe may be

related to unique functions. However, the biological study of

extracellular vesicles is still unclear. The separation and

purification techniques and identification methods are still

questionable. Although many researchers claim to be studying

exosomes or microvesicles, we still refer to them collectively as

EVs. It should be noted that in earlier studies, the vesicle-like

structures present outside the cell were called microparticles

(MPs). Therefore, in this paper, MPs from earlier studies were

also included in the category of EVs.

In recent years, a large number of original studies on EVs in

sepsis have been published. In sepsis, EVs derived from activated

or apoptotic cells were altered in both the number and cargoes

they carry, regulating signal transduction and altering the

phenotype of neighboring cells in an autocrine or paracrine
Frontiers in Cellular and Infection Microbiology 02
manner (Juan et al., 2021; Murao et al., 2021; Wang et al., 2021).

Here, we mainly explore the changes in the cargoes of EVs in

sepsis, the regulatory role of EVs from different cell sources, and

how EVs are involved in different pathological processes and

organ dysfunction in sepsis.
2 Cargoes of EVs in sepsis

The number of EVs was significantly increased in sepsis or

stimulated by bacteria (Dakhlallah et al., 2019; Timár et al.,

2013) and was positively correlated with the severity of sepsis

(Dakhlallah et al., 2019). Here, we described alterations in the

cargoes carried by EVs in sepsis (Figure 1).
2.1 Proteins

Studies have found that the protein profiles carried by EVs in

the body fluids of sepsis were altered and may be associated with

disease progression. In the early stages of sepsis, acute phase

reactive proteins and immunoglobulins involved in

inflammatory responses were upregulated (Morris et al., 2020).

With the progression of the disease and the intensification of the

inflammatory response, the levels of inflammation-related

proteins changed dynamically, among which the protein

SPTLC3 involved in sphingolipid metabolism was negatively
FIGURE 1

Cargoes of Extracellular Vesicles in sepsis. The drawings were created with BioRender.com. multivesicular bodies (MVBs).
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correlated with body temperature and C-reactive protein (CRP)

(Xu et al., 2018). Current studies have found that EVs with

altered protein profiles originated from a variety of cell types,

including activated macrophages (Wang et al., 2019), monocytes

(Homsy et al., 2019; Wisler et al., 2020), neutrophils (Timár

et al., 2013), etc.

In the serum of septic mice, a variety of cytokines/

chemokines were specifically encapsulated into exosomes, and

the use of the exosome inhibitor GW4869 significantly reduced

the release of exosomes and pro-inflammatory cytokines

(Essandoh et al., 2015). Cytokines/chemokines in exosomes

often show delayed peaks (12-24h), unlike the peak time of

serum-free cytokines/chemokines (2-12h), and they may be

involved in the regulation of lymphocyte differentiation,

proliferation, and chemotaxis (Gao et al., 2019). Cytokine

levels were also elevated in LPS-stimulated macrophage-

derived exosomes (McDonald et al., 2014). Current studies

have shown that EVs released from various cell types carried

damage associated molecular patterns (DAMPs), such as high

mobility group box 1 protein (HMGB1), histones, and

extracellular cold-induced RNA-binding protein (eCIRP),

which were mainly derived from macrophages (Nair et al.,

2018; Murao et al., 2021; Wang et al., 2021; Yang et al., 2022),

others include platelets (Jiao et al., 2020) and hepatocytes (Li

et al., 2020).
2.2 Nucleic acid

EVs are important carriers for nucleic acid transport, which

can protect nucleic acids from being degraded by nucleases and

maintain their stability. The types and contents of nucleic acids

encapsulated by EVs were changed in sepsis, including mRNA,

miRNA, lncRNA, circRNA, etc.

The levels of mRNAs related to antioxidant defense and

oxidative stress were up-regulated in EVs of sepsis patients (Real

et al., 2018). In addition, DNMT1, DNMT3A, and DNMT3B

mRNA were also up-regulated in EVs and correlated with the

severity and prognosis of sepsis (Dakhlallah et al., 2019).

The miRNA expression profiles of EVs were altered in sepsis

(McDonald et al., 2014; Goodwin et al., 2015; Reithmair et al.,

2017; Real et al., 2018; Xu et al., 2018), and may be associated

with the risk, severity and prognosis of sepsis (Balusu et al., 2016;

Real et al., 2018; Hermann et al., 2020; Qiu et al., 2022). These

miRNAs are involved in sepsis from multiple pathways,

including immune regulation, microvascular dysfunction, and

organ dysfunction (Fan et al., 2014; Goodwin et al., 2015; Wang

et al., 2015; Song et al., 2017; Xu et al., 2018; Zhou et al., 2018;

Zhou et al., 2018; Deng et al., 2019; Jiang et al., 2019; Cao et al.,

2019; Pan et al., 2019; Lv et al., 2020; Yao et al., 2021; Sun et al.,

2021; Gao et al., 2021; Liu et al., 2022).

In EVs of sepsis, other types of non-coding RNAs were also

altered, including lncRNAs (Ma et al., 2021; Sui et al., 2021a;
Frontiers in Cellular and Infection Microbiology 03
Liang et al., 2022; Wei et al., 2022), circRNAs (Cao et al., 2022),

and Y-RNA (Driedonks et al., 2020). Studies have shown that

lncRNA NEAT1 carried by EVs in sepsis was associated with the

aggravation of sepsis-related encephalopathy (Wei et al., 2022),

lncRNA TUG1 was involved in promoting macrophage M2

polarization (Ma et al., 2021), and lncRNA-p21 can inhibit

LPS-induced lung cells injury, lncRNA IGF2-AS promoted

endothelial progenitor cell pyroptosis (Sui et al., 2021a; Liang

et al., 2022). Hsa_circRNA_104484 and hsa_circRNA_104670

were up-regulated in serum exosomes of patients with sepsis,

which may serve as diagnostic markers for sepsis (Tian et al.,

2021). Mmu_circ_0001295 in exosomes was involved in

alleviating septic kidney injury (Cao et al., 2022). The cell-

type-specific Y-RNA isoform ratios in plasma EVs were

altered in a human endotoxemia model and closely correlated

with inflammation-induced changes in circulating neutrophil

and monocyte numbers (Driedonks et al., 2020).
3 EVs derived from different cell
types in sepsis

EVs are a group of heterogeneous vesicles whose

heterogeneity is reflected in size, cargoes, biogenesis, origin,

and function (Willms et al., 2018).The cargoes carried were

highly correlated with the donor cell, so the function of EVs may

be highly correlated with the donor cell (van Niel et al., 2018).

Here, we discussed the role of different cell type-derived EVs in

sepsis (Table 1 and Figure 2).
3.1 EVs derived from host cells

3.1.1 Immune cells
In sepsis, the immune system was activated, a variety of

immune cells and immune molecules interact and form a

complex regulatory network, and EVs are an important

pathway for immune cell functional crosstalk. Here, we

summarized the research progress of immune cell-derived EVs

in sepsis.

3.1.1.1 Neutrophils

Neutrophils are an important part of the innate immune

system and act as first responders by migrating to the origin of

inflammation. The concentration of neutrophil-derived

extracellular vesicles was elevated in sepsis, both in the

circulation and in inflammatory lesions (Prakash et al., 2012;

Timár et al., 2013; Johnson et al., 2017; Chen et al., 2020).

Neutrophil-derived extracellular vesicles in inflammatory lesions

can modulate immune responses by activating phagocytes

(Prakash et al., 2012). The concentration of neutrophil-derived

extracellular vesicles in circulation was correlated with disease
frontiersin.org
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TABLE 1 Extracellular vesicles mediated functional crosstalk between distinct cells in sepsis.

ID Donor cells Cargoes Target cells Signaling
pathways/
mechanisms

Pathophysiological changes Reference

1 IL-1b-Primed
Mesenchymal
Stem Cells

miR-146a macrophages ND Induced macrophage M2 polarization Ameliorated sepsis (Song et al.,
2017)

2 IL-1b-primed-
mesenchymal
stem cells

miR-21 macrophages ND Induced macrophage M2 polarization Ameliorated sepsis (Yao et al.,
2021)

3 BMMSCs microRNA-27b macrophages downregulated
JMJD3 inactivated
the NF-kB signaling
pathway.

Diminished production of pro-inflammatory cytokines (Sun et al.,
2021)

4 BMMSCs miR-191 macrophages inhibited the
expression of DAPK1

Inhibited the inflammation of alveolar macrophage (Liu et al.,
2022)

5 BMMSCs miR-223 macrophage
cardiomyocytes

reprogramed the
protein contents
(Sema3A andStat3)of
exosomes.

Inhibited the secretion of IL-1b and IL-6 Inhibited
cardiomycoyte death Have therapeutic effects on sepsis-
induced heart failure and mortality

(Wang et al.,
2015)

6 BMMSCs lncRNA-p21 lung epithelial
cells

lncRNA-p21 /miR-
181/SIRT1 axis

Suppressed cell apoptosis Alleviate lung tissue injury (Sui et al.,
2021a)

7 BMMSCs lncRNA IGF2-AS EPCs HMGA1/TYMS axis Reduced the level of dNTP Promoted pyroptosis of EPCs (Liang et al.,
2022)

8 BMMSCs Ang-1 mRNA lung
microvascular
endothelial cell
macrophages

ND Ameliorated the lung inflammation, including the influx of
WBCs and neutrophils, and MIP-2 secretion. Suppressed the
secretion of TNF-a, and promoted the secretion of IL-10.
Beneficial effects on pulmonary capillary permeability

(Tang et al.,
2017)

9 BMMSCs mitochondrial macrophages enhanced
macrophage oxidative
phosphorylation

Inhibited inflammatory cytokine secretion, Increased
expression of the M2 marker CD206 Enhanced phagocytic
capacity protect against endotoxin-induced lung injury in
vivo

(Morrison
et al., 2017)

10 BMMSCs ND macrophages inhibited hypoxia-
inducible factor 1
(HIF-1)a down-
regulated the
expression of several
essential proteins of
glycolysis

Inhibited M1 polarization and promoted M2 polarization
Prevented LPS-induced ARDS.

