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The induction of apoptosis, a programmed cell death pathway governed by activation
of caspases, can result in fundamental changes in metabolism that either facilitate or
restrict the execution of cell death. In addition,metabolic adaptations can significantly
impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will
highlight and discuss the interconnectedness of apoptotic regulation and metabolic
alterations, two biological outcomes whose regulators are intertwined.
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Introduction

Apoptosis is a programmed cellular suicide mechanism with important roles in the
maintenance of multicellular organisms. The classical intrinsic apoptotic pathway begins with
an apoptotic stimulus that alters pro-apoptotic proteins at the mitochondria. Subsequently, this
leads to outer membrane permeabilization (MOMP) as a consequence of Bax/Bak oligomerization
(Oltval et al., 1993; Shi et al., 2003; Buytaert et al., 2006; McArthur et al., 2018). MOMP allows for
the secretion of soluble cytochrome c into the cytosol where it binds to apoptotic protease activating
factor 1 (Apaf-1) and causes the formation of the apoptosome (Schafer and Kornbluth, 2006; Riedl
and Salvesen, 2007). Apoptosome formation triggers the concomitant cleavage and activation of
caspase 9, which cleaves and activates caspases 3 and 7 ultimately culminating in the death of the cell
(Xue and Robert Horvitz, 1995; Elmore, 2007; McIlwain et al., 2013). Each of the proteins listed are
critically important for proper execution of the intrinsic apoptosis pathway.However, these proteins
(and others known to regulate apoptosis) do not solely function as determinants of whether a cell
lives or dies. Rather, many of the main players in apoptotic pathways have other, oftentimes vital,
roles in cellular processes such as metabolism. Perhaps the best example of the dual role of certain
apoptotic proteinswithinmetabolic pathways is the aforementioned cytochrome c,whose apoptotic
role was discovered in the laboratory of XiaodongWang (Liu et al., 1996; Li et al., 1997). While the
discovery of a pro-apoptotic role for a protein best understood to function in the mitochondrial
respiratory chain was (at the time) surprising, the capacity of cytosolic cytochrome c to activate
caspases is now central to our understanding of programmed cell death. In this article, it is our
objective to highlight the sometimes-underappreciated metabolic functions of apoptotic regulators
and to discuss the circumstances in which metabolism directly impinges upon the execution of
apoptosis.

Glucose flux and the capacity of p53 to induce apoptosis

As mentioned above, turnover of aged or defective cells in the human body can often
occur through the induction of apoptosis (Kerr et al., 1972; Fawthrop et al., 1991). The
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execution of apoptosis is tightly regulated by a number highly
conserved and distinct signal transduction networks. In addition,
proteins which regulate apoptotic death can be broadly separated
into two main categories: pro-apoptotic and anti-apoptotic. Anti-
apoptotic proteins function to provide defenses against the
activation of proteases that execute the apoptotic program.
Meanwhile, pro-apoptotic effectors can sense deleterious events
in the cell and sound the alarm to initiate the induction of
apoptosis. Alternatively, pro-apoptotic effectors can function
directly in the cleavage of target proteins that ultimately
contribute to the orderly dismantling of the cell. Dysregulation of
these coordinated pathways is linked to pathological conditions like
fibrosis, autoimmune disease, neurodegeneration, and cancer
(Elmore, 2007).

One of the most well-studied pro-apoptotic regulators is p53, a
known tumor suppressor that integrates extracellular and
intracellular signals to promote cell death (Surget et al., 2013;
Aubrey et al., 2018). The best characterized activator of p53 is
DNA damage, which ultimately causes phosphorylation and
stabilization of the p53 protein and thus allows is to
transcriptionally activate downstream targets. However, nutrient
availability and energy demands can also impact p53 activity (Horn
and Vousden, 2007). Previous work has demonstrated that high
levels of ADP promote the binding of p53 to DNA whereas elevated
ATP levels block this interaction (Okorokov and Milner, 1999).
There are also significant links between the withdrawal of growth
factors, changes in nutrient uptake and p53. For example, serum
starvation can often promote p53-mediated increased apoptosis due
to elevated expression of p53 upregulated modulator of apoptosis
(PUMA) (Ekoff et al., 2007). In contrast, if glucose uptake is
maintained (e.g., through localization of Glut1 to the plasma
membrane) after growth factor withdrawal, apoptosis is
attenuated as a consequence of glycolytic flux-mediated
inhibition of p53 and PUMA (Zhao et al., 2008).

