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Spatial multi-omics analysis of
tumor-stroma boundary cell
features for predicting breast
cancer progression and therapy
response
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Yonghao Chen3*, Xiaoyun Song1* and Sheng Liu1*
1Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese
Medicine, Shanghai, China, 2Shanghai Pudong Hospital, Fudan University Pudong Medical Center,
Shanghai, China, 3West China Hospital of Sichuan University, Chengdu, China

Background: The tumor boundary of breast cancer represents a highly
heterogeneous region. In this area, the interactions between malignant and
non-malignant cells influence tumor progression, immune evasion, and drug
resistance. However, the spatial transcriptional profile of the tumor boundary
and its role in the prognosis and treatment response of breast cancer
remain unclear.

Method: Utilizing the Cottrazm algorithm, we reconstructed the intricate
boundaries and identified differentially expressed genes (DEGs) associated with
these regions. Cell-cell co-positioning analysis was conducted using SpaCET,
which revealed key interactions between tumor-associated macrophage (TAMs)
and cancer-associated fibroblasts (CAFs). Additionally, Lasso regression analysis
was employed to develop a malignant body signature (MBS), which was
subsequently validated using the TCGA dataset for prognosis prediction and
treatment response assessment.

Results: Our research indicates that the tumor boundary is characterized by
a rich reconstruction of the extracellular matrix (ECM), immunomodulatory
regulation, and the epithelial-to-mesenchymal transition (EMT), underscoring
its significance in tumor progression. Spatial colocalization analysis reveals
a significant interaction between CAFs and M2-like tumor-associated
macrophage (TAM), which contributes to immune exclusion and drug resistance.
The MBS score effectively stratifies patients into high-risk groups, with survival
outcomes for patients exhibiting high MBS scores being significantly poorer.
Furthermore, drug sensitivity analysis demonstrates that high-MB tumors had
poor response to chemotherapy strategies, highlighting the role of the tumor
boundary in modulating therapeutic efficacy.

Conclusion: Collectively, we investigate the spatial transcription group
and bulk data to elucidate the characteristics of tumor boundary
molecules in breast cancer. The CAF-M2 phenotype emerges as a critical
determinant of immunosuppression and drug resistance, suggesting
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that targeting this interaction may improve treatment responses. Furthermore,
the MBS serves as a novel prognostic tool and offers potential strategies for
guiding personalized treatment approaches in breast cancer.

KEYWORDS

breast cancer, spatial transcriptomics, tumor boundary, CAF-M2 interaction, therapy
resistance, prognostic model

Introduction

Breast cancer (BRCA) is the most prevalent malignancy among
women and the second leading cause of cancer-related mortality
in this population. In 2023, it was estimated that 43,170 women in
the United States died from breast cancer (Nicholson et al., 2024;
Liang et al., 2020). The annual incidence rate of newly diagnosed
breast cancer cases in women was 129.4 per 100,000 individuals.
Between 2017 and 2021, the mortality rate for breast cancer was
19.3 per 100,000 women annually (National Cancer Institute, 2025).
Over the past few decades, clinical outcomes for breast cancer
patients have progressively improved, owing to the widespread
implementation of screening programs and advances in therapeutic
strategies (Qi et al., 2024). Both public and private investments
in research, as well as the translation of research findings into
clinical practice, have contributed to a substantial decline in
breast cancer mortality over the past five decades (Wheeler et al.,
2024). However, despite significant progress in early detection
and treatment, many patients still experience disease progression
and suboptimal therapeutic outcomes. A deeper understanding
of the molecular and cellular mechanisms underlying breast
cancer progression, as well as factors influencing therapeutic
response, is critical for further improving patient outcomes
(Khan et al., 2024; Ye et al., 2023).