(Deng et al.,
2020)

11 BMMSCs ND alveolar
epithelial cells

Nrf-2/ARE and NF-
kB signaling
pathways

Reversed LPS-induced ALI (Li et al.,
2020)

12 umbilical cord
mesenchymal
stem cells

ND renal tubular
epithelial cells

miR-146b/IRAK1/
NF-kB axis

Lessened pro-inflammatory response Decreased the serum
creatinine (Cr) and blood urea nitrogen (BUN) levels,
ameliorated the morphological damage and inhibited renal
tubular cells apoptosis. Improved survival in mice with sepsis

(Zhang
et al., 2020)

13 ADSCs ND macrophages Notch-miR148a-3p
Axis NF-kB pathway

Regulated Polarization of Macrophages Decreased
proinflammatory cytokines( IL-1b, IL-6, and TNF-a)
Alleviated Sepsis in Mice

(Bai et al.,
2020)

14 ADSCs miR-126 endothelial
cells

PI3K/Akt pathway Inhibited histone-mediated lung hemorrhage and edema
Attenuated vascular hyper-permeability in mice.

(Mizuta
et al., 2020)

15 EPCs miRNA-126 small airway
epithelial cells

miRNA-126-3p/
PIK3R2

Reduced the cell number, protein concentration, and
cytokines/chemokines in the bronchoalveolar lavage fluid
(BALF) Reduced myeloperoxidase (MPO) activity, lung
injury score, and pulmonary edema Protected against lung
injury.

(Zhou et al.,
2019)

16 EPCs microRNA-93-5p proximal
tubular cells

KDM6B/H3K27me3/
TNF-a axis

Attenuated multiple organ injury, vascular leakage,
inflammation, and apoptosis in septic mice.

(He et al.,
2020)

17 EPCs miR-126-3p 、miR-126-
5p

HMVECs ND Reduced vascular leakage Improved organ function Increased
survival

(Zhou et al.,
2018)

(Continued)
Fron
tiers in Cellular
 and Infection Microbiolo
gy
 04
 fro
ntiersin.org

https://doi.org/10.3389/fcimb.2022.1018692
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tian et al. 10.3389/fcimb.2022.1018692
TABLE 1 Continued

ID Donor cells Cargoes Target cells Signaling
pathways/
mechanisms

Pathophysiological changes Reference

18 EPCs lncRNA TUG1 macrophages TUG1 /miR-9-5p/
SIRT1 axis

Induced anti-inflammatory macrophage polarization
(promoted M2 macrophage polarization) Suppressed
macrophage-medicated inflammatory injury to the
pulmonary vascular endothelium

(Ma et al.,
2021)

19 neutrophils active myeloperoxidase vascular
endothelial
cells

myeloperoxidase-
hydrogen peroxide-
chloride system

Induced a loss of cell membrane integrity and morphological
changes

(Pitanga
et al., 2014)

20 neutrophils ND monocytes ND Increased activation Increased the phagocytic ability (Prakash
et al., 2012)

21 PMNs ND macrophages ND down-modulated cellular activation in macrophages. anti-
inflammatory effect

(Gasser and
Schifferli,
2004)

22 PMNs ND macrophages MerTK pathway down-modulated the proinflammatory signals (Eken et al.,
2010)

23 PMNs ND monocyte-
derived
dendritic cells

ND Interfered with maturation Reduced their phagocytic activity
Increased the release of TGF-beta1.

(Eken et al.,
2008)

24 Mononuclear
Phagocytes

caspase-1 HPMVECs ND Induced cell apoptosis/death (Mitra et al.,
2015)

25 monocytes caspase 1 and GSDMD endothelial
cells

ND Induced cell apoptosis (Mitra et al.,
2018)

26 monocytes TXNIP-NLRP3 macrophages ND promoted the cleavage of inactive IL-1b and IL-18
aggravated cardiovascular inflammation

(Wang et al.,
2021)

27 monocytes mtDAMP PMNs ND Suppressed chemotaxis (Konecna
et al., 2021)

28 monocytes GLUT-1 HUVECs ND Induced inflammatory cytokines (Yang et al.,
2022)

29 macrophages ND adrenocortical
cells

TREM2 Inhibited corticosterone biosynthesis (Ye et al.,
2021)

30 macrophages eCIRP macrophages ND Induced inflammation and cytokine production. Promoted
Neutrophil Migration chemotaxis effects

(Murao
et al., 2021)

31 macrophages ND hepatocytes NLRP3 signaling
pathway

liver injury (Wang et al.,
2019)

32 monocytes ND monocytes ND Reduced TNF-a generation in response to LPS stimulation. (Wisler
et al., 2020)

33 macrophages ND macrophages ND Induced pro-inflammatory cytokine production(TNF-a、IL-
1b、IL-6) Promoted cardiac inflammation and myocardial
dysfunction in mice

(Essandoh
et al., 2015)

34 macrophages HMGB1 hepatocytes NLRP3
inflammasomes
signaling pathway

Induced hepatocyte pyroptosis Promoted acute liver injury (Wang et al.,
2021)

35 dendritic cells MFG-E8 macrophages ND Attenuated proinflammatory responses Enhanced
phagocytosis

(Miksa
et al., 2006)

36 Immature
dendritic cells

MFG-E8 macrophages ND Enhanced apoptotic cell clearance Attenuated the acute
systemic inflammatory response

(Miksa
et al., 2009)

37 endothelial cells c-Src endothelial
cells
neutrophils

ND Increased endothelial cells monolayer permeability to
albumin Activated neutrophils and endothelial cells
Promoted neutrophil-endothelium adhesion and induced
NET production Induced endothelial barrier dysfunction.

(Chatterjee
et al., 2020)

38 endothelial cells ND endothelial
cells

NF-kB pathway Induced an inflammatory response (Liu et al.,
2017)

39 endothelial cells HSPA12B macrophages NF-kB pathway Increased IL-10 levels and decreased the production of TNF-
a and IL-1b

(Tu et al.,
2020)

(Continued)
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severity and IL-6, and have a certain value in the prognostic

assessment of sepsis (Chen et al., 2020).

According to the production mechanism, neutrophil-

derived EVs can be divided into two subtypes: neutrophil-

derived microvesicles (NDMV) and neutrophil-derived trails
Frontiers in Cellular and Infection Microbiology 06
(NDTR) (Hyun et al., 2012; Lim et al., 2015; Youn et al.,

2021). Unlike NDMVs, which are thought to be produced by

neutrophils in the inflammatory lesions, NDTRs are produced

by the migration of neutrophils to the inflammatory lesions

(Hyun et al., 2012; Lim et al., 2015; Youn et al., 2021).
TABLE 1 Continued

ID Donor cells Cargoes Target cells Signaling
pathways/
mechanisms

Pathophysiological changes Reference

40 endothelial cells several miRNAs
increased (miR-221-3p,
miR-222-3p, miR-221-5p,
miR-155-5p, miR-1247-
3p, mir-129-5p, miR-
148a-5p, and miR-222-
5p)

cardiomyocytes down-regulated the
expression of
apoptosis-related
proteins such as
BAK1, P53, and
PTEN.

Promoted the survival of cardiomyocytes Enhanced the cell
viability and attenuated the injury of cardiomyocytes.

(Cao et al.,
2021)

41 choroid plexus
epitheliums

ND brain cells ND Acted as a new mechanism of blood-brain communication.
Transfered pro-inflammatory message to recipient brain
cells.

(Balusu
et al., 2016)

42 tubular
epithelial cells

miR-19b-3p macrophages NF-kB/SOCS-1 Promoted M1 macrophage activation in kidney injury
Caused tubulointerstitial inflammation

(Lv et al.,
2020)

43 platelets IL-1b endothelial
cells

ND Induced VCAM-1 production Promoted endothelial cell
activation

(Brown and
McIntyre,
2011)

44 platelets ND monocytes CD40/TRAF6/NFkB
signalling pathway

Caused aggregate formation Provoked the expression and
release of inflammatory mediators, including IL-1b, TNFa,
MCP-1 and MMP-9 Enhanced MCP-1-induced monocyte
migration

(Bei et al.,
2016)

45 platelets ND endothelial
cells aortic
smooth muscle
cell lines

NADPH oxidase
activity

Induced vascular cell apoptosis (Janiszewski
et al., 2004)

46 platelets ND endothelial
cells

peroxynitrite
generation

Induced cell apoptosis (Gambim
et al., 2007)

47 platelets HMGB1 and/or miR-
15b-5p and miR-378a-3p

PMNs Akt/mTOR
autophagy pathway

Induced NET formation (Jiao et al.,
2020)

48 RBCs ND blood
leukocytes

ND Induced a host inflammatory response (Increased the
production of TNF, IL-6 and IL-8)

(Straat et al.,
2016)

49 erythrocytes ND macrophages TLR4-MyD88-NF-
kB-MAPK pathway

Aggravated the inflammatory response Promoted the
production of the proinflammatory factors TNF-a,IL-6, and
IL-1b Reduced the survival rate of septic mice promoted
LPS-induced macrophage polarization into a
proinflammatory phenotypepromoted LPS-induced
macrophage polarization into a proinflammatory phenotype.