In addition to the links between glucose metabolism and PUMA,
the withdrawal of extracellular glucose from cells acts as a trigger for
the nucleocytoplasmic isoform of the metabolic enzyme malate
dehydrogenase (Lee et al., 2009). This enzyme is normally
involved in the malate-aspartate shuttle, and can function to
stabilize and transactivate p53 to promote p53-dependent cell-
cycle arrest. Similarly, withdrawal of glucose often leads to the
activation of the AMP-activating protein kinase (AMPK), a cell
cycle arrest at the G (1)/S stage, and the induction of p53 (Jones et al.,
2005; Okoshi et al., 2008).

Oftentimes, the regulation of apoptosis by p53 is largely a
consequence of post-translational modifications to key residues
that affect protein stability and ultimately the genes targeted by
this transcription factor. Indeed, the AMPK-mediated
p53 activation during glucose deprivation is dependent upon the
phosphorylation of serine 15 (Jones et al., 2005). Similarly, the
capacity of glucose to prevent p53 induction of PUMA depends on a
decrease in the phosphorylation of serine 46 (Garufi and D’Orazi,
2014). In addition to these roles, the decrease of glucose utilization
can lower the apoptotic threshold of cells due to alterations in the
cytoplasmic function of p53. A good example of this p53-mediated
effect can be found in patient-derived models of glioblastoma which
have been pharmacologically restricted in their glucose uptake.
These tumors are primed for apoptosis in vivo but are kept alive

owing to the sequestration of cytoplasmic p53 by Bcl-xL and the
prevention of p53 mediated transcription of pro-apoptotic factors
keeping the tumors just below the threshold of cell death (Mai et al.,
2017). Lastly, p53 can function to ensure that elevated glucose flux
cannot prevent the initiation of the apoptotic cascade by inhibiting
the expression of the glucose transporters Glut1 and Glut4
(Schwartzenberg-Bar-Yoseph et al., 2004).

TIGAR: a protein that functions downstream
of p53 to impact metabolism

The understanding of how metabolic flux impacts
p53 regulation of apoptosis also inspired efforts to study
downstream effectors of p53 that impact metabolism. One
particular example of p53-mediated metabolic regulators is TP53-
inducible glycolysis and apoptosis regulator (TIGAR). TIGAR was
discovered through microarray analysis of genes following
p53 induction and functions to attenuate glycolytic flux through
regulation of fructose-2,6-bisphosphatase (Bensaad et al., 2006). The
capacity to regulate fructose-2,6-bisphosphatase is dependent on
TIGAR’s phosphatase activity, which inhibits the flow of carbon
units through glycolysis and prevents glycolysis from counteracting
the action of p53. In addition, the activity of TIGAR not only blocks
glycolysis, but also can promote cell survival by diverting glycolytic
flux into biosynthetic or of antioxidant-generating pathways. One
key determinant of TIGAR function is subcellular localization,
which is highly dependent on various stress stimuli encountered
by the cell. While in the cytoplasm, TIGAR antagonizes glycolysis
and shifts carbon flux into the pentose phosphate pathway (PPP),
which promotes production of NADPH for redox homeostasis or
nucleotide synthesis. However, exposure to DNA damaging
chemotherapeutic agents causes TIGAR to translocate to the
nucleus where it halts the cell cycle and promotes DNA damage
repair in a p53-dependent manner (Yu et al., 2015). Hypoxia can
also impact the subcellular localization of TIGAR. Under hypoxic
conditions, TIGAR can localize to the outer mitochondrial
membrane where it binds to hexokinase 2 (HK2) and increases
HK2 activity. The binding of TIGAR toHK2 increases glycolytic flux
and helps to lower mitochondrial reactive oxygen species (ROS)
with TIGAR functioning as a scaffold for HK2 activation (Cheung
et al., 2012). Studies have also examined the loss of TIGAR, which
can promote glucose oxidation and glycolysis in myocardial tissue
demonstrating the importance this enzyme plays in throttling
glycolytic flux following p53 activation (Okawa et al., 2019).
Taking all of this together, it is clear that TIGAR is an important
link between p53 and glycolytic metabolism. However, p53 induced
genes can reciprocally counteract this effect to facilitate p53-
mediated apoptosis. Thus, p53 exemplifies a “push-pull” dynamic
between one of the best studied tumor suppressors (p53) and a
common metabolic alteration observed in cancer cells (increased
glycolysis) with important ramifications for disease progression.