Recent studies have highlighted the crucial role of the tumor
microenvironment (TME) in both breast cancer progression
and therapeutic responses. The TME is a complex and dynamic
ecosystem composed of various cell types, including cancer
cells, stromal cells, immune cells, and vascular cells (Xiao
and Yu, 2021; Elhanani et al., 2023). The interactions among
these cellular components are essential for tumor growth,
invasion, and response to treatment. Notably, the tumor-stroma
interface serves as a dynamic boundary where cancer cells
and stromal cells engage in intricate interactions. The cellular
characteristics at this interface provide valuable insights into
the mechanisms driving disease progression and may serve as
predictive markers for therapeutic responses (Bader et al., 2020;
Tang et al., 2021; Toninelli et al., 2023).

As our understanding of tumor biology advances, the
importance of spatial context—encompassing both cell localization
and the interactions among various components of the tumor
microenvironment—has become increasingly apparent. This
growing recognition has led to the development of spatial multi-
omics, a comprehensive approach for examining the intricate
architecture of the tumor microenvironment. By focusing on
the spatial organization of cellular and molecular profiles both
within and between different tumor compartments, spatial multi-
omics provides unprecedented insights into tumor biology. In this
review, we will explore the applications of spatial multi-omics in

identifying therapeutic targets, predicting treatment responses, and
advancing precision medicine, while also addressing the challenges
and future directions of this emerging field (Du et al., 2024;
Hsieh et al., 2022; Wu et al., 2022).

Spatial multi-omics analysis is an emerging technique that
integrates multiple layers of molecular and cellular data to provide
a comprehensive characterization of the tumor ecosystem, enabling
the concurrent examination of DNA, RNA, protein, and metabolite
profiles in a spatially resolved context, which facilitates the
identification of distinct cellular phenotypes and their interactions
within the tumor microenvironment. By focusing on the tumor-
stroma interface, spatial multi-omics analysis offers the potential to
reveal unique cellular features that are associated with breast cancer
progression and therapeutic responses.

Previous studies have identified various clinical, molecular, and
digital pathology features associated with responses to neoadjuvant
therapy in breast cancer (Jin et al., 2023). However, these studies
often relied on single-platform profiling, which failed to capture
the full complexity of the tumor ecosystem (Liang et al., 2020).
More recent research has demonstrated that integrating multi-
omic data—encompassing clinicopathological variables, digital
pathology, and both DNA and RNA sequencing—can significantly
improve the accuracy of predictivemodels for therapeutic responses.
For example, one study showed that combining clinical, genomic,
and transcriptomic features with digital pathology data resulted
in robust predictive models for pathologic complete response
(pCR) in breast cancer patients undergoing neoadjuvant therapy
(Nolan et al., 2023; Sammut et al., 2022).

In this study, we aim to perform a spatial multi-omics analysis
of the cellular features at the tumor-stroma boundary to predict
breast cancer progression and therapeutic responses. By integrating
multi-omic data from this critical interface, we seek to identify novel
cellular and molecular markers that could improve the accuracy
of predictive models, while providing deeper insights into the
underlying mechanisms of breast cancer progression and therapy
resistance. This approach holds significant potential for enhancing
clinical decision-making and advancing personalized treatment
strategies for breast cancer patients.