(Gao et al.,
2022)

50 Escherichia coli ND human
microvascular
endothelial
cells

TLR4/NF-kB
pathway

Induced the release of IL-8 Stimulated pulmonary
inflammatory response with infiltration of neutrophils into
the lungs

(Lee et al.,
2018)

51 Escherichia (E.)
coli

ND human
umbilical
endothelial
cells

NF-kB pathway Increased expression of E-selectin and intercellular adhesion
molecule Elevated Interleukin-6 levels

(Soult et al.,
2013)

52 enterotoxigenic
E. coli

ND human
umbilical vein
endothelial
cells

ND Increased the expression of TF, E-selectin, and P-selectin
Decreased the expression of thrombomodulin

(Soult et al.,
2014)
fro
ND, not described; eCIRP, extracellular cold-inducible RNA-binding protein; HMGB1, high-mobility group protein 1; LPS, Lipopolysaccharide; TNF-a, tumor necrosis factor; IL-1b,
Interleukin-1 beta; IL-6, Interleukin-6; PMNs, Polymorphonuclear neutrophils; BMMSCs, bone marrow-derived mesenchymal stem cells; EPCs, endothelial progenitor cells; HMVECs,
human microvascular endothelial cells; ADSCs, Adipose Tissue-Derived Stem Cells; HPMVEC, human pulmonary microvascular endothelial cell; MCP-1, monocyte chemoattractant
protein-1; MMP-9, matrix metalloproteinase-9; RBCs, red blood cells.
ntiersin.org
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Furthermore, in contrast to the anti-inflammatory effect of

NDMV, NDTR carried more pro-inflammatory miRNAs (eg.

miR-1260, miR-1285, miR-4454, and miR-7975) and induced

M1 polarization in macrophages (Youn et al., 2021). NDTR-

treated CLP-septic mice showed increased survival, while

NDMV did not (Youn et al., 2021). Recently, researchers have

discovered a neutrophil-derived structure that is different from

exosomes, and its formation may be related to the rolling of

neutrophils on the vessel wall, similar to NDTRs discovered by

previous investigators (Marki et al., 2021).

Most of the current studies have demonstrated that

neutrophil-derived EVs have anti-inflammatory effects (Gasser

and Schifferli, 2004; Eken et al., 2008; Dalli et al., 2008; Eken

et al., 2010), and play a host protective role in sepsis, which is
Frontiers in Cellular and Infection Microbiology 07
related to cargoes. In the blood of patients with sepsis, the

expression levels of A2MG and CERU proteins were up-

regulated (Dalli et al., 2013). A2MG-enriched extracellular

vesicles enhanced neutrophil reactivity and promoted

neutrophil adhesion to vascular endothelial cells, enhanced

bacterial clearance, reduced inflammatory responses, and

improved survival in septic mice (Dalli et al., 2014). EVs

derived from neutrophils co-incubated with Staphylococcus

aureus are enriched with a variety of antibacterial proteins and

bind to bacteria to form large aggregates to isolate and

immobilize bacteria. These two properties are beneficial to

limit the growth of microorganisms in the early stage of

infection and have an early antibacterial effect (Timár et al.,

2013). Contrary to this, however, NDMP increased the
FIGURE 2

the regulatory role of EVs from different cells. The drawings were created with BioRender.com. Mesenchymal stem cell (MSC), Endothelial
progenitor cell (EPC).
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intraperitoneal bacterial load in CLP mice, and decreased

neutrophil recruitment, inhibited macrophage activation,

thereby aggravated immunosuppression, and increased

mortality in sepsis (Johnson et al., 2017).

3.1.1.2 Monocytes and macrophages

In sepsis, monocyte- andmacrophage-derived EVs are involved

in pathological processes such as inflammation, immune regulation,

organ damage, and coagulation through multiple pathways.

Studies have shown that in sepsis, monocyte/macrophage-

derived EVs carried abundant specific cargoes that cause

inflammatory responses and organ damage (Wang et al., 2019;

Wisler et al., 2020; Sui et al., 2021b), and were involved in

promoting disease progression. LPS-stimulated monocyte/

macrophage-derived EVs carry a variety of DAMPs, such as

HMGB1, histones, eCIRP, mtDAMPs etc. These DAMPs can

promote inflammatory responses and neutrophil migration,

trigger hepatocyte pyroptosis, and induce endothelial dysfunction

(Nair et al., 2018; Wang et al., 2021; Murao et al., 2021; Konecna

et al., 2021; Yang et al., 2022). The level of Gasdermin-D was

increased in monocyte-derived extracellular vesicles (Homsy et al.,

2019), and mediated apoptosis of human pulmonary microvascular

endothelial cells through caspase 1, resulting in damage to the

alveolar-capillary barrier (Mitra et al., 2015; Mitra et al., 2018). The

expression of the TXNIP-NLRP3 complex in monocyte-derived

exosomes caused sepsis-related cardiovascular inflammation and

myocardial dysfunction by promoting the activation of IL-1b and

Interleukin-18 (IL-18) in macrophages (Wang et al., 2021).

Additionally, monocyte-derived tissue factor (TF)+MPs promoted

coagulation by activating both intrinsic and extrinsic pathways

(Woei et al., 2012; Oehmcke et al., 2012; Franks et al., 2013).

Furthermore, the chemokine CXCL2-containing EVs released by

macrophages recruited neutrophils and activated their CXCR2/

PKC/NOX4 pathway in vivo and in vitro, promoting tissue damage

(Wang et al., 2021). In addition to deleterious effects, macrophage-

derived EVs were also protective against sepsis. Prdx4 was

encapsulated into EVs released by activated macrophages,

inhibited caspase-1 cleavage and IL-1b maturation, and

attenuated cytokine release and inflammasome activation in

sepsis (Lipinski et al., 2019). The P2X7 receptor of macrophages

induced CD14 release from EVs, reduced CD14-dependent pro-

inflammatory signaling in macrophages and bacterial

dissemination, and improved survival during sepsis (Alarcón-Vila

et al., 2020). Furthermore, TREM2 expressed on macrophages can

inhibit the process of steroidogenesis in adrenal cortical cells

mediated by macrophage-derived exosomes and improve tissue

perfusion in septic shock (Ye et al., 2021).

3.1.1.3 Dendritic Cells (DCs)

DCs are a class of immune cells with antigen-presenting

properties that act as a bridge between the innate immune

system and the adaptive immune system. Few studies have

investigated the role of dendritic cell-derived EVs in sepsis. It
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was found that immature dendritic cells and mature dendritic

cell-derived exosomes can provide essential milk fat globule-

containing EGF factor VIII (MFGE8) for complete phagocytosis

of apoptotic cells, reduced proinflammatory cytokine release,

improved systemic inflammatory response in sepsis and

decreased mortality (Miksa et al., 2006; Miksa et al., 2009).
3.1.2 Non-immune cells

3.1.2.1 Endothelial cells (ECs)
ECs are a highly dynamic cell layer that maintains homeostasis

in physiological states. During infection, however, pathogen-

associated molecular patterns (PAMPs) and DAMPs activated

ECs and impaired their structure and functions (Ait-Oufella et al.,

2010). In sepsis, ECs have pro-apoptotic, pro-inflammatory, pro-

adhesive and pro-coagulant effects (Joffre et al., 2020).

In sepsis, the number of endothelial cell-derived EVs is

increased (Wang et al., 2015; Chatterjee et al., 2020). They are

involved in the regulation of inflammatory responses, endothelial

barrier function, and antigen presentation. EVs released from ECs

caused endothelial barrier dysfunction by impairing the integrity of

endothelial cell adhesion junctions and cytoskeletal homeostasis

and promoted endothelial inflammatory injury by promoting

neutrophil-endothelial cell adhesion and neutrophil extracellular

traps (Liu et al., 2017; Chatterjee et al., 2020). In contrast, Tu et al.

found the anti-inflammatory effect of endothelial cell-derived

exosomes, mainly dependent on HSPA12B, which inhibited the

inflammatory response of macrophages by downregulating NF-kB
activation and nuclear translocation (Tu et al., 2020). Human brain

microvascular endothelial cell derived extracellular vesicles

expressed molecules related to T cell stimulation and activation,

including CD40, ICOSL, and MHC II, promoted T cell activation

and proliferation, and activated adaptive immune responses

(Wheway et al., 2014). Furthermore, endothelial cell-derived EVs

protected multiple organ functions in sepsis, such as the lungs

(Wang et al., 2015; Jiang et al., 2021) and heart (Cao et al., 2021). Its

protective effect on the lung is dependent on the miR-125b-5p

carried in EVs (Jiang et al., 2021).

Endothelial cell-derived EVs were also associated with

activation of coagulation. In the early stage of septic shock,

EMPs in the circulation of patients with DIC was increased, and

this change occurred before activation of coagulation

(Delabranche et al., 2013; Delabranche et al., 2016). ECs may

participate in the sepsis-related coagulation process through

TF+EVs (Del Turco et al., 2007; Matsumoto et al., 2015).
3.1.2.2 Platelets
Platelet reactivity increased early in sepsis (Akinosoglou

et al., 2017), but was depleted as the disease progresses

(Claushuis et al., 2016; Thiery-Antier et al., 2016; Akinosoglou

et al., 2017). Platelets promoted excessive inflammation,
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disseminated intravascular coagulation, and microthrombosis,

which subsequently lead to multiorgan failure (de Stoppelaar

et al., 2014). In sepsis, the number of platelet-derived

extracellular vesicles increased (Woth et al., 2012; Tőkés-

Füzesi et al., 2013; Wang et al., 2017; Wang et al., 2018), and

it helps to assess the severity of septic shock and the occurrence

of DIC, which is associated with septic shock mortality (Lehner

et al., 2016; Boscolo et al., 2019). Studies have showed that

platelet-derived extracellular vesicles are involved in disease

progression (Barry et al., 1999; Brown and McIntyre, 2011;

Sung et al., 2019).

Platelet-derived EVs bind to circulating immune cells (Fendl

et al., 2018), not only transmited signaling molecules, but also

regulated the functions of various immune cells. Dengue virus

induced platelet-derived extracellular vesicles promotes pro-

inflammatory cytokine release by activating TLR2 on

macrophages (Sung et al., 2019). Staphylococcus superantigen-

like protein 5 (SSL5) expressed by Staphylococcus aureus can

induce the production of platelet-derived extracellular vesicles in

bacterial infectious diseases. SSL5-platelet-derived extracellular

vesicles mediate CD40/TRAF6/NFkB signaling pathway

activation and stimulate monocytes to release inflammatory

mediators (Bei et al., 2016). platelet-derived extracellular

vesicles also inhibited the production of IL-17 by regulatory T

cells via P-selectin (Dinkla et al., 2016). It was found that

platelet-derived exosomes are also involved in promoting

excessive NET formation in sepsis and subsequent organ

damage (McDonald et al., 2014; Jiao et al., 2020). In addition

to pro-inflammatory effects, platelet-derived extracellular

vesicles also display strong procoagulant properties in sepsis,

mainly by inducing thrombin formation through PS exposure

and the intrinsic and extrinsic pathways of coagulation (Wang

et al., 2018; Boscolo et al., 2019).