MOMP and metabolism

Following the initiation of apoptotic signaling, pores are formed
in the outer mitochondrial membrane during MOMP to allow

Frontiers in Cell Death frontiersin.org02

Schofield and Schafer 10.3389/fceld.2023.1223926

https://www.frontiersin.org/journals/cell-death
https://www.frontiersin.org
https://doi.org/10.3389/fceld.2023.1223926


proteins from the mitochondrial intermembrane space, including
cytochrome c, to reach the cytosol and propagate the apoptotic
cascade (Westphal et al., 2011). Although cytochrome c release was
once considered the point of no return for cell death, research over
the past decade indicates that sub-lethal amounts of MOMP may
occur in response to certain apoptotic stimuli. This phenomenon is
known as incomplete or “minority”MOMP (Tait et al., 2010; Ichim
et al., 2015). For a cell to survive MOMP it must either limit the
formation of the pore, neutralize the cytochrome c that is released, or
functionally adapt to improve its fitness in this environment.

Blocking formation of the pore in the mitochondrial membrane
is a logical place for the beginning of our discussion on links between
metabolism and MOMP. Indeed, bioactive lipids, such as
sphingolipids, have been implicated as a significant player in the
regulation of MOMP in a variety of cell types. More specifically,
ceramide, a class of sphingolipid, can induce apoptosis through a
mechanism that is dependent on the molecular machinery required
to promote MOMP (Taha et al., 2006; von Haefen et al., 2002).
Furthermore, inhibition of sphingolipid metabolism through the use
of pharmacological inhibitors is capable of preventing MOMP as it
blocks the interaction between ceramide metabolites and inducers of
MOMP (Chipuk et al., 2012). Relatedly, cancer cells can manipulate
sphingolipid metabolism to decrease the intracellular levels of
ceramide to maintain mitochondrial membrane integrity. As an
example, sphingomyelin synthases are activated in leukemic cells to
decrease the levels of ceramide and prevent stress-induced apoptosis
(Dolgachev et al., 2004; Separovic et al., 2007; Lafont et al., 2010).

However, if a cell cannot alter metabolism to prevent MOMP,
another strategy to survive involves the neutralization of the
cytochrome c that is released from the inner membrane space.
One such strategy to neutralize the execution of apoptosis
employed by these cells is the rewiring of metabolism to defang
cytosolic cytochrome c and conserve viability. Retroviral cDNA
screens following MOMP have shown a role for glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) in promoting survival
through increased glycolytic flux in the cell when caspase
activation was inhibited (Colell et al., 2007). Interestingly,
cytochrome c released from these cells following MOMP was re-
localized back to the mitochondria only in cells with increased
GAPDH expression. These interesting results indicate that GAPDH
can promote recovery and function of those mitochondria post-
MOMP. In addition, the pro-apoptotic activity of cytochrome c
relies on its redox state and is known to be controlled by ROS
signaling. Increased glucose flux into the PPP of cancer cells
generates elevated levels of the antioxidant glutathione, which
can also function to antagonize cell death by numerous
mechanisms [e.g., ferroptosis (Dixon et al., 2012)]. However, with
regards to apoptotic regulation, glutathione can inactivate
cytochrome c following MOMP to prevents apoptosis (Vaughn
and Deshmukh, 2008). Instead of attempting to inactivate
cytochrome c, a cell can also survive during MOMP by simply
eliminating the cytochrome c that is released. RNAi screens in both
neurons and cancer cells uncovered a conserved strategy for dealing
with cytoplasmic cytochrome c. p53-associated Parkin-like
cytoplasmic protein (PARC) functions as an E3 ligase that targets
cytochrome c for destruction following mitochondrial stress and
minority MOMP to promote viability (Gama et al., 2014). In some
cases, adaptation to a sub-lethal MOMP benefits a cell and may

