Organoid and Enteroid Modeling of Salmonella Infection
- 1Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
- 2Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- 3Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
A corrigendum on
Organoid and Enteroid Modeling of Salmonella Infection
by Yin, Y., and Zhou, D. (2018). Front. Cell. Infect. Microbiol. 8:102. doi: 10.3389/fcimb.2018.00102
In the original article several articles were cited in Tables 1 and 2, but were not included in the Reference list. The following articles appear in the reference list below:
Barrila, J., Radtke, A. L., Crabbe, A., Sarker, S. F., Herbst-Kralovetz, M. M., Ott, C. M., et al. (2010). Organotypic 3D cell culture models: using the rotating wall vessel to study host-pathogen interactions. Nat. Rev. Microbiol. 8, 791–801. doi: 10.1038/nrmicro2423
Bartfeld, S., and Clevers, H. (2015). Organoids as model for infectious diseases: culture of human and murine stomach organoids and microinjection of Helicobacter pylori. J. Vis Exp. doi: 10.3791/53359. [Epub ahead of print].
Boyle, E. C., Dombrowsky, H., Sarau, J., Braun, J., Aepfelbacher, M., Lautenschläger, I., et al. (2015). Ex vivo perfusion of the isolated rat small intestine as a novel model of Salmonella enteritis. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G55–G63. doi: 10.1152/ajpgi.00444.2014
Dostal, A., Gagnon, M., Chassard, C., Zimmermann, M. B., O'mahony, L., and Lacroix, C. (2014). Salmonella adhesion, invasion and cellular immune responses are differentially affected by iron concentrations in a combined in vitro gut fermentation-cell model. PLoS ONE 9:e93549. doi: 10.1371/journal.pone.0093549
Mathur, R., Oh, H., Zhang, D., Park, S. G., Seo, J., Koblansky, A., et al. (2012). A mouse model of salmonella typhi infection. Cell 151, 590–602. doi: 10.1016/j.cell.2012.08.042
Woo, J. L., and Berk, A. J. (2007). Adenovirus ubiquitin-protein ligase stimulates viral late mRNA nuclear export. J. Virol. 81, 575–587. doi: 10.1128/JVI.01725-06
Yin, Y., Dang, W., Zhou, X., Xu, L., Wang, W., Cao, W., et al. (2017). PI3K-Akt-mTOR axis sustains rotavirus infection via the 4E-BP1mediated autophagy pathway and represents an antiviral target. Virulence 9, 83–98. doi: 10.1080/21505594.2017.1326443
Yin, Y., Wang, Y., Dang, W., Xu, L., Su, J., Zhou, X., et al. (2016). Mycophenolic acid potently inhibits rotavirus infection with a high barrier to resistance development. Antiviral Res. 133, 41–49. doi: 10.1016/j.antiviral.2016.07.017
Zou, W. Y., Blutt, S. E., Crawford, S. E., Ettayebi, K., Zeng, X. L., Saxena, K., et al. (2017). Human intestinal enteroids: new models to study gastrointestinal virus infections. Methods Mol. Biol. doi: 10.1007/7651_2017_1. [Epub ahead of print].
The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way.
The original article has been updated.
Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Keywords: Salmonella, infection models, enteroids, intestine, organoids
Citation: Yin Y and Zhou D (2018) Corrigendum: Organoid and Enteroid Modeling of Salmonella Infection. Front. Cell. Infect. Microbiol. 8:257. doi: 10.3389/fcimb.2018.00257
Received: 08 June 2018; Accepted: 09 July 2018;
Published: 27 July 2018.
Approved by: Frontiers in Cellular and Infection Microbiology Editorial Office, Frontiers Media SA, Switzerland
Copyright © 2018 Yin and Zhou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Daoguo Zhou, emhvdWRAcHVyZHVlLmVkdQ==