In sepsis, platelet-derived EVs were involved in the regulation

of vascular endothelial function and multiple organ functions

(Nomura et al., 2000; Janiszewski et al., 2004; Azevedo et al., 2007;

Gambim et al., 2007). NADPH oxidase activity of platelet-derived

exosomes in sepsis can induce caspase-3 activation and apoptosis

of ECs by producing superoxide, NO and peroxynitrite, causing

vascular dysfunction and cardiac dysfunction (Janiszewski et al.,

2004; Gambim et al., 2007; Monteiro et al., 2017). In addition, the

number of platelet-derived extracellular vesicles was negatively

correlated with blood urea nitrogen and creatinine concentrations,

which may be involved in sepsis-related renal impairment (Tőkés-

Füzesi et al., 2013).
3.2 Pathogen-derived outer membrane
vesicles (OMVs)

OMVs are nanoscale EVs shed from bacterial envelope

(Horstman and Kuehn, 2000). As an effective mechanism for

direct communication between bacteria and host cells, OMVs
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were involved in inducing host pathological changes and

pathogens evading host immunity. OMVs can also be used as

inanimate vaccine platforms to protect the host. We summarized

the recent research progress of OMVs in the occurrence and

development of sepsis.

Studies have found that OMVs usually carry virulence

molecules from donor bacteria, such as ClyA protein (Wai

et al., 2003), active enterotoxin (Kesty et al., 2004), and LPS

(Vanaja et al., 2016; Gu et al., 2019), etc. These virulence

molecules were delivered to host cells and cause inflammatory

responses in the body (Yoon et al., 2011), possibly dependent on

TLR2 or TLR4 (Park et al., 2010; Shah et al., 2012; Park et al.,

2018). OMVs also transported LPS into the cytosol of host cells

and subsequently activated caspase-11, triggering pyroptosis and

caspase-1-activated cytosolic LPS sensing pathways (Vanaja

et al., 2016; Gu et al., 2019). In addition, virulence molecules

can be further assembled and enriched in OMVs, showing

stronger virulence than the donor bacteria (Wai et al., 2003),

and have strong pathogenicity to the body (Ellis and Kuehn,

2010; Kulp and Kuehn, 2010).

The transmission of OMVs is a way for pathogens to evade

host immunity. Bap1 carried on the membrane of OMVs binds

to antimicrobial peptides, reducing the concentration of free

antimicrobial peptides, resulting in apparent resistance and

survival of Vibrio cholerae (Duperthuy et al., 2013). In

addition, OMVs containing OmpU can also bind to C1q via

IgG, resulting in the inactivation of complement-mediated

serum killing of the bacteria (Aung et al., 2016). Thus

improved the survival of highly serum sensitive V. cholerae

(Aung et al., 2016).

OMVs activated innate and adaptive immune responses in

sepsis through multiple pathways. Alaniz et al. found that OMVs

from Salmonella typhimurium potently activated macrophages

and dendritic cells, increased the expression of MHC-II, CD86

and the production of proinflammatory mediators (Alaniz et al.,

2007). E. coli OMVs recruited neutrophils to the lung by

inducing IL-8/CXCL1 released from ECs (Lee et al., 2018). In

addition to the innate immune response, OMVs induced

activation of B cells and CD4(+) T cells by carrying specific

Ags, leading to activation of adaptive immune (Alaniz et al.,

2007; Vidakovics et al., 2010).. In addition, OMVs also initiated

inflammatory cascade in ECs through the NF-kB pathway (Soult

et al., 2013).

Studies have found that OMVs contributed to the

hypercoagulable response in sepsis, leading to sepsis-related

DIC (Wang et al., 2019). OMVs released by N. meningitidis

increased the expression of TF and plasminogen activator

inhibitor 2 on monocytes, which favors fibrin deposition in

the monocyte microenvironment and causes DIC and

microthrombosis (Mirlashari et al., 2001). OMVs activated

ECs and promoted platelet activation during infection (Soult

et al., 2014), and also induced DIC through the caspase-11-

GSDMD pathway (Wang et al., 2019; Peng et al., 2020). In
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addition, OMV was involved in the development of sepsis-

related cardiac dysfunction (Svennerholm et al., 2017).

Numerous studies have shown that OMV can be used as a

vaccine to induce protective immunity against pathogenic

bacterial infection (Unal et al., 2011; van der Pol et al., 2015;

Yu et al., 2018). Kim et al. found that pre-exposure to sublethal

doses of OMV was protective against sepsis. OMV-Ags

promoted the production of IFN-g and IL-17 of T cells, which

can enhance bacterial clearance and inhibit OMV-induced

systemic inflammation to prevent E. coli-induced lethality

(Kim et al., 2013). Pretreatment of mice with multidrug-

resistant Acinetobacter baumannii OMVs protect septic mice

from challenge with homologous bacteria by both active and

passive immunization (Huang et al., 2014). The application of

genetic engineering technology enables OMVs to display

complete heterologous proteins and induce specific antibody

responses, which can be used as a vaccine platform against sepsis

(Huang et al., 2016; Gerritzen et al., 2017). In the study of Huang

et al., recombination of outer membrane protein Omp22 of

Acinetobacter baumannii and E. coli-derived OMVs (Omp22-

OMV) induced high titers of specific antibodies in vivo, and

protected septic mice from lethal challenge with Acinetobacter

baumannii strains (Huang et al., 2016). A study by Nieves et al.

demonstrated that B. pseudomallei OMVs derived from strain

1026b were significantly protective against septic infection with

B. pseudomallei strain K96243 (Nieves et al., 2014).
3.3 Mesenchymal stem cells (MSCs)/EPCs

MSCs are a class of adult stem cells that are widely present in

various human tissues and have the potential for multi-

directional differentiation and play a protective role in sepsis

(Walter et al., 2014). It has been found that MSC-derived EVs

(MSC-EVs) can act as a way for MSCs to secrete signaling

molecules, exerting similar therapeutic benefits as MSCs (Rani

et al., 2015).

3.3.1 Bone marrow mesenchymal
stem cells (BMMSCs)

Current studies have shown that BMMSC-EVs can

effectively improve sepsis-related inflammatory response,

protect organ function, and improve survival. BMMSC-EVs

were able to promote macrophage anti-inflammatory effects

and attenuate systemic inflammatory responses in sepsis (Park

et al., 2019), which may be related to the miR-27b, miR-223 and

miR-191 they carried (Wang et al., 2015; Sun et al., 2021; Liu

et al., 2022). In addition, lncRNA-p21 and lncRNA IGF2-AS in

BMMSC-EVs are involved in alleviating sepsis-related lung

injury and promoting endothelial progenitor cell pyroptosis,

respectively (Sui et al., 2021a; Liang et al., 2022).

The study by Jae et al. showed that keratinocyte growth

factor carried by human BMMSC-EVs could alleviate lung
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inflammation and pathological damage, alleviate pulmonary

edema, reduce bacterial load, and improve the survival rate of

E. coli pneumonia ALI mice (Zhu et al., 2014; Monsel et al.,

2015). Subsequent experiments showed that MSC-EVs exerted

the same lung protection in an in vitro perfused human lung

model of bacterial pneumonia (Park et al., 2019). In vitro, MSC-

EVs enhanced the phagocytosis of bacteria by human

monocytes, inhibited the secretion of inflammatory factors,

and restored ATP levels in damaged alveolar epithelial type 2

cells (Monsel et al., 2015). The current mechanistic study found

that the functional regulation of monocyte-macrophages by

BMMSC-EVs depends on multiple pathways. Such as the

regulatory effect of Ang-1 (Tang et al., 2017), enhancing

macrophage oxidative phosphorylation through functional

mitochondria (Morrison et al., 2017), inhibiting hypoxia-

inducible factor 1a-dependent cellular glycolysis process

(Deng et al., 2020), regulating Nrf -2/ARE and nuclear factor

-kB (NF-kB) axis signal transduction, etc. (Li et al., 2020).

3.3.2 Umbilical cord mesenchymal
stem cells (UCMSCs)

Human umbilical cord MSC-derived exosomes (hucMSC-

Ex) inhibited NF-kB activity via the miR-146b/IRAK1 axis,

attenuated sepsis-related acute kidney injury and improved

survival in mice with sepsis (Zhang et al., 2020). In vitro

experiments showed that hucMSC-Ex could inhibit LPS-

induced macrophage M1 polarization and promote M2

polarization (Song et al., 2019), and this anti-inflammatory

effect may depend on the miR-181c/TLR regulatory axis (Li

et al., 2016). Exosomes derived from MSCs pretreated with the

proinflammatory cytokine Interleukin-1 beta (IL-1b) showed

stronger anti-inflammatory effects (Song et al., 2017). Another

study showed that hucMSC-Ex may improve sepsis-related acute

lung injury by inhibiting the phosphorylation of mitogen-

activated protein kinase (Yang et al., 2017).

3.3.3 Adipose-derived stem cellsand dental
pulp stem cells (DPSC)

ADSCs-derived EVs can attenuate systemic inflammatory

response, organ damage, and improve survival in sepsis (Chang

et al., 2018; Chang et al., 2019). Its anti-inflammatory effect

mainly depends on Nrf2/HO-1 axis, SIRT1/NF-kB signaling

pathway, Notch-miR148a-3p axis, etc (Shen et al., 2021; Gao

et al., 2020; Bai et al., 2020). In addition, it also exerted a

protective effect on endothelial cells (ECs) through the miR-

126-PI3K/Akt pathway and alleviated histone-induced acute

lung injury (Mizuta et al., 2020). mmu_circ_0001295 in

exosomes of ADSCs pretreated with hypoxia was involved in

alleviating sepsis-related renal injury (Cao et al., 2022).