eventually promote tumorigenesis. Due to the fact that minority
MOMP induces only limited caspase activation to cause DNA
damage, this can contribute to genomic instability and result in
oncogenic transformation (Ichim et al., 2015). Malignant cells that
have been treated with agents to induce MOMP allows for cytosolic
cytochrome c to active the heme-regulated inhibitor kinase (HRI)
engaging the integrated stress response (ISR) (Kalkavan et al., 2022).
The engagement of the ISR by cancerous cells generates a drug-
resistant cell population that is not only protected against apoptosis
but also abrogates the efficacy of the therapy. Therefore, minority
MOMP can not only promote tumorigenesis but also contribute to
therapeutic resistance in malignant cells.

Metabolic functions of Bcl-2 family
members

The formation of pores in the outer mitochondrial membrane as
a consequence of the regulation of Bcl-2 family members is often
critical to the induction of apoptosis. As discussed above, the Bcl-2
proteins have multiple structural and functional similarities with the
ability to be either pro- or anti-apoptotic. For example, Bcl-2 family
members are well known to contain BH3 motifs (Bcl-2 homology 3)
(Blaineau and Aouacheria, 2009), which have diverse biological
functions in the regulation of apoptosis. However, many of the
Bcl-2 family members also have a significant role in the regulation of
metabolism. Notably, while Bcl-2 family members have been shown
to regulate mitochondrial dynamics and thereby indirectly alter
metabolic pathway utilization (Autret and Martin, 2010)), we have
chosen to focus the section below on the involvement of Bcl-2 family
members on metabolic flux directly.

One such Bcl-2 family member with a significant metabolic
function is Myeloid cell leukemia-1 (MCL1 or Mcl-1) which
localizes to the mitochondria to prevent MOMP and blocks
apoptosis (Kozopas et al., 1993; Reynolds et al., 1994; Zhou et al.,
1997; Opferman et al., 2003; Opferman et al., 2005). Mcl-1 is among
the most overexpressed survival proteins across all human cancers
and is linked to poor survival and therapeutic resistance (Wuillème-
Toumi et al., 2005; Wei et al., 2006; Beroukhim et al., 2010). In
addition to its anti-apoptotic function, Mcl-1 has been shown to
facilitate nutrient recycling through the induction of mitophagy.
Although Mcl-1 inhibits nonselective autophagy caused by nutrient
starvation, Mcl-1 promotes the targeted destruction of depolarized
mitochondria ensuring a functional mitochondrial pool to meet
energetic needs (Moyzis et al., 2022). However, increased mitophagy
is not always beneficial to the cell. Recent investigations have
suggested that overactive mitophagy may prove detrimental to
the cell and compromise viability depending on the context of
the cellular stressor (Hawk et al., 2018). One can therefore
postulate that perhaps a sustained increase in Mcl-1 activity
would deplete the mitochondrial pool below required levels.

Mcl-1 also helps cancerous cells meet energetic needs through
direct regulation of metabolic pathways (see Box 2 in Figure 1).
These functions can be tied to alternative splicing as distinct Mcl-1
spliceoforms can impact metabolism in unique manners. The full-
length isoform associates with the outer mitochondrial membrane
where it regulates cell death. However, the short isoform of Mcl-1 is
imported into the inner mitochondrial matrix where it regulates
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fusion, ATP production, membrane potential, and maintenance of
ATP synthase to support the adenylate energy charge of the cell
(Perciavalle et al., 2012). The short isoform of Mcl-1 also has a direct
impact on fatty acid oxidation (FAO). The α helix of Mcl-1 directly
interacts with very long-chain acyl-CoA dehydrogenase (VLCAD)
in nutrient deprived conditions to dynamically tune FAO (Escudero
et al., 2018). This metabolic action of Mcl-1 during periods of stress
may provide additional support to cancer cells that extend beyond
survival. In fact, in B Cell acute lymphoblastic leukemias (B-ALL),

where Mcl-1 overexpression is a defining characteristic, FAO is a
critical fuel source. Expression of Mcl-1 correlates with elevated
FAO gene signatures in these malignancies and loss of Mcl-1 rewires
fuel utilization from catabolism of fatty acids to a reliance upon
glycolysis (Prew et al., 2022). As such, in the absence of apoptotic
stimuli, Mcl-1 can functions as a significant regulator of the FAO
program.

