Skip to main content

MINI REVIEW article

Front. Cell Dev. Biol.

Sec. Membrane Traffic and Organelle Dynamics

Volume 13 - 2025 | doi: 10.3389/fcell.2025.1584059

This article is part of the Research Topic Biology of Lysosome-Related Organelles View all articles

The winding road to platelet α-granules

Provisionally accepted
  • Colorado State University, Fort Collins, United States

The final, formatted version of the article will be published soon.

    Platelets are anucleate cellular fragments derived from megakaryocytes (MKs) and α-granules constitute their most numerous membrane-bound compartments. These granules play a role in platelet aggregation to form a hemostatic plug but also contain numerous cargo proteins with key functions in angiogenesis, inflammation, wound healing and cancer. Human genetic disorders that cause deficiencies in the biogenesis of platelet α-granules manifest with prolonged bleeding. The initial studies on platelets and MKs from these patients provided a first glimpse into the biosynthesis of α-granules as a membrane trafficking problem. Significant progress in the field has been made in recent years in part due to the creation of iPSC-derived megakaryocytic cells capable of releasing functional platelets, thus overcoming the limitations of working with primary MKs. The emerging model indicates that sorting and recycling endosomes are key intermediate stations traversed by α-granule cargo on their way to the α-granule. Here we describe the different trafficking pathways used by α-granule proteins and elaborate on their commonalities. Similar to other lysosome-related organelles, most of the proteins involved in the biogenesis of α-granules are ubiquitously expressed and we discuss NBEAL2 as a factor highly expressed in MKs that likely diverts this machinery to make α-granules. Importantly, understanding the trafficking pathways involved in the making of the α-granule has an impact not only on platelet biology but may also illuminate the broader lysosome-related organelle field.

    Keywords: platelet α-granule, Megakaryocytes, organelle biogenesis, Bleeding disorders, NBEAL2, VPS33B/VPS16B, intracellular protein transport

    Received: 26 Feb 2025; Accepted: 04 Apr 2025.

    Copyright: © 2025 Ambrosio and Di Pietro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Santiago M Di Pietro, Colorado State University, Fort Collins, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    95% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more