Human DPSCs-derived exosomes have a protective effect on

LPS-induced acute lung injury, and the mechanism may be

related to the inhibition of MAPK and the activation of the NF-

kB signaling pathway (Su et al., 2018).
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3.3.4 Endothelial progenitor cells (EPCs)
EPCs are precursor cells of vascular endothelial cells that

maintain vascular homeostasis and promote vascular repair in

pathological conditions (Urbich and Dimmeler, 2004). Multiple

studies have found that EPC-derived EVs are protective against

sepsis (Zhou et al., 2018; Zhou et al., 2019; He et al., 2020; Ma

et al., 2021). It has been demonstrated that EPC-derived

exosomal miR-126 mediates the prevention of sepsis

microvascular dysfunction and improves lung and kidney

function (Zhou et al., 2018). Among the lung-protective

effects, miR-126-3p and miR-126-5p increased the expression

of epithelial tight junction protein, while reduced ALI-related

target genes, thereby maintained the integrity of the alveolar

epithelial barrier and reduced lung inflammation and tissue

damage (Zhou et al., 2019). Its renoprotective effect was

dependent on the regulation of the KDM6B/H3K27me3/TNF-

a axis by miR-93-5p (He et al., 2020). Furthermore, EPC-

derived EVs promote macrophage M2 polarization to alleviate

sepsis by delivering the lncRNA TUG1 (Ma et al., 2021).

EVs from MSCs and EPCs play a protective role in sepsis

through different pathways, and the exploration of their

regulatory mechanisms will help provide a molecular

biological basis for cell-free therapy and precision therapy

of sepsis.
4 Role of EVs in the pathogenesis of
sepsis

4.1 Immune regulation

The host’s immune response to pathogens begins with the

recognition of pathogens. PAMPs from bacteria were assembled

and enriched in OMVs (Wai et al., 2003; Kesty et al., 2004;

Vanaja et al., 2016; Gu et al., 2019), and recognized by pattern

recognition receptors (PRRs) on the host cell surface or in the

cytoplasm (Park et al., 2010; Shah et al., 2012; Park et al., 2018).

Then triggered activation of intracellular signaling pathways and

activates key transcription factors such as NF-kB and activator

protein 1 (AP-1) and interferon regulatory factor (IRF), which

regulate inflammation reaction (Takeuchi and Akira, 2010). In

addition, PAMPs of OMVs entering the cytosol also activated

caspase 1 and caspase 11, which promoted inflammasome

activation, mediated the maturation and release of IL-1b and

IL-18, and triggered pyroptosis (Lamkanfi and Dixit, 2014; Broz

et al., 2020; Dhital et al., 2021).

In sepsis, activated cells produced EVs carrying DAMPs,

such as HMGB1 (Li et al., 2020; Jiao et al., 2020), histones (Nair

et al., 2018), and ATP (Sakaki et al., 2013). EVs released into the

circulation delivered DAMPs to distant host cells, triggering

inflammatory cascades (Nair et al., 2018; Murao et al., 2021), cell

death (Li et al., 2020; Wang et al., 2021), increased endothelial
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permeability (Yang et al., 2022), and NET formation (Jiao et al.,

2020). EVs induced pro-inflammatory responses by activating

different PRRs and different signaling pathways, such as

inducing the secretion of pro-inflammatory factors, promoting

macrophage proliferation and M1 polarization. The regulatory

effect mainly depend on the cargo of EVs (Sakaki et al., 2013; Xu

et al., 2018; Park et al., 2018; Jiang et al., 2019; Lv et al., 2020). In

addition to activating the innate immune response, EVs in sepsis

also induced the differentiation of Th1/Th2 cells and enhanced T

lymphocyte proliferation and migration, activating the adaptive

immune response (Gao et al., 2019).

Transfusion of red blood cell suspensions is an important

treatment for critically ill patients, but it has been found that it

may aggravate the inflammatory response in sepsis (Wu et al.,

2017). This pro-inflammatory response may be associated with EVs

from stored erythrocytes (Straat et al., 2016; Gao et al., 2022).

Erythrocyte-derived EVs may amplify inflammation through

thrombin-dependent complement activation (Zecher et al., 2014;

Almizraq et al., 2016; Fischer et al., 2017). In vitro, erythrocyte-

derived EVs induced the M1 polarization of macrophages and

increased the release of pro-inflammatory cytokines, the underlying

mechanism may be EVs-mediated upregulation of TLR4-MyD88-

NF-kB-MAPK activity (Gao et al., 2022).

In sepsis, inflammatory responses co-occur with

immunosuppression, inflammatory responses were associated

with multiple organ failure and early death, whereas anti-

inflammatory responses were associated with reactivation of

underlying viral infection and delayed death (van der Poll

et al., 2021). Immunosuppression was characterized by

impaired function of multiple immune cells and reduced

production of proinflammatory cytokines (van der Poll et al.,

2021). Studies have found that external EVs derived from MSCs

were also involved in the process of immunosuppression in

sepsis, induced M2 polarization, inhibited M1 polarization, and

reduced the production of inflammatory factors through miR-

146a, miR-21, Nrf2/HO-1 axis, and Notch-miR148a-3p axis,

respectively (Song et al., 2017; Bai et al., 2020; Shen et al., 2021;

Yao et al., 2021). Furthermore, endothelial exosomal HSPA12B

inhibited NF-kB activation and suppressed the inflammatory

response of macrophages (Tu et al., 2020). However, studies

have also shown that EVs were involved in relieving T cell-

related immunosuppression. In sepsis, exosomes ameliorated

LPS-induced apoptosis of T lymphocytes by inhibiting Bad via

hsa-miR-7-5p (Deng et al., 2019).

The imba lance of inflammatory response and

immunosuppression plays a pivotal role in the occurrence and

development of sepsis. EVs may modulate the balance between

pro-inflammatory responses and immunosuppression.

However, there were few studies on the role of EVs in the

immunosuppressive mechanism of sepsis. Revealing their signal

transduction mechanism will help deepen the understanding of

the immune regulation of sepsis and provide ideas for the

immunotherapy of sepsis.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.1018692
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tian et al. 10.3389/fcimb.2022.1018692
4.2 Endothelial dysfunction

ECs regulate vascular barrier function, coagulation

pathways, leukocyte adhesion, and vasomotor tone in

physiological conditions (Joffre and Hellman, 2021). However,

ECs were modified to pro-apoptotic, pro-inflammatory, pro-

adhesive, and pro-coagulant phenotypes in sepsis (Joffre

et al., 2020).

In sepsis, EVs released by various activated cells can lead to

ECs damage or apoptosis. EVs derived from EPCs may regulate

endothelial barrier integrity through miRNAs they carry

(Goodwin et al., 2015). EVs released by activated ECs can

modulate the barrier function of themselves through

contractile cytoskeleton reorganization and dissociation of

adherent junctions (Chatterjee et al., 2020). In addition, EVs

derived from activated neutrophils, monocytes and platelets

induced endothelial cell injury and apoptosis via the

myeloperoxidase-hydrogen peroxide-chloride system,

GSDMD/caspase-1 and active ROS/RNS, respectively

(Janiszewski et al., 2004; Gambim et al., 2007; Pitanga et al.,

2014; Mitra et al., 2018). Circulating EVs from pathogens or host

cells can also activate the inflammatory pathway of endothelial

cells and increase their TF expression, showing pro-

inflammatory and procoagulant abilities (Soult et al., 2014;

Yang et al., 2022). Endothelial dysfunction caused by EVs in

sepsis may impair microcirculatory blood flow, reduce tissue

perfusion and even lead to impaired organ function (Joffre

et al., 2020).
4.3 Coagulation disorders

The occurrence of DIC in sepsis significantly increased the

mortality rate (Gando et al., 2019). Studies have shown that EVs

derived from pathogens and host cells in sepsis aggravated

coagulopathy or DIC (Park et al., 2010; Zafrani et al., 2012). E.

coli OMV induced coagulation in a TLR4-dependent manner

(Wang et al., 2019), and mediated activation of the coagulation

cascade by increasing TF activity through the caspase-11-

GSDMD pathway in sepsis (Peng et al., 2020). OMVs are also

able to activate ECs, which have elevated TF expression and

activated platelets, leading to hypercoagulability in sepsis (Soult

et al., 2014). Endothelial extracellular vesicles were closely

related to early DIC (Delabranche et al., 2013; Delabranche

et al., 2016), and the platelet-derived extracellular vesicles/

platelet ratio can be used to assess the incidence of DIC

(Boscolo et al., 2019).

Current studies suggested that circulating EVs in sepsis

patients promotes coagulation through multiple mechanisms.

It was found that the production of both circulating PS+

extracellular vesicles and PS+ platelet-derived extracellular

vesicles was increased in sepsis, and PS exposed on the surface
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of extracellular vesicles induced coagulation activity in sepsis by

promoting the generation of thrombin (Oehmcke et al., 2012;

Mooberry et al., 2016; Wang et al., 2018; Zhang et al., 2016;

Vance and Steenbergen, 2005). Circulating TF is the primary

initiator of the extrinsic coagulation pathway and plays a central

role in the development of coagulation disorders during sepsis

(Tang et al., 2021). Studies have shown that TFs expressed on the

surface of both ECs and monocyte-derived EVs were increased

in severe sepsis (Matsumoto et al., 2015; Oehmcke et al., 2012).