Materials and methods

Spatial transcriptome data collection and
preprocessing

Spatial transcriptome (ST) data of breast cancer was retrieved
from GEO database (https://www.ncbi.nlm.nih.gov/geo/) and
10x Genomics official website (https://www.10xgenomics.com/).
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Firstly, we screened the 59-breast cancer spatial transcriptomics
samples provided by the SpatialTME database (accessible at https://
www.spatialtme.yelab.site/) and identified eight samples with
typical tumor boundary structures. Subsequently, we selected four
representative samples from these for further analysis. Among the
four samples, two are from the 10x platform: 10x BRCA (ductal
carcinoma in situ and invasive carcinoma) and 10x BRCA2 (Group
IIA, ER+, PR-, Her2+, diagnosed with ductal carcinoma in situ,
invasive carcinoma, and lobular carcinoma in situ). Additionally,
we included GSM6433610 from the GSE210616 dataset (derived
from triple-negative breast cancer) (Bassiouni et al., 2023), and
GSM6177603 from the GSE203612 dataset (derived from invasive
lobular carcinoma) (Barkley et al., 2022). All four samples are
10x Genomics data. The ST data was processed and analyzed
using the Seurat R software package. To achieve standardization
of the ST data, the SCTransform (SCT) method was employed,
which involved functions such as SelectIntegrationFeatures,
PrepSCTIntegration, FindIntegrationAnchors, and IntegrateData
to consolidate the ST datasets. To standardize sparse, count-
based data, utilize “Spatial” analysis alongside the “poisson”
method. Following standardization, merge the data and designate
the DefaultAssay as “SCT”. Perform principal component
analysis (PCA) on “SCT” for dimensionality reduction, and
apply the Louvain algorithm for clustering with a resolution
set to 0.6. The identification of cell populations was informed
by hematoxylin and eosin-stained (HE) sections, along with
the detection of significantly variable genes in each cluster. To
visualize the expression levels of cells within the ST data, the
functions SpatialDimPlot and SpatialFeaturePlot were effectively
used together.

Reconstruction of malignant-boundary
axis

The tumor border, which encompasses both malignant and
non-malignant cells, represents a highly heterogeneous region
characterized by interactions between cancer cells and various
cell types, including immune and stromal cells. We defined
the tumor boundary using the Cottrazm package (Xun et al.,
2023), categorizing it into three areas: the malignant (Mal)
area, the tumor boundary (Bdy), and the non-malignant
(nMal) area. Additionally, we calculated the differential genes
associated with Bdy to further characterize the properties of the
tumor boundary.

Identification of upregulated genes of Bdy
region

By applying a predetermined threshold of p < 0.05 and log2fc
> 0.25, we identified differentially expressed genes (DEGs) between
the Bdy and other regions. Additionally, the “clusterProfiler 4.0”
R package was employed to explore signaling pathways linked
with the DEGs, annotated according to Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) and
HALLMARKE (Wu et al., 2021).

Cell to cell colocalization and correlation
analysis

Due to the unique nature of the Space Transcription Group
(ST), each spatial point (SPOT) encompasses multiple cell signals.
We utilize SpaCET (V1.0.0) software to identify the cell types
present within the cells included in the ST data set (Ru et al.,
2023). After analyzing cellular components, SpaCET can infer
cell-cell interactions based on cellular co-localization and ligand-
receptor co-expression. Linear correlations of cell fractions were
calculated across all ST points to assess the co-localization
of cell types. The functions SpaCET.CCI.colocalization and
SpaCET.visualize.colocalization were utilized to calculate and
visualize the pairs of colocalized cell types.

Bulk data collection and processing

Data regarding gene expression and comprehensive clinical
information for BRCA patients were sourced from The Cancer
Genome Atlas (TCGA, https://portal.gdc.cancer.gov/). In total,
1,055 samples were ultimately included in the analysis. The gene
sequencing results across the three cohorts were represented in
transcripts per million (TPM) formats, and the expression data
underwent a pre-transformation to log2 (TPM +1) to ensure
comparability. Noise was characterized asmRNAswith a TPM value
of less than 1 present in over 90% of the samples, which were then
excluded. Patients lacking paired mRNA profiles or clinical data,
as well as those without follow-up information, were removed to
reduce potential biases. The outcome variable was defined as overall
survival (OS).