Pro-apoptotic Bcl-2 family members also have well-defined
functions in metabolic pathways. For example, Bcl-2 associated

FIGURE 1
Metabolic function of apoptotic regulators.
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agonist of cell death (BAD) promotes programmed cell death by
binding to Bcl-2 and preventing its ability to block MOMP and
cytochrome c release (Yang et al., 1995). BAD is often regulated by
phosphorylation which determines not only its role in apoptosis, but
also the specific function it plays in metabolism (See Box 1 in
Figure 1). For example, BAD affects glucose utilization by forming a
complex containing glucokinase at the mitochondria due to its
phosphorylation at S112. As a consequence, the activity of
glucokinase is increased in a fashion that drives mitochondrial
oxidative phosphorylation (Danial et al., 2003). Meanwhile,
phosphorylation of BAD at S118 and S99 has been shown to
affect metabolism due to altered Akt signaling, stimulation of
complex I and elevated mitochondrial oxygen consumption
(Mann et al., 2019). BAD can also bind to other metabolic
enzymes as immunoprecipitation experiments have demonstrated
that it can associate with phosphofructokinase 1 (PFK1). Functional
assays demonstrate that JNK1-mediated phosphorylation of BAD at
T201 increases PFK1 function to raise fructose-1,6-bisphosphate
generation, a key rate-limiting step of glycolysis (Deng et al., 2008).
Some of the post-translational modifications to BAD are cell type-
specific for distinct tissue metabolic functions. For example,
modification to the S155 site in the BH3 domain of BAD allows
the protein to control glucose stimulated insulin secretion in the beta
cells of the pancreas (Danial et al., 2008). Like the pancreas, liver-
specific activity of BAD modulates the metabolism of hepatic cells.
The liver must precisely balance gluconeogenesis, the generation of
glucose from other metabolic substrates, and glycolysis to maintain
homeostasis. BAD maintains this physiological balance by
employing phosphorylation of its BH3 domain as a sensor to
activate glucokinase and suppress gluconeogenesis to properly
coordinate hepatic glucose output (Giménez-Cassina et al., 2014).

Links between dietary metabolism,
apoptosis, and disease

The interplay between metabolism and apoptosis extends
beyond the individual cell as whole-organism metabolism
impacts death across tissue systems. For example, it has long
been known that heightened availability of the sugar glucose is
beneficial to tumorigenesis and cancer cell survival (Warburg, 1956;
Liberti and Locasale, 2016). In fact, the metabolic rewiring of cells to
promote increased glucose uptake and glycolytic flux is a hallmark of
cancer (Hanahan andWeinberg, 2011). Monosaccharides in general
are not universal in their impact on cell survival versus death, and
thus, the specific form of sugar taken up by cellscould alter the
balance between tumor promotion and tumor suppression.

In addition to glucose, fructose has also been shown to promote
cancer through inhibition of apoptotic pathways. Nutrients taken in
through diet enter the tissue of mammals at the epithelium of the
small intestine and colon. In the small intestine, sugars from the diet
(e.g., glucose and fructose) enter the cell through the Glut family of
transporters where they are phosphorylated by hexokinase (HK) and
ketohexokinase (KHK) respectively (Miller et al., 1956; Roberts and
Miyamoto, 2015; Jang et al., 2018). The uptake of these metabolites is
governed by the villus structure within the small intestine. Intestinal
villus length is balanced by proliferation and death of intestinal
epithelial cells (IECs) (Hall et al., 1994). The migration of IECs up

the villus separates them from their blood supply leading to hypoxia
which ultimately can cause their apoptotic death. However, fructose
increases the survival of hypoxic cells as well as IECs of the small
intestine in mice (Taylor et al., 2021). Fructose in the IECs results in
the accumulation of fructose-1-phosphate which competes with
fructose-1,6-bisphosphate for the binding pocket of the glycolytic
enzyme pyruvate kinase (PKM2). In this setting, inhibition of
glycolytic flux, through decreased PKM2 activity, allows for
increased upstream glycolytic metabolites to counteract the
hypoxic insult and thereby dampen the apoptotic stimulus (Luo
et al., 2011; Taylor et al., 2021). The cancer-causing potential of
fructose is solidified by the finding that excessive levels of fructose in
the colon, owing to the consumption of high fructose corn syrup,
increases tumorigenesis in murine models (Goncalves et al., 2019).
Importantly in this study, fructose was found to saturate the Glut
receptors on the IECs causing fructose levels to still be high even into
the colon where it could exert its neoplastic potential. Both glucose
and fructose benefit malignant cells by promoting growth while
simultaneously blunting apoptotic signaling.