After exposure to E. coli or LPS, the number of circulating TF+

extracellular vesicles were increased, and the activity of TF+

extracellular vesicles were correlated with disease severity and

the thrombin-antithrombin complex (TAT) (Woei et al., 2014;

Wang et al., 2009). In addition, Neisseria meningitidis (Nm) and

methicillin-resistant staphylococcus aureus (MRSA) can also

induce the production of TF+ extracellular vesicles (Stephens

et al., 2007; Franks et al., 2013). Nm induced the expression of

TF mainly depend on LPS and activating complements C5 and

C5a (Stephens et al., 2007; Øvstebø et al., 2014). Nieuwland et al.

reported that extracellular vesicles expressing CD14 and TF were

detected in the plasma of patients with Nm sepsis with severe

DIC (Nieuwland et al., 2000), and the procoagulant activity of

TF+ extracellular vesicles were correlated with the level of LPS in

plasma (Hellum et al., 2014). Extracellular vesicles in sepsis also

enhanced thrombin production and shorten clotting time in an

FXI-dependent manner (Mooberry et al., 2016).
4.4 Circulatory abnormalities

In sepsis, circulatory dysfunction occur with the progression

of the disease, and its pathophysiological characteristics include

decreased vascular reactivity, vasodilation, microcirculation

dysfunction, and abnormal cellular oxygen metabolism caused

by circulatory disorders (Singer et al., 2016). In septic shock,

increased circulating EVs are associated with microvascular

occlusion, possibly related to microthrombosis, endothelial

injury, and decreased erythrocyte deformability (Boisramé-

Helms et al., 2014; Subramani et al., 2018). A study by

Mortaza et al. found that leukocyte-derived EVs inhibited

endothelial nitric oxide synthase activation and enhanced

inducible nitric oxide synthase (iNOS) expression in vivo,

which caused NO overproduction, induced systemic

vasodilation, and led to lower mean arterial pressure in septic

shock (Mortaza et al., 2009).

However, several studies have shown that EVs play a

protective role in vascular function in sepsis. This protective

effect may prevent hypotension in septic shock by preventing

decreased vascular reactivity through the production of

thromboxane A2 (Mostefai et al., 2008). Another study found

that its protective effect on blood vessels may be related to

enhanced IL-10 expression (Mostefai et al., 2013). Extracellular
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vesicles of septic rats pretreated with activated protein C (aPC)

have increased thromboxane content and aPC activity,

inhibiting iNOS production, which is beneficial for improving

hemodynamics (Boisramé-Helms et al., 2014). Therefore, the

effective utilization or modification of EVs may be a potential

therapeutic measure to correct circulatory dysfunction in sepsis.
4.5 Organ damage

Severe sepsis is often complicated by multiple organ system

dysfunctions. Here, we discussed the role EVs play in sepsis-

related organ dysfunction.

4.5.1 Acute respiratory distress syndrome (ARDS)
ARDS is a common organ dysfunction in sepsis. In sepsis-

related ARDS, the number of EVs in both the bronchoalveolar

lavage fluid (BALF) and the circulation is increased (Letsiou

et al., 2015; Li et al., 2015; Lee et al., 2018). The EVs in BALF are

mainly derived from alveolar macrophages (Lee et al., 2018), and

the circulating EVs are mainly from ECs and leukocytes (Letsiou

et al., 2015; Li et al., 2015; Takei et al., 2019; Danilov et al., 2001;

Takei et al., 2019).

In sepsis, EVs promoted the pathogenesis of sepsis-associated

ARDS (Sui et al., 2021b). BALF-EVs promoted the recruitment of

macrophages to the lung and release of inflammatory factors (Lee

et al., 2018), increased epithelial cell inflammatory response, and

reduced the expression of tight junction protein ZO-1, impairing

the epithelial barrier (Yuan et al., 2018). Circulating EVs increased

pulmonary macrophage M1 activation and induced ARDS-

related pathological changes such as pulmonary neutrophil

infiltration, alveolar hemorrhage, and early hyaline membrane

formation (Jiang et al., 2019; Li et al., 2015). In vitro, EVs from

activated macrophages can activate resting macrophages, mediate

macrophage recruitment to the lung, and promote inflammatory

responses (Lee et al., 2018; Li et al., 2018). When stimulated by

LPS, EVs from ECs and monocytes damage ECs through

sphingosine-1-phosphate receptor 3 (SIPR3) and caspase 1,

respectively, resulting in endothelial barrier disruption (Sun

et al., 2012; Mitra et al., 2015; Mitra et al., 2018). The

inflammatory response mediated by EVs may be related to the

signaling of the miR-145/TGFBR2 axis and the miR-210-30/

ATG7 axis (Cao et al., 2019; Li et al., 2021). In addition, EVs

also caused vascular endothelial barrier dysfunction through miR-

1-3p/SERP1, causing lung injury (Gao et al., 2021).

Studies have also found that high levels of EVs are associated

with better prognosis in ARDS, suggesting that EVs in sepsis

may have a protective effect on ARDS (Soriano et al., 2005;

Guervilly et al., 2011; Shaver et al., 2017). Mesenchymal stem

cell-derived EVs interact with immune cells or stromal cells

associated with acute lung injury, including inhibition of alveolar

epithelial cell proliferation and inflammatory response (Li et al.,
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2020; Deng et al., 2022); inhibition of pulmonary vascular

endothelial cell apoptosis, improvement of endothelial barrier

(Chang et al., 2018; Mizuta et al., 2020); inhibition of alveolar

macrophage M1 polarization and promotion of M2 polarization,

reducing inflammation reaction (Deng et al., 2020). In addition,

endothelial progenitor cell-derived EVs are also involved in

improving the alveolar epithelial barrier and reducing

inflammatory infiltration in the lungs (Zhou et al., 2019).

4.5.2 Myocardial dysfunction
Sepsis-induced myocardial dysfunction (SIMD) is a fatal

symptom in patients with sepsis (Liu et al., 2017). Studies have

found that OMVs derived from pathogens not only reduced the

viability of cardiomyocytes but also promoted the infiltration of

inflammatory cells into the myocardium and induces the release

of inflammatory cytokines from macrophages, resulting in

cardiac damage and decreased cardiac function (Svennerholm

et al., 2017). In addition, EVs from host cells also mediate

myocardial dysfunction (Essandoh et al., 2015). Wang et al.

found that monocyte-derived exosomes delivered the TXNIP-

NLRP3 complex to heart-resident macrophages, where they

activated caspase-1 and cleaved inactive IL-1b and IL-18

(Wang et al., 2021). EVs also impaired myocardial function

and induced septic myocardial dysfunction through a redox-

dependent pathway (Azevedo et al., 2007; Mu et al., 2018). There

are also some studies showing that EVs delivered to

cardiomyocytes attenuated inflammation and cardiomyocyte

death via miR-223 and miR-126, respectively, and reduce

sepsis-induced heart failure and mortality (Wang et al., 2015;

Zhang et al., 2020).

4.5.3 Acute kidney injury (AKI)
In sepsis, EVs can serve as diagnostic markers of acute

kidney injury and help assess its severity. In detail, the

expression levels of uATF protein in urinary exosomes may

serve as a biomarker for septic AKI (Panich et al., 2017).

Increased numbers of platelet-derived extracellular vesicles

were negatively correlated with blood urea nitrogen and

creatinine concentrations (Tőkés-Füzesi et al., 2013). Most of

the current studies have shown that EVs were involved in the

renal protection of sepsis through multiple pathways. EVs

derived from MSCs may attenuate the inflammatory

infiltration of kidneys through the SIRT1 signaling pathway

and the miR-146b/IRAK1/NF-kB signaling pathway (Chang

et al., 2018; Gao et al., 2020; Zhang et al., 2020). Endothelial

progenitor cell-derived EVs delivered miR-93-5p to renal

tubular epithelial cells and attenuated vascular leakage,

inflammation, and apoptosis through the KDM6B/H3K27me3/

TNF-a axis (He et al., 2020). The role of EVs in septic AKI was

also related to the macrophage phenotype. The study by Juan

et al. revealed that M1 macrophage-derived exosomes promoted

renal epithelial cell pyroptosis, while M2 macrophage-derived
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exosomes carried miR-93-5p, which inhibited renal epithelial

cell pyroptosis and alleviated AKI by regulating TXNIP (Juan

et al., 2021).

4.5.4 Central nervous system dysfunction
EVs play an important role in the communication between

blood and cerebrospinal fluid as a novel way of blood-brain

communication, and are involved in maintaining brain

homeostasis during endogenous toxins attack (Balusu et al.,

2016; Shulyatnikova and Shavrin, 2021). After exposure to LPS

stimulation, CPEs secrete EVs containing inflammation-related

proteins and miRNAs (miR-146a and miR-15), which transmit

inflammatory messages to the brain parenchyma through the

cerebrospinal fluid (Balusu et al., 2016). The expression of serum

exosomal NEAT1 was upregulated in a CLP rat model, possibly

promoting ferroptosis by regulating the miR-9-5p/TFRC and

GOT1 axes, thereby exacerbating sepsis-associated

encephalopathy (Wei et al., 2022). In addition, EVs also play a

cerebral protective role in sepsis. Exosomes derived from ADSCs

significantly protected inflammatory infiltration and organ

damage in the brain of a CLP rat model (Chang et al., 2019).
4.5.5 Other organ dysfunction
Acute liver injury and intestinal mucosal inflammation are

also common complications during sepsis, but little is known

about the role of EVs in their development. In sepsis,

macrophage-derived EVs mediated acute liver injury by

triggering hepatocyte pyroptosis through the NLRP3

inflammasome (Wang et al., 2019; Wang et al., 2021).

Intestinal epithelial -derived EVs inhibited intestinal mucosal

inflammation in vivo (Appiah et al., 2020).
5 Conclusion and further prospects

The regulatory roles of EVs in sepsis are complex and

diverse. With the development and application of omics

technology, more and more studies have found that the

expression profile of cargo carried by EVs in sepsis is dynamic,

which helps correlate protein expression, RNA expression, and

metabolic alterations in EVs with specific clinical features.

Approaches to stratifying patients with sepsis according to

biochemical and/or immunological profiles are critical for

personalizing treatment.