Construction of Malignant-boundary
prognostic model

Using the “GLMNET” package, we performed a regression
analysis that utilized the Least Absolute Shrinkage and Selection
Operator (LASSO) to identify the ultimate variables and compute
the necessary coefficients for creating the Malignant-boundary
Signature (MBS). Typically, the optimal value of lambda is
established through cross-validationmethods, including techniques
like 10-fold cross-validation, to find an ideal equilibrium between
bias and variance, which in turn improves the predictive accuracy of
the model. In our research, a lambda value of 0.008 was obtained
through cross-validation, offering the best compromise between
reducing model complexity and ensuring high predictive precision.
The risk score was then calculated using the following formula:

MBSscore =
n

∑
k=1
(coe f.i∗ expression.i)

Chemotherapeutic response evaluation

Concerning the initial chemotherapy protocol for BRCA and
the acknowledged activation of signaling pathways, we selected
specific drugs to evaluate the predictive therapeutic potential of our
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model. Relevant data were gathered fromGDSC 2016 (https://www.
cancerrxgene.org/) and subsequently integrated into the ComDrug
program within the “MOVICS” package (Lu et al., 2020). For
each patient, we applied ridge regression analysis to determine the
estimated inhibitory concentration (IC50), which indicates their
responses to various medications.

TIDE (tumor immune dysfunction and
exclusion) analysis

To evaluate immune dysfunction and immune exclusion within
the tumor microenvironment, we employed the TIDE model.
The TIDE score predicts tumor response to immunotherapy by
analyzing mechanisms of immune evasion in tumors, including
immune checkpoint inhibition. This model assesses two critical
factors: tumor immune dysfunction and immune exclusion. Based
on these two factors, the TIDE score is calculated, with higher
scores indicatingmore severe immune dysfunction or exclusion and
a poorer response to immune checkpoint inhibitors. Patients were
stratified into responder and non-responder groups according to
their TIDE scores, and a chi-square test was used.

Multiplex immunofluorescence (mIF)
analysis

A multiplex immunofluorescence (mIF) technique was utilized
to assess the spatial arrangement and co-expression of targeted
markers within the tumor microenvironment. Tissue sections
that were fixed in formalin and embedded in paraffin (FFPE)
underwent a series of staining procedures using the Opal™ multiplex
immunofluorescence system (Akoya Biosciences). The primary
antibodies deployed included CD68, CD163, FAP, CD8, and
ACTA2. For nuclear counterstaining, DAPI (4′, 6-diamidino-
2-phenylindole) was utilized. Following deparaffinization and
rehydration, an antigen retrieval process was conducted using a
Tris-EDTA buffer at a pH of 9.0, employing a pressure cooker. To
minimize non-specific binding, the tissue sections were treated
with a protein blocking buffer. Each primary antibody was
added in succession, followed by the relevant Opal fluorophore-
conjugated secondary antibody. After each round of staining, the
antigen retrieval was repeated to remove the preceding antibody
complex without compromising the fluorophore conjugates
(Xu et al., 2023; Xu et al., 2020). The fluorophores employed in
the study included Opal 620 designated for CD68, Opal 570 for
CD163, Opal 620 for CD8, Opal 690 for ACTA2, and Opal 520 for
FAP. Additionally, DAPI was included for the purpose of visualizing
the nuclei.

Statistical analysis

Outcomes related to survival were assessed using the log-rank
test, while the analysis of categorical data utilized Fisher’s exact test.
The comparison between the high-MBS and low-MBS subgroups
was conducted through Student’s t-test. All statistical evaluations
were carried out using R (Version: 4.2.1). A two-tailed p-value of
less than 0.05 was considered statistically significant.