Alternatively, other sugar molecules—including those deemed
“rare” sugars—are deleterious to cancer cells. Rare monosaccharides
with structural similarity to glucose or fructose induce apoptosis of
cancer cells and may function as tumor suppressors. One such rare
sugar, D-allose, has been shown in human head and neck cancers to
induce apoptosis due to competitive inhibition of glucose uptake
and lowering of the apoptotic threshold to improve efficacy of the
taxane docetaxel (Mitani et al., 2009; Indo et al., 2014). Another rare
sugar, L-sorbose, the C-3 epimer of fructose, is taken up and initially
phosphorylated similarly to fructose by KHK to produce L-sorbose-
1-phosphate (S-1-P). However, unlike fructose, S-1-P inhibits the
action of HK at the top of glycolytic flux thereby preventing the
synthesis of essential glycolytic metabolites and promoting
apoptosis (Xu et al., 2023). In this same vein, mannose, the C-2
epimer of glucose, is also tumor suppressive. Mannose enters the cell
through Glut transporters and is phosphorylated by HK to
mannose-6-phosphate (M6P). M6P decreases the levels of the
anti-apoptotic proteins Mcl-1 and Bcl-XL by inhibiting key
glycolytic enzymes including HK and sensitizing cells to the
chemotherapeutic cisplatin (Gonzalez et al., 2018). These findings
importantly show that it is not necessarily the abundance of sugar
but rather the specific sugar source which tips the balance between
tumorigenesis and cell death.

Conclusion and perspectives

As discussed here, apoptosis andmetabolism are tightly interwoven
cellular processes. The choice of whether or not to activate the cellular
suicide program can be dictated by nutrient availability and metabolic
pathway engagement. Apoptosis is kept in check through the
sequestration of important apoptotic players (e.g., cytochrome c in
the mitochondria) during normal metabolic flux with robust nutrient
sources. Members of the Bcl-2 family of proteins play integral roles in
properly trafficking nutrients through their requisite pathways to ensure
proper growth and division of the cell. Apoptosis-inducing stimuli alter
metabolic fluxmodifying the function, localization, or both of apoptotic
proteins which then either must be blocked or the cell will succumb to
this insult. There is inherent difficulty in decoupling the metabolic and
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death role of apoptotic proteins. The examination of the metabolic role
of these proteins through loss of function studies can prove lethal to the
cell. Therefore, thorough consideration must be taken to safeguard cell
viability when attempting to disentangle themetabolic role from the cell
death aspect. Mutations in these proteins which specifically inactivate
the apoptotic domain (e.g., altering the BH3 domain of Bcl-2 family
proteins) are a useful tool for elucidating the metabolic pathways
regulated by the protein of interest. Likewise, in basal conditions or
those that do not meet the apoptotic threshold, such as minority
MOMP, the metabolic impact of apoptotic regulators could better
be considered. This is particularly important given the prevalence of
chemotherapeutics which specifically target Bcl-2 family members to
kill cancer cells while simultaneously having a metabolic impact on
non-malignant tissues (such as immune cells, cancer-associated
fibroblasts, etc.). On the other hand, the advent of recently approved
cancer therapeutics targeting metabolism may inadvertently trigger
pathways that regulate apoptosis (Stine et al., 2022). These
alterations to apoptotic signaling may be synergistic or may function
to counteract the efficacy of these drugs, but possible knock-on impacts
to apoptosis must be considered. Ideally, future ventures to treat cancer
will exploit the relationship between apoptosis and metabolism to
simultaneously activate the cellular death programs while starving
transformed cells of nutrients required for survival.
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