EVs of different cell origins play different roles in sepsis, which

may be related to the function of the parental cells. The regulatory

role of activated immune cell-derived EVs in sepsis is two-sided,

not only promoting the inflammatory cascade leading to tissue

damage, but also reducing sepsis-related inflammation and organ

dysfunction; Endothelial and platelet-derived EVs play important
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roles in inflammation, coagulation cascade, and inflammation-

coagulation crosstalk; Pathogen-derived OMV damages host cells

through its own virulence on the one hand, and activates the host

immune system to cause tissue damage on the other hand. It can

also be used as a vaccine to protect the host by activating active

immunity; MSC- and EPC-derived EVs mainly suppress

inflammatory responses and alleviate sepsis-related organ damage.

The pathophysiological changes of sepsis are dynamic, and

EVs released by multiple activated cells can synergistically lead

to specific pathophysiological changes, such as endothelial

dysfunction, coagulation abnormalities, circulatory dysfunction

and organ dysfunction. EVs can not only aggravate sepsis-

related pathological changes, but also exert protective effects

through different mechanisms. Sepsis treatment strategies based

on EVs can be developed in the following ways. a. For EVs that

aggravated the pathophysiological process of sepsis, specific

inhibitors can be developed for precise blocking. b. Engineered

EVs can be used as vaccines to stimulate active immunity and

protect the body. c. EVs can be used as drug delivery vehicles. d.

Exogenous MSC or EPC-derived EVs can be used as an effective

treatment for sepsis. EVs carrying antibiotics and other drugs

chemotaxis to the lesions actively and mediate the stable release

of drugs. In conclusion, the regulatory role of EVs in sepsis is

closely related to the cargoes they carry and their cellular origin.

Exploring its regulatory mechanism in sepsis can provide a

theoretical basis for the diagnosis, treatment strategy and

vaccine prevention of sepsis in the future.
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and Janiszewski, M. (2007). Platelet-derived exosomes induce endothelial cell
Frontiers in Cellular and Infection Microbiology 16
apoptosis through peroxynitrite generation: experimental evidence for a novel
mechanism of septic vascular dysfunction. Crit. Care 11 (5), R107. doi: 10.1186/
cc6133

Gando, S., Shiraishi, A., Yamakawa, K., Ogura, H., Saitoh, D., Fujishima, S., et al.
(2019). Role of disseminated intravascular coagulation in severe sepsis. Thromb.
Res. 178, 182–188. doi: 10.1016/j.thromres.2019.04.025

Gao, K., Jin, J., Huang, C., Li, J., Luo, H., Li, L., et al. (2019). Exosomes derived
from septic mouse serum modulate immune responses via exosome-associated
cytokines. Front. Immunol. 10, 1560. doi: 10.3389/fimmu.2019.01560

Gao, Y., Jin, H., Tan, H., Cai, X., and Sun, Y. (2022). Erythrocyte-derived
extracellular vesicles aggravate inflammation by promoting the proinflammatory
macrophage phenotype through TLR4-MyD88-NF-kB-MAPK pathway.
J. leukocyte Biol 112(4), 693–706. doi: 10.1002/JLB.3A0821-451R

Gao, M., Yu, T., Liu, D., Shi, Y., Yang, P., Zhang, J., et al. (2021). Sepsis plasma-
derived exosomal miR-1-3p induces endothelial cell dysfunction by targeting
SERP1. Clin. Sci. (Lond) 135 (2), 347–365. doi: 10.1042/CS20200573

Gao, F., Zuo, B., Wang, Y., Li, S., Yang, J., and Sun, D. (2020). Protective function
of exosomes from adipose tissue-derived mesenchymal stem cells in acute kidney
injury through SIRT1 pathway. Life Sci. 255, 117719. doi: 10.1016/j.lfs.2020.117719

Gasser, O., and Schifferli, J. A. (2004). Activated polymorphonuclear neutrophils
disseminate anti-inflammatory microparticles by ectocytosis. Blood 104 (8), 2543–
2548. doi: 10.1182/blood-2004-01-0361

Gerritzen, M. J. H., Martens, D. E., Wijffels, R. H., van der Pol, L., and Stork, M.
(2017). Bioengineering bacterial outer membrane vesicles as vaccine platform.
Biotechnol. Adv. 35 (5), 565–574. doi: 10.1016/j.biotechadv.2017.05.003

Goodwin, A. J., Guo, C., Cook, J. A., Wolf, B., Halushka, P. V., and Fan, H. (2015).
Plasma levels of microRNA are altered with the development of shock in human sepsis:
an observational study. Crit. Care 19, 440. doi: 10.1186/s13054-015-1162-8

Guervilly, C., Lacroix, R., Forel, J. M., Roch, A., Camoin-Jau, L., Papazian, L.,
et al. (2011). High levels of circulating leukocyte microparticles are associated with
better outcome in acute respiratory distress syndrome. Crit. Care 15 (1), R31. doi:
10.1186/cc9978

Gu, L., Meng, R., Tang, Y., Zhao, K., Liang, F., Zhang, R., et al. (2019). Toll-like
receptor 4 signaling licenses the cytosolic transport of lipopolysaccharide from
bacterial outer membrane vesicles. Shock 51 (2), 256–265. doi: 10.1097/
SHK.0000000000001129

Hellum, M., Øvstebø, R., Brusletto, B. S., Berg, J. P., Brandtzaeg, P., and
Henriksson, C. E. (2014). Microparticle-associated tissue factor activity correlates
with plasma levels of bacterial lipopolysaccharides in meningococcal septic shock.
Thromb. Res. 133 (3), 507–514. doi: 10.1016/j.thromres.2013.12.031

Hermann, S., Brandes, F., Kirchner, B., Buschmann, D., Borrmann, M., Klein,
M., et al. (2020). Diagnostic potential of circulating cell-free microRNAs for
community-acquired pneumonia and pneumonia-related sepsis. J. Cell Mol.
Med. 24 (20), 12054–12064. doi: 10.1111/jcmm.15837

He, Z., Wang, H., and Yue, L. (2020). Endothelial progenitor cells-secreted
extracellular vesicles containing microRNA-93-5p confer protection against sepsis-
induced acute kidney injury via the KDM6B/H3K27me3/TNF-a axis. Exp. Cell Res.
395 (2), 112173. doi: 10.1016/j.yexcr.2020.112173

Homsy, E., Das, S., Consiglio, P., McAtee, C., Zachman, A., Nagaraja, H., et al.
(2019). Circulating gasdermin-d in critically ill patients. Crit. Care Explor. 1 (9),
e0039. doi: 10.1097/CCE.0000000000000039

Horstman, A. L., and Kuehn, M. J. (2000). Enterotoxigenic escherichia coli
secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem.
275 (17), 12489–12496. doi: 10.1074/jbc.275.17.12489

Huang, W., Wang, S., Yao, Y., Xia, Y., Yang, X., Li, K., et al. (2016). Employing
escherichia coli-derived outer membrane vesicles as an antigen delivery platform
elicits protective immunity against acinetobacter baumannii infection. Sci. Rep. 6,
37242. doi: 10.1038/srep37242

Huang, W., Yao, Y., Long, Q., Yang, X., Sun, W., Liu, C., et al. (2014). Et al.:
Immunization against multidrug-resistant acinetobacter baumannii effectively
protects mice in both pneumonia and sepsis models. PloS One 9 (6), e100727.
doi: 10.1371/journal.pone.0100727

Hyun, Y. M., Sumagin, R., Sarangi, P. P., Lomakina, E., Overstreet, M. G., Baker,
C. M., et al. (2012). Uropod elongation is a common final step in leukocyte
extravasation through inflamed vessels. J. Exp. Med. 209 (7), 1349–1362. doi:
10.1084/jem.20111426

Janiszewski, M., Do Carmo, A. O., Pedro, M. A., Silva, E., Knobel, E., and
Laurindo, F. R. (2004). Platelet-derived exosomes of septic individuals possess
proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway. Crit.
Care Med. 32 (3), 818–825. doi: 10.1097/01.CCM.0000114829.17746.19

Jiang, L., Ni, J., Shen, G., Xia, Z., Zhang, L., Xia, S., et al. (2021). Upregulation of
endothelial cell-derived exosomal microRNA-125b-5p protects from sepsis-
induced acute lung injury by inhibiting topoisomerase II alpha. Inflammation
Res. 70 (2), 205–216. doi: 10.1007/s00011-020-01415-0
frontiersin.org

https://doi.org/10.1097/CCM.0000000000001836
https://doi.org/10.1160/TH06-07-0402
https://doi.org/10.1016/j.bbrc.2019.04.051
https://doi.org/10.1097/SHK.0000000000001549
https://doi.org/10.1155/2022/7837837
https://doi.org/10.1155/2022/7837837
https://doi.org/10.1160/TH14-02-0126
https://doi.org/10.1016/j.tim.2021.04.003
https://doi.org/10.1182/blood-2015-04-640300
https://doi.org/10.1182/blood-2015-04-640300
https://doi.org/10.1080/20013078.2020.1764213
https://doi.org/10.1371/journal.ppat.1003620
https://doi.org/10.1371/journal.ppat.1003620
https://doi.org/10.4049/jimmunol.180.2.817
https://doi.org/10.1074/jbc.M110.126748
https://doi.org/10.1128/MMBR.00031-09
https://doi.org/10.1016/j.bbadis.2015.08.010
https://doi.org/10.1164/rccm.201312-2163OC
https://doi.org/10.3389/fimmu.2018.02797
https://doi.org/10.1111/trf.14268
https://doi.org/10.1111/trf.14268
https://doi.org/10.1007/s00134-020-06151-x
https://doi.org/10.1160/TH12-08-0543.
https://doi.org/10.1186/cc6133
https://doi.org/10.1186/cc6133
https://doi.org/10.1016/j.thromres.2019.04.025
https://doi.org/10.3389/fimmu.2019.01560
https://doi.org/10.1002/JLB.3A0821-451R
https://doi.org/10.1042/CS20200573
https://doi.org/10.1016/j.lfs.2020.117719
https://doi.org/10.1182/blood-2004-01-0361
https://doi.org/10.1016/j.biotechadv.2017.05.003
https://doi.org/10.1186/s13054-015-1162-8
https://doi.org/10.1186/cc9978
https://doi.org/10.1097/SHK.0000000000001129
https://doi.org/10.1097/SHK.0000000000001129
https://doi.org/10.1016/j.thromres.2013.12.031
https://doi.org/10.1111/jcmm.15837
https://doi.org/10.1016/j.yexcr.2020.112173
https://doi.org/10.1097/CCE.0000000000000039
https://doi.org/10.1074/jbc.275.17.12489
https://doi.org/10.1038/srep37242
https://doi.org/10.1371/journal.pone.0100727
https://doi.org/10.1084/jem.20111426
https://doi.org/10.1097/01.CCM.0000114829.17746.19
https://doi.org/10.1007/s00011-020-01415-0
https://doi.org/10.3389/fcimb.2022.1018692
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tian et al. 10.3389/fcimb.2022.1018692
Jiang, K., Yang, J., Guo, S., Zhao, G., Wu, H., and Deng, G. (2019). Peripheral
circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute
lung inflammation. Mol. Ther. 27 (10), 1758–1771. doi: 10.1016/
j.ymthe.2019.07.003