Results

The tumor boundary contains
heterogeneous cells and signals

We employ the Cottrazm algorithm to reconstruct the tumor
boundary, differentiating between tumor tissue and non-tumor
tissue in our analysis of the spatial transcription group (Figure 1A).
High-expression genes of the four samples are extracted from
each sample’s tumor boundary (p < 0.05 and log2fc > 0.25)
(Supplementary Table S1). The intersection of highly expressed
genes was identified, and a total of 55 shared genes were confirmed
(Supplementary Table S2). These genes predominantly encompass
extracellular matrix (ECM) related genes, immune-related genes,
migration and proliferation-related genes, epithelial-related genes,
smooth muscle-related genes, and macrophage-related genes
(Figure 1B). Subsequently, we visualize the spatial expression
patterns of these genes across various datasets, including 10X-
BRCA, 10X-BRCA2, and additional samples such as GSM433610
and GSM6177603. The spatial diagrams illustrate the differential
expression of these genes in comparison to tumor and non-tumor
regions within the tumor boundary. Notably, ECM genes (e.g.,
Col5A2 and COL5A1) and immune-related genes (e.g., CCL5
and CAV1) exhibit significant expression patterns, suggesting
the presence of a dynamic immune environment. The tumor
boundary is enriched with migration-related genes such as VIM
and FNT, indicating active tumor cell migration and proliferation.
Furthermore, epithelial markers (e.g., EPCAMandKRT18), smooth
muscle-related genes (e.g., ACTA2), and macrophage markers
(e.g., MRC2) are distinctly expressed in the border area, providing
valuable insights into the tumor microenvironment (Figure 1C).
These findings offer a comprehensive perspective on the spatial
heterogeneity of breast cancer tissue and suggest potential
therapeutic targets associated with the tumor boundary and its
surrounding microenvironment.

Progression-related pathway activation
along with tumor boundary

In the analysis of boundary gene richness, we conducted
a genetic analysis using Gene Ontology (GO), KEGG, and
Hallmark pathways. Our findings highlight the significance of
tumor boundaries in key processes, including the extracellular
matrix (ECM), cell migration, immune regulation, and tumor
progression. GO enrichment analysis revealed several significant
categories related to the ECM and cellular structure. The most
notably enriched terms pertained to ECM organization and wound
healing, underscoring the critical role that border genes play
in the dynamic remodeling of the ECM, which is essential for
tumor progression and metastasis (Figure 2A). Additionally, genes
associated with collagen fiber organization, basement membrane
formation, and focal adhesions were also enriched, indicating
that the tumor border contributes to maintaining the structural
integrity of the tissue while facilitating interactions between tumor
cells and the surrounding matrix. Other enriched GO terms,
such as endoderm cell differentiation, endoderm formation, and
collagen-containing extracellular matrix, further emphasize the
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FIGURE 1
Breast cancer tumor boundary reconstruction. (A) The Cottrazm algorithm is employed to determine the spatial distribution of malignant (Mal),
boundary (Bdy), and non-malignant (nMal) regions across four breast cancer datasets. (B) Venn diagram illustrates the overlap of differentially
expressed genes (DEGs) among these datasets. The genes are categorized into primary functional groups, including extracellular matrix (ECM) genes
(e.g., COL5A2, COL5A1, COL4A2), immune-related genes (e.g., CCL5, CAVIN1, CALD1), migration and proliferation genes (e.g., VIM, TAGLN, FN1),
epithelial tumor markers (e.g., EPCAM, KRT18, KRT19), smooth muscle-related genes (e.g., VIM, ACTA2, TAGLN), and macrophage-related genes (e.g.,
MRC2, MFGE8, LSP1). (C) Spatial scores of key gene characteristics in breast cancer samples are presented, with each row representing different breast
cancer samples (10x-BRCA, 10X-BRCA2, GSM433610, GSM6177603) and each column corresponding to specific gene categories.

