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Endometritis is generally caused by bacterial infections, including both acute and chronic
infections. In the past few decades, accumulated evidence showed that the occurrence of
diseases might be related to gut microbiota. The progression of diseases is previously
known to change the composition and diversity of intestinal microbiota. Additionally, it also
causes corresponding changes in metabolites, primarily by affecting the physiological
processes of microbiota. However, the effects of acute endometritis on intestinal
microbiota and its metabolism remain unknown. Thus, the present study aimed to
assess the effects of acute endometritis on intestinal microbes and their metabolites.
Briefly, endometritis was induced in 30 specific pathogen-free (SPF) BALB/c female mice
via intrauterine administration of lipopolysaccharide (LPS) after anesthesia. Following this,
16S rRNA gene sequencing and liquid chromatogram-mass spectrometry (LC-MS) were
performed. At the genus level, the relative abundance of Klebsiella, Lachnoclostridium_5,
and Citrobacter was found to be greater in the LPS group than in the control group.
Importantly, the control group exhibited a higher ratio of Christensenellaceae_R−7_group
and Parasutterella. Furthermore, intestinal metabolomics analysis in mice showed that
acute endometritis altered the concentration of intestinal metabolites and affected
biological oxidation, energy metabolism, and biosynthesis of primary bile acids. The
correlation analysis between microbial diversity and metabolome provided a basis for a
comprehensive understanding of the composition and function of the microbial
community. Altogether, the findings of this study would be helpful in the prevention and
treatment of acute endometritis in the future.

Keywords: acute endometritis, intestinal microbiota, metabolomics, lipopolysaccharide, mice
INTRODUCTION

Endometritis is a disease caused by bacterial pathogens, such as Chlamydia trachomatis,
Enterococcus, Escherichia coli, Gardnerella vaginalis, Klebsiella pneumoniae, Mycoplasma
hominis, Neisseria gonorrhoeae, Staphylococcus, and Streptococcus (Moreno et al., 2018). These
bacterial pathogens are known to cause persistent inflammation of the uterus, which could further
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result in infertility in severe cases (Wallach and Czernobilsky,
1978; Kitaya et al., 2018). Among these, E. coli and
Staphylococcus aureus are particularly recognized as important
factors in the infection of endometritis (Andrews et al., 2006;
Kitaya et al., 2017). Importantly, lipopolysaccharide (LPS)
produced by E. coli is considered to be the triggering factor for
various inflammatory reactions, which play a vital role in the
establishment of inflammatory models (Chen et al., 2010; Wu
et al., 2016; Wang and Zhang, 2018).

Throughout long-term evolution, the mammalian intestines
have evolved into a complex environment. The intestines usually
consist of a dense microbiome that is strongly associated with
host health and disease status (Marchesi et al., 2016). Intestinal
microbiota not only affects normal metabolism (Sharon et al.,
2014) but also regulates host immunity (Rooks and Garrett,
2016), nervous system (Tan et al., 2020), and even cancer
development (Yachida et al., 2019). In particular, it acts as a
barrier against pathogen invasion, protects the intestinal
structure, and maintains normal physiological function. In fact,
any imbalance in the gut microbiome can cause corresponding
physiological effects. Previous studies have shown that
imbalances in the gut microbiota could lead to an increase in
estrogen secretion (Plottel and Blaser, 2011), which was
associated with endometriosis, endometrial cancer, and other
uterine diseases (Borella et al., 2021). However, its role in
endometritis remains poorly understood.

The microbiome represents a dynamic community, whose
composition is mainly influenced by age, disease status, eating
habits, and other factors. These factors influence the composition
and diversity of microorganisms. Additionally, these also affect
the physiological processes of microorganisms, such that the
distribution of their metabolites also changes. Variations in the
microbial metabolic spectrum could further cause physiological
changes in both host and pathogenic microorganisms, thereby
affecting the progression of the disease (Cameron and Sperandio,
2015). Consequently, metabolism studies and metabolic profiling
are used as markers for the diagnosis of diseases (Ursell et al.,
2014). In particular, plasma trimethylamine nitrogen oxide
(TMAO) has been previously identified as a marker for
cardiovascular disease (CVD) (Koeth et al., 2013), whereas 3-
carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF) was
identified in the plasma of patients with gestational diabetes,
impaired glucose tolerance, and type 2 diabetes (Prentice et al.,
2014). However, no previous studies reported the identification
of metabolites associated with endometritis.

The present study aimed to assess the effects of acute
endometritis on intestinal microbes and their metabolites. In
particular, it was hypothesized that administration of
lipopolysaccharide (LPS) would induce endometritis and affect
the intestinal microbiota and metabolites in the mice model.
Herein, the intestinal tissues of acute endometritis mice were
subjected to 16S rRNA high-throughput sequencing technology
and liquid chromatogram-mass spectrometry (LC-MS) non-
targeted metabolism technology, to assess the distribution of
intestinal metabolites and unravel the composition of microbiota
present in the mice with acute endometritis. Altogether, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
results of the study would provide possible molecular markers for
the diagnosis of acute endometritis.
MATERIALS AND METHODS

Animals
All experimental procedures, including animal handling, welfare
monitoring, and euthanasia, were performed following the
ARRIVE guidelines and regulations and were approved by the
Animal Care Office of Chengdu Normal University, Chengdu,
China. Specific pathogen-free (SPF) BALB/c female mice aged 6–
8 weeks were purchased from the Chengdu Dossy Experimental
Animals Co., Ltd.

Experimental Processing
A total of 30 mice were placed at a temperature of 25 ± 3°C,
under 75 ± 5% humidity, fixed with 12-h light/12-h dark
treatment daily, and provided adequate food and water. The
mice were randomly categorized into five groups: the LPS group
(3, 6, 12, and 24 h) and the control group. The murine model of
endometritis was established as previously described (Wu et al.,
2016; Wu et al., 2018). Briefly, each side of the mouse uterus was
perfused with 20 ml of LPS (3 mg/ml) under anesthesia. The LPS
was brought from Sigma-Aldrich (USA). The control group mice
were intraperitoneally injected with the same amount of
phosphate-buffered saline (PBS; Beijing Labgic Technology Co.,
Beijing, China). The uterine and intestinal tissues were collected
at 3, 6, 12, and 24 h. The samples were frozen under liquid
nitrogen immediately after collection at −80°C.

Inflammation Analysis
The uterine tissues were fixed with paraformaldehyde and then
pruned, dehydrated, and paraffin-embedded. Five sections were
stained with hematoxylin and eosin (H&E) before microscopic
observation (Nikon, Eclipse Ci-L, Japan). The expressions of
interleukin (IL)-6, IL-1b, and tumor-necrosis factor-alpha (TNF-
a) were detected by quantitative real-time polymerase chain
reaction (PCR). Total RNA was extracted from the uterine
tissues by using the MiniBEST Universal RNA Extraction Kit
(Takara, Japan) and reverse transcribed into cDNA. The cDNA
product was diluted with the Fast qPCR Master Mix (High Rox,
BBI, ABI) on the StepOne Plus Fluorescent Quantitative PCR
instrument (ABI, Foster, CA, USA). Primers (listed in
Supplementary Table 1) were designed using the Primer
Premier 5.0 software, and the relative quantification of the
target gene expression was performed using the 2−DDCt method.
Statistical analyses were performed using the GraphPad Prism 8
(GraphPad InStat Software, USA). Comparison between the
groups was performed using t-test, and the data were
expressed as mean ± SD. p < 0.05 was considered to indicate
statistical significance.

DNA Extraction and Library Construction
Total genomic DNA was extracted according to the instructions
for the QIAamp 9 PowerFecalQIAcube HT Kit (Qiagen, 51531).
December 2021 | Volume 11 | Article 791373
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The concentration of DNA was verified by the Nano Drop system
(Thermo Fisher, 2000) and agarose gel. Using the genomic DNA
as a template, according to the selection of sequencing V3–V4
variable regions [primers 343F: 5′-TACGGRAGGCAGCAG-3′,
798R: 5′-AGGGTATCTAATCCT-3′ (Nossa et al., 2010)],
TksGflex DNA polymerase (Takara, R060B) and specific
primers with barcode were used for PCR. The quality of
amplifiers was confirmed by gel electrophoresis, purified by the
AMPoule XP Bead (Agencourt), followed by another round of
PCR amplification. The Qubit dsDNA Analysis Kit (Life
Technologies, Q32854) was used to quantify the final amplifier
after purification of the ampoule XP bead. An equal number of
purified amplifiers were assembled for subsequent sequencing.

Analysis of Intestinal Microbiota
The Trimmomatic software was used to preprocess the paired-
end reads (Bolger et al., 2014), pruned, and assembled by the
FLASH software after trimming (Reyon et al., 2012). The
assembly parameters were as follows: minimum overlap, 10 bp;
maximum overlap, 200 bp; and maximum error ratio, 20%.
Abandoned homologous sequences are those <200 bp; 75% of
the base readings above Q20 were retained. The chimera
readings were detected and removed by using the UCHIME
(Caporaso et al., 2010). Vsearch software was used to generate
operational taxonomic units (OTU) by removing the primer
sequences and clustering with a cutoff value of 97% similarity
(Rognes et al., 2016). The representative reading of each OTU
was selected using the QIIME package. The RDP classifier was
used to annotate the species of all representative reads according
to the Silva database (version 123) (confidence threshold 70%)
(Wang et al., 2007).

Metabolomics Processing
We accurately weighed 15 mg of the tissue samples into 1.5-ml of
the EP tube and added the inner standard (FMOC-L-2-Chlorophe,
0.3 mg/ml; Lyso PC17: 0, 0.01 mg/ml, all configured with
methanol) of 20 ml and added 400 ml of methanol–water (v/v =
4:1). After grinding, centrifugation, supernatant absorption,
filtration, and transfer to the LC sample vial, the solution was
stored at −80°C until LC-MS analysis.

For data processing, the metabolic profiling in positive and
negative electrospray ionization (ESI) modes was analyzed by
using the liquid-mass spectrometry system consisting of the
Dionex U3000 UHPLC High-Resolution Mass Spectrometer and
the QE plus (Thermo Fisher Scientific, Waltham, MA, USA). The
determination was performed on the ACQUITY UPLC HSS T3
(100 × 2.1 mm, 1.8 mm) with a mobile phase consisting of A-water
(containing 0.1% formic acid, v/v) and B-acetonitrile (containing
0.1% formic acid, v/v). The flowrate was set to 0.35 ml/min, and
the column temperature was 45°C. The injection volume was 2 μl.
Data acquisition was performed in the full-scan mode (m/z ranges
from 70 to 1,000) combined with the IDA mode.

Metabolomics Data Analysis
The Progenesis Qi V2.3 software (Nonlinear Dynamics,
Newcastle, UK) was used to process the metabolic raw data
after collection by Unifi 1.8.1. The compounds were identified
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
based on the accurate mass number, secondary fragments, and
isotope distribution using The Human Metabolome Database
(HMDB), Lipidmaps (V2.3), METLIN databases, and self-built
databases. The qualitative compounds were screened according
to the qualitative results score of the compounds. The screening
standard was 36 points (full score = 60 points), and the
qualitative results <36 points were considered to be inaccurate
and deleted.

Principle component analysis (PCA) and (orthogonal) partial
least-square-discriminant analysis (O) PLS-DA were performed
to observe the overall metabolic differences among the groups.
The Hotelling’s T2 region demonstrated an ellipse in the model
score, which was defined at a 95% confidence interval for model
variation. In the OPLS-DA analysis, variable importance in the
projection (VIP) was employed to measure the influence and
explanatory ability of the samples in each group; VIP >1 was
regarded as the screening criteria. We selected differential
metabolites according to the threshold of statistically
significant variables obtained from the OPLS-DA model on
(VIP) values and p-values obtained from two-tailed Student’s
t-test of normalized peak areas. Metabolites with VIP values >1.0
and p < 0.05 were considered to indicate differential metabolites.
RESULTS

Effect of LPS on Inflammation of
Mouse Uterus
The effect of LPS on uterine inflammation in mice was assessed
by evaluating histopathological conditions. As shown in
Figures 1A–E, the histopathological assessment showed that
the morphology of uterine tissue was normal in the control
group. An increase in LPS treatment time resulted in a gradual
enhancement of the pathological manifestations, and the
pathological situation was reported to be most serious at 12 h.
After 12 h, the pathological condition of uterine tissue weakened.
In addition to this, changes in cytokine-related expression levels
were also observed (Figure 1F). In fact, LPS treatment for 12 h
significantly increased the levels of IL-6, IL-1b, and TNF‐a.

Effects of LPS on Diversity, Richness, and
Composition of Intestinal Microorganisms
in Mice
Following quality controlled processing of the original
sequencing results obtained from 16S rRNA sequencing, the
data volume obtained for clean tags was distributed between
89734–93578. After removing chimeras, the valid tags obtained
for analysis were allocated between 80742 and 85484. Valid tags
were divided into OTU according to 97% similarity, and a total of
4,373 OTUs were obtained. According to the results of the
Shannon index and Chao1 index (Figure 2), no significant
differences were recorded between the diversity of gut
microbiome in mice treated with LPS and normal mice.

In particular, a total of 27 bacterial phyla were detected for the
classification of the resulting OTUs. Among these, Bacteroidetes and
Firmicutes were found to be the dominant ones, which accounted
December 2021 | Volume 11 | Article 791373
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for 59.56% and 29.86%, respectively. At the genus level, a total of
529 bacterial genera were detected. Among these, the dominant
species were Bacteroides (51.25%), Faecalibacterium (9.05%),
Lachnospiraceae_NK4A136_group (4.07%), Lachnoclostridium
(2.99%), Helicobacter (2.66%), and Paraprevotella (2.02%)
(Figure 3). In addition to this, the study also analyzed different
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
species present in each group using theWilcoxon test (Figure 4). At
the phylum level, Elusimicrobia was identified as a distinct phylum.
Furthermore, at the generic level, Klebsiella, Lachnoclostridium_5,
Citrobacter, Enterobacter, Treponema_2, Christensenellaceae_
R−7_group, and Parasutterella were found to be different in the
two groups.
A B

FIGURE 2 | Effects of LPS on the diversity and richness of intestinal microbiota in mice. (A) Chao1 index. (B) Shannon index. ns means no significant difference.
FIGURE 1 | Effect of LPS on inflammation of the mouse uterus. (A) Control group. (B) LPS group (3 h). A small amount of endometrial epithelial cells seems
swollen, and the cytoplasm is loose and light-stained (black arrow). (C) LPS group (6 h). Bits of endometrial epithelial cells are shed (black arrow), and a small
number of uterine glands are slightly dilated (green arrow). (D) LPS group (12 h). The endometrial epithelium and glandular epithelium are swollen, the cytoplasm has
loosened and lightly stained (red arrow), and a large number of capillaries in the lamina propriety are congested and dilated (yellow arrow). (E) LPS group (24 h). A
spot of blood stasis in the lamina propria (red arrow). (Hematoxylin and eosin staining; magnification, 200×). (F) The expression of inflammatory cytokines IL-6, IL-1b,
and TNF-a. Mean ± SD was employed for data processing. Three replicates were processed in each group. *p < 0.05, **p < 0.01 vs. control group.
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Effects of LPS on Intestinal Metabolomics
in Mice
LC-MS non-targeted metabolomics analysis was conducted for
the intestinal samples of the control group and LPS group. The
principal component analysis showed a separation between the
samples obtained from these two groups (Figure 5A). OPLS-DA
was utilized to verify differential metabolites between the two
groups, and multivariate analysis was supervised. Furthermore,
the score plot showed/revealed significant differences in OPLS-
DA score for the two groups of samples (Figure 5B). As shown
in Figure 5C, the OPLS-DA fitting model did not show
overfitting of the model. Meanwhile, for the displacement test,
the values for R2Y (0.867) and Q2Y (−0.222 < 0) also indicated
the validity of the model.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
The study also compared the metabolites (Supplementary
Table 2) between the two groups, by t-test and multivariate
analysis combined with variable influence on projection (VIP). A
total of 187 different metabolites were identified (Supplementary
Table 3). Among the 76 positive ion metabolites, two were
identified as benzenoids, 23 were lipids and function‐like
molecules, and one belonged to nucleosides, nucleotides, and
analogs. Additionally, these positive ion metabolites included
nine kinds of organic acids and derivatives, four types of organic
oxygen compounds, four types of organoheterocyclic
compounds, one organosulfur compound, and two
phenylpropanoids and polyketides. In the case of negative‐ion
metabolites, a total of 111 such metabolites were identified,
which were divided into alkaloids and derivatives, benzenoids,
A B

FIGURE 3 | Effect of LPS on the composition of intestinal microbiota in mice. (A) Phylum level. (B) Genus level.
A B

FIGURE 4 | Differential species of the intestinal microbiota of mice in the LPS group and control group. (A) The phylum level is evident from the box drawing. (B) The
genus level is represented by a heat map. Orange indicates relatively high species abundance, while blue indicates relatively low species abundance.
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lipids, and lipid‐like molecules, nucleosides, nucleotides, and
their analogs, organic acids and derivatives, organic compounds,
organic oxygen compounds, organoheterocyclic compounds,
phenylpropanoids and polyketides, and others.

The volcano diagram showed dramatic up- and
downregulation of metabolites in the endometritis group and
normal group (Figure 6A). To display the relationship between
samples and differences in the expression of metabolites among
different samples, hierarchical clustering analysis (HCA) was
performed on the expression levels of top 50 significantly
different metabolites, and the clustering results were shown in
terms of a heat map (Figure 6B). In the positive ion mode, LPS
treatment increased the expression of metabolites, such as
cholesterol, 11‐deoxycortisol, and N‐phenylacetylphenylalanine,
and reduced the expression of Darunavir, PE (19:1(9Z)/0:0), and
LysoPE (24:1(15Z)/0:0). However, in the negative ion mode, LPS
treatment resulted in an increase in metabolites, like trans-piceid
and Psilocybin, and decreased the levels of NAD, MET‐
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
enkephalin, and Isokobusone. In addition to this, KEGG ID for
differential metabolites was used for pathway enrichment analysis
(Figure 7). In particular, the metabolic pathways for cholesterol
metabolism, primary bile acids biosynthesis, and vitamin digestion
and absorption were markedly affected by LPS.

Importantly, changes in the metabolic spectrum of the
microbiome reflect changes in the dynamics of the microbiome.
Therefore, the present study analyzed the correlation between
microbial diversity and metabolomics to understand the
composition and function of microorganisms in a better way.
As shown in Figure 8, Treponema_2 positively correlated
with the levels of cholesterol in the microbial community, with
higher genera expression abundance in the LPS group, and
negatively correlated with NAD. In the normal control group,
Parasutterella was found to be positively correlated with NAD and
Isokobusone and negatively correlated with 8-Epiiridotrial
glucoside in the microbial community, with superior generic-
level expression abundance.
A B C

FIGURE 5 | Multivariate statistical analyses of intestinal metabolites in mice. (A) Principal component analysis (PCA). (B) Orthogonal partial least-squares-discriminant
analysis (OPLS-DA) diagram. (C) Validation diagram obtained from the permutation test.
A B

FIGURE 6 | Effects of LPS on the intestinal metabolites in mice. (A) Significantly different metabolites, in which the red dots represent significantly upregulated
differential metabolites in the LPS group, the blue dots represent significantly downregulated differential metabolites, and the gray dots represent insignificant
differential metabolites. (B) HCA. The abscissa expresses the sample name, and the ordinate represents the differential metabolites. The color ranges from blue to
red, indicating the expression abundance of metabolites from minimal to high, that is, the greater the intensity of the red color, the higher is the expression
abundance of differential metabolites.
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DISCUSSION

As a bacterial infectious disease, endometritis is known to
primarily affect the life of women and modern agricultural
production, which is detrimental to human health and economic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
development (Zhao et al., 2017). Lipopolysaccharide (LPS)
obtained from the cell wall of Gram-negative bacteria has been
previously shown to play an important role in the pathogenesis of
endometritis (Li et al., 2019; Zhou et al., 2019). Thus, it is used to
induce endometritis in mice. Currently, the gold standard used for
FIGURE 7 | Metabolic pathway enrichment diagram. The red line indicates p = 0.01, while the blue line indicates p = 0.05. When the top of the bar is higher than
that of the blue line, the signal pathway represented is significant.
FIGURE 8 | Analysis of the effects of LPS on the microbial genus and metabolite concentration. For each species with distinct behaviors and the corresponding
metabolites in each column, the orange color indicates a positive correlation, while blue indicates a negative correlation. The darker the color, the greater is the
correlation. The closer the color is to white, the closer is the correlation to zero. ***p < 0.001, **p < 0.01, and *p < 0.05 (i.e., significance of correlation).
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endometritis is histopathological examination (Kiviat et al., 1990;
Kitaya and Yasuo, 2011). In the present study, H&E staining of the
tissue samples and assessment of tissue morphology were used for
the evaluation of the tissue samples. Briefly, after 12 h of LPS
treatment, endometrium and uterine glandular epithelial cells were
found to be swollen, the cytoplasm was loose and lightly stained,
and a large number of capillaries in lamina propriety stasis and
dilation were recorded as the most serious pathological conditions.
Consequently, the tissues treated with LPS for 12 h were used for
subsequent analysis. Since LPS can induce the production of
cytokines, such as IL-6, IL-1b, and TNF‐a (Ahmad et al., 2019),
the present study also assessed the related expression levels of
cytokines in uterine tissues at 12 h, after LPS induction. The results
showed that LPS treatment for 12 h significantly increased the
levels of IL-6, IL-1b, and TNF‐a, indicating the successful
establishment of the LPS-induced endometritis model in mice.

The occurrence of diseases has been previously shown to cause
changes in the gut microbiota and its metabolism (Rooks and
Garrett, 2016). No previous studies investigated the relation
between acute endometritis and gut microbiota. The present
study reported changes in intestinal microbiome and
metabolism of mice with acute endometritis, using 16SrRNA
high-throughput sequencing and LC-MS technology. The study
also reported differences in the composition andmetabolites of the
microbiome structure and metabolites present in the intestines of
mice with acute endometritis, induced by LPS. Elusimicrobia is
known to exert a potential negative impact on health, and it is
often used as a biomarker for intestinal damage (Carbonero et al.,
2019). At the genus level, a decrease in beneficial bacteria, such as
Christensenellaceae_R.7_group and Parasutterella, was recorded
in the LPS group in the present case. An increase in the relative
abundance of Treponema_2, Klebsiella, Lachnoclostridium_5, and
Citrobacter was also recorded. In general, Christensenellaceae_
R.7_Group is a microorganism that is widely present in humans
and animals. It is primarily associated with obesity and
inflammatory bowel disease (Waters and Ley, 2019). The
relative abundance of Christensenellaceae_R.7_group has been
reported to be comparatively low in obese patients (Valdes
et al., 2018). However, obese people generally exhibit a higher
risk of endometritis as compared to the general population
(Kalkanbaeva et al., 2017). Parasutterella is an important
microorganism that maintains the health of the human
gastrointestinal tract. It is associated with many diseases
(Blasco-Baque et al., 2017; Ju et al., 2019). In comparison to
this, Klebsiella is a pathogen that primarily causes severe
suppurative community-acquired pneumonia, which can infect
almost any part of the body and is extremely lethal (Sahly et al.,
2002). Lachnoclostridium_5 is usually associated with digestive
diseases (Wang et al., 2018). Citrobacter is an extracellular
intestinal pathogen that is specifically designed to mimic human
pathogenic E. coli and inflammatory bowel disease infections
(Mullineaux-Sanders et al., 2019). In the present study, these
bacteria genera exhibited differential expression in the LPS group,
which indicated that after acute endometritis, the abundance of
intestinal pathogenic bacteria increased, while the beneficial
bacteria decreased, and the protection provided by intestinal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
barrier also reduced. Consequently, the possibility of the
disease increased.

In addition to this, the amount of intestinal metabolite
cholesterol was recorded to be higher in the LPS group.
Cholesterol is known to be an essential molecule in the animal
body, which participates in various biochemical processes, such as
cell membrane synthesis and cell growth and differentiation
(Russell, 1992). However, the inadequate ability of animals to
decompose cholesterol can lead to an increase in the level of
cholesterol that can further result in diseases, such as
atherosclerosis (Schade et al., 2020). Besides this, acute
endometritis also resulted in reduced levels of NAD and
Isokobusone. Nicotinamide adenine dinucleotide (NAD) is
known for its role in redox reactions, particularly as a hydrogen
carrier for cellular oxidoreductases. It also acts as a signaling
molecule that regulates hundreds of key processes, including
energy metabolism and cell survival, via regulation of NAD+

sensing enzymes. NAD+ levels usually decline with age, resulting
in metabolic changes and increased susceptibility to disease
(Rajman et al., 2018). A previous study reported that Isokobusone
could activate pregnane X receptor (PXR) and constitutive
androstane receptor (CAR) and thus induced the expression of
drug metabolism enzymes and inhibited the expression of LPS‐
induced inflammatory mediators (Kittayaruksakul et al., 2013).
Therefore, acute endometritis altered the levels of metabolites in
the body, which further affected normal biological redox responses,
decreased the inhibition of inflammatory response, and increased
susceptibility to the disease.

The combination of microbiology and metabolomics revealed
the changes in the composition of the intestinal microbiome in
acute endometritis, which suggested that the activity of the gut
microbiome might be related to intestinal metabolism. It was
found that the abnormal expression of Treponema_2 in the LPS
group positively correlated with cholesterol, wherein Treponema
cells could obtain cholesterol from the erythrocytic membranes
of eukaryotes (Stanton and Cornell, 1987) and produced
exogenous cholesterols during growth. Cholesterol depletion or
incorporation of cholesterol molecules might harm the intestinal
epithelial membrane. In addition to this, acute endometritis also
decreased the relative abundance of Parasutterella. Parasutterella
has been previously shown to be associated with bile acid
homeostasis (Ju et al., 2019). Biosynthesis of primary bile acids
is generally involved in the pathogenesis of cervicitis. Cervicitis is
known to provoke/induce a variety of diseases, including
endometritis (Zhang et al., 2018). In addition to this,
enrichment analysis of metabolic pathways revealed that LPS
could alter the biosynthesis of primary bile acids, indicating an
important role in bile acid metabolism. However, the specific
mechanism of action remains to be explored in the future. In
addition to this, it needs to be explored whether the altered gut
microbiota and its metabolites also affected the internal
environment of the uterus.

Altogether, the present study reported the induction of acute
endometritis in mice upon LPS treatment, and changes were
reported in intestinal microbiota and metabolites by 16S rRNA
high-throughput sequencing and LC-MS untargeted
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metabolism. At the generic level, acute endometritis resulted in
the reduction in beneficial microorganisms in the intestinal tract.
At the same time, it increased the relative abundance of
pathogenic bacteria, altered the metabolic levels of cholesterol
and NAD, and affected the corresponding biological REDOX
reactions and other biochemical processes. Thus, the findings of
this study would provide new strategies for the diagnosis of
acute endometritis.
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