Jiao, Y., Li, W., Wang, W., Tong, X., Xia, R., Fan, J., et al. (2020). Platelet-derived
exosomes promote neutrophil extracellular trap formation during septic shock.
Crit. Care 24 (1), 380. doi: 10.1186/s13054-020-03082-3

Joffre, J., and Hellman, J. (2021). Oxidative stress and endothelial dysfunction in
sepsis and acute inflammation. Antioxidants Redox Signaling 35 (15), 1291–1307.
doi: 10.1089/ars.2021.0027

Joffre, J., Hellman, J., Ince, C., and Ait-Oufella, H. (2020). Endothelial responses
in sepsis. Am. J. Respir. Crit. Care Med. 202 (3), 361–370. doi: 10.1164/
rccm.201910-1911TR

Johnson, B. L.3rd, EF, M., PS, P., TC, R., Kunz, N., and Kalies, K. (2017).
Caldwell CC: Neutrophil derived microparticles increase mortality and the
counter-inflammatory response in a murine model of sepsis. Biochim. Biophys.
Acta Mol. Basis Dis. 1863 (10 Pt B), 2554–2563. doi: 10.1016/j.bbadis.2017.01.012

Juan, C. X., Mao, Y., Cao, Q., Chen, Y., Zhou, L. B., Li, S., et al. (2021). Exosome-
mediated pyroptosis of miR-93-TXNIP-NLRP3 leads to functional difference
between M1 and M2 macrophages in sepsis-induced acute kidney injury. J. Cell
Mol. Med. 25 (10), 4786–4799. doi: 10.1111/jcmm.16449

Kesty, N. C., Mason, K. M., Reedy, M., Miller, S. E., and Kuehn, M. J. (2004).
Enterotoxigenic escherichia coli vesicles target toxin delivery into mammalian cells.
EMBO J. 23 (23), 4538–4549. doi: 10.1038/sj.emboj.7600471

Kim, O. Y., Hong, B. S., Park, K. S., Yoon, Y. J., Choi, S. J., Lee, W. H., et al.
(2013). Immunization with escherichia coli outer membrane vesicles protects
bacteria-induced lethality via Th1 and Th17 cell responses. J. Immunol. 190 (8),
4092–4102. doi: 10.4049/jimmunol.1200742

Konecna, B., Park, J., Kwon, W. Y., Vlkova, B., Zhang, Q., Huang, W., et al.
(2021). Monocyte exocytosis of mitochondrial danger-associated molecular
patterns in sepsis suppresses neutrophil chemotaxis. J. Trauma Acute Care Surg.
90 (1), 46–53. doi: 10.1097/TA.0000000000002973

Kulp, A., and Kuehn, M. J. (2010). Biological functions and biogenesis of
secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184.
doi: 10.1146/annurev.micro.091208.073413

Lamkanfi, M., and Dixit, V. M. (2014). Mechanisms and functions of
inflammasomes. Cell 157 (5), 1013–1022. doi: 10.1016/j.cell.2014.04.007

Lee, J., Yoon, Y. J., Kim, J. H., Dinh, N. T. H., Go, G., Tae, S., et al. (2018). Outer
membrane vesicles derived from escherichia coli regulate neutrophil migration by
induction of endothelial IL-8. Front. Microbiol. 9, 2268. doi: 10.3389/
fmicb.2018.02268

Lee, H., Zhang, D., Laskin, D. L., and Jin, Y. (2018). Functional evidence of
pulmonary extracellular vesicles in infectious and noninfectious lung
inflammation. J. Immunol. 201 (5), 1500–1509. doi: 10.4049/jimmunol.1800264

Lehner, G. F., Harler, U., Haller, V. M., Feistritzer, C., Hasslacher, J.,
Dunzendorfer, S., et al. (2016). Characterization of microvesicles in septic shock
using high-sensitivity flow cytometry. Shock 46 (4), 373–381. doi: 10.1097/
SHK.0000000000000657

Letsiou, E., Sammani, S., Zhang, W., Zhou, T., Quijada, H., Moreno-Vinasco, L.,
et al. (2015). Pathologic mechanical stress and endotoxin exposure increases lung
endothelial microparticle shedding. Am. J. Respir. Cell Mol. Biol. 52 (2), 193–204.
doi: 10.1165/rcmb.2013-0347OC

Liang, G., Zeng, M., Gao, M., Xing, W., Jin, X., Wang, Q., et al. (2022). lncRNA
IGF2-AS regulates nucleotide metabolism by mediating HMGA1 to promote
pyroptosis of endothelial progenitor cells in sepsis patients. Oxid. Med. Cell.
Longevity 2022, 9369035. doi: 10.1155/2022/9369035

Li, J., Deng, X., Ji, X., Shi, X., Ying, Z., Shen, K., et al. (2020). Mesenchymal stem
cell exosomes reverse acute lung injury through nrf-2/ARE and NF-kB signaling
pathways. PeerJ 8, e9928. doi: 10.7717/peerj.9928

Li, W., Deng, M., Loughran, P. A., Yang, M., Lin, M., Yang, C., et al. (2020). LPS
induces active HMGB1 release from hepatocytes into exosomes through the
coordinated activities of TLR4 and caspase-11/GSDMD signaling. Front.
Immunol. 11, 229. doi: 10.3389/fimmu.2020.00229

Li, X., Liu, L., Yang, J., Yu, Y., Chai, J., Wang, L., et al. (2016). Exosome derived
from human umbilical cord mesenchymal stem cell mediates MiR-181c
attenuating burn-induced excessive inflammation. EBioMedicine 8, 72–82. doi:
10.1016/j.ebiom.2016.04.030

Li, H., Meng, X., Liang, X., Gao, Y., and Cai, S. (2015). Administration of
microparticles from blood of the lipopolysaccharide-treated rats serves to induce
pathologic changes of acute respiratory distress syndrome. Exp. Biol. Med.
(Maywood) 240 (12), 1735–1741. doi: 10.1177/1535370215591830

Lim, K., Hyun, Y. M., Lambert-Emo, K., Capece, T., Bae, S., Miller, R., et al.
(2015). Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Sci.
(New York NY) 349 (6252), aaa4352. doi: 10.1126/science.aaa4352
Frontiers in Cellular and Infection Microbiology 17
Lipinski, S., Pfeuffer, S., Arnold, P., Treitz, C., Aden, K., Ebsen, H., et al. (2019).
Prdx4 limits caspase-1 activation and restricts inflammasome-mediated signaling
by extracellular vesicles. EMBO J. 38 (20), e101266. doi: 10.15252/embj.2018101266
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Glossary

EVs Extracellular vesicles

MPs Microparticles

CRP C-reactive protein

HMGB1 High mobility group box 1 protein

eCIRP Extracellular cold-induced RNA-binding protein

CPE Choroid plexus epithelium

MSCs Mesenchymal stem cells

BMMSCs Bone marrow mesenchymal stem cells

MSC-EVs MSC-derived EVs

UCMSCs Umbilical cord Mesenchymal Stem Cells

hucMSC-Ex Human umbilical cord MSC-derived exosomes

ADSCs Adipose-derived stem cells

DPSCs Dental pulp stem cells

EPCs Endothelial progenitor cells

ECs Endothelial cells

NDMV Neutrophil-derived microvesicles

NDTR Neutrophil-derived trails

IL-1b Interleukin-1 beta

IL-18 Interleukin-18

Mac-EVs Macrophage-derived EVs

DCs Dendritic Cells

MFGE8 Milk fat globule-containing EGF factor VIII

DAMPs Damage associated molecular patterns

PAMPs Pathogen-associated molecular patterns

TNF-a Tumor necrosis factor

SSL5 Staphylococcus superantigen-like protein 5

OMVs Outer membrane vesicles

Bap1 Biofilm-associated extracellular matrix protein

NFKB Nuclear factor -Kb

AP-1 Activator protein 1

IRF Interferon regulatory factor

PRRs Pattern recognition receptors

TF Tissue factor

PS Phosphatidylserine

TAT Thrombin-antithrombin complex

Nm Neisseria meningitidis

MRSA Methicillin-resistant Staphylococcus aureus

MMP-10 Matrix metalloproteinase-10

iNOS Inducible nitric oxide synthase

aPC Activated protein C

ARDS Acute respiratory distress syndrome

AKI Acute kidney injury

BALF Bronchoalveolar lavage fluid

ACE Angiotensin-converting enzyme

SIPR3 Sphingosine-1-phosphate receptor 3

SIMD Sepsis-induced myocardial dysfunction

CSF Cerebrospinal fluid
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