involvement of boundary genes in cell differentiation and tissue
development processes that may influence tumor heterogeneity
and progression. KEGG pathway enrichment analysis further
elucidates the role of ECM remodeling in tumor progression,
highlighting significant enrichment in ECM-receptor interaction

pathways. This underscores the importance of interactions between
ECM components and tumor cells. Additionally, pathways related
to the cytoskeleton and protein digestion and absorption were
enriched in muscle cells, indicating that the mechanical properties
and flexibility of tumor cells at their borders are crucial for
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their migration and invasion into adjacent tissues. Furthermore,
the enrichment of the PI3K-Akt signaling pathway, which is
vital for cell survival, proliferation, and metabolism, suggests
that border genes may regulate key signaling pathways that
facilitate tumorigenesis and confer resistance to treatment. The
significant enrichment of the human papillomavirus infection
pathway indicates a potential influence of the virus on the
development or progression of specific tumor types, although
further research is necessary to clarify its relevance in this context
(Figure 2B). Moreover, the enrichment of the AGE-RAGE signaling
pathway, known to be associated with inflammation, fibrosis, and
cancer, further implies that border genes may contribute to the
inflammatory microenvironment of tumors. HALLMARK pathway
enrichment analysis identified several key pathways involved in
tumor progression.Themost significantly enriched pathway was the
epithelial-to-mesenchymal transition (EMT), a process recognized
as critical for cancer cell metastasis. The enrichment of this
pathway suggests that border genes may facilitate the transition
from an epithelial to a mesenchymal phenotype, thereby enhancing
cell migration and invasion (Figure 2C). Additionally, myogenic
pathways related to myocyte differentiation were also enriched,
indicating the potential influence of the tumor microenvironment
on the differentiation and proliferation of surrounding stromal
cells. Apical junctional pathways were highlighted, underscoring
the importance of intercellular adhesion and junctional integrity
in maintaining tissue structure, which may also affect the ability
of tumors to invade adjacent tissues. Finally, angiogenesis, the
formation of new blood vessels, was significantly enriched, further
supporting the notion that border genes contribute to promoting
tumor vascularization, a process essential for tumor growth and
metastasis.

Presence of Cancer-associated fibroblasts
(CAF)-M2 tumor-associated macrophage
(TAM) structure in the periphery of breast
cancer

In this analysis, we utilized the Seurat to cluster spatial
transcriptome data from four distinct breast cancer subtypes: DCIS,
IDC, ILC, and TNBC. The clustering algorithm identified a total of
12 clusters (Figure 3A), with cluster 0 representing tumor boundary
tissue (Figure 3B). Through differential gene expression analysis,
combined with morphological characteristics and the previously
defined tumor boundary, we determined that subcluster 0 is the
primary component of tumor boundary tissue. Furthermore, we
compared the differences in boundary gene expression between
C0 and the other clusters. The boundary genes in C0 exhibited
generally high expression levels in this region, further confirming
its designation as a border area (Figure 3C). Difference analysis
revealed that subcluster 0 has elevated expression of markers
such as EPCAM, KRT19, PECAM1, ACTA2, C1QB, and CD79A,
indicating that it comprises a mixture of epithelium, endothelium,
fibroblasts, macrophages, and B cells (Figure 3D). Notably, the high
expression of CD163 and CD68 suggests a predominant presence
of M2 macrophages. Previous studies by Wu et al. (2023) defined
an invasion area characterized by a high infiltration of M2 cells,
contributing to a relatively suppressive immune microenvironment

that facilitates the progression of liver cancer. In our study, we
similarly found that the breast cancer border is predominantly
composed of M2 cells. Consequently, we further calculated the
scores of cancer-associated fibroblasts (CAF) and M2 tumor-
associated macrophages (TAM), and spatially visualized their co-
localization, confirming the existence of CAF-M2 TAM in the
border tissue of breast cancer (Figure 3E).

The co-localization of FAP+ACTA2+CAF
and CD68+CD163+M2 like TAM at the
tumor boundary may be a key factor
driving breast cancer progression

Furthermore, we employed the SpaCET deconvolution
method to investigate the spatial positioning of various cell types
within the tumor microenvironment. The cell-cell colocalization
analysis the interactions among different cell types (Figure 4A).
Notably, CAFs, M2 macrophages, and malignant tumor cells
exhibit the most pronounced co-localization, underscoring their
significant roles at the tumor boundary. These results suggest
that CAFs and M2 