India has made major progress in improving control of visceral leishmaniasis (VL) in recent years, in part through shortening the time infectious patients remain untreated. Active case detection decreases the time from VL onset to diagnosis and treatment, but requires substantial human resources. Targeting approaches are therefore essential to feasibility.
We analyzed data from the Kala-azar Management Information System (KAMIS), using village-level VL cases over specific time intervals to predict risk in subsequent years. We also graphed the time between cases in villages and examined how these patterns track with village-level risk of additional cases across the range of cumulative village case-loads. Finally, we assessed the trade-off between ACD effort and yield.
In 2013, only 9.3% of all villages reported VL cases; this proportion shrank to 3.9% in 2019. Newly affected villages as a percentage of all affected villages decreased from 54.3% in 2014 to 23.5% in 2019, as more surveillance data accumulated and overall VL incidence declined. The risk of additional cases in a village increased with increasing cumulative incidence, reaching approximately 90% in villages with 12 cases and 100% in villages with 45 cases, but the vast majority of villages had small cumulative case numbers. The time-to-next-case decreased with increasing case-load. Using a 3-year window (2016–2018), a threshold of seven VL cases at the village level selects 329 villages and yields 23% of cases reported in 2019, while a threshold of three cases selects 1,241 villages and yields 46% of cases reported in 2019. Using a 6-year window increases both effort and yield.
Decisions on targeting must consider the trade-off between number of villages targeted and yield and will depend upon the operational efficiencies of existing programs and the feasibility of specific ACD approaches. The maintenance of a sensitive, comprehensive VL surveillance system will be crucial to preventing future VL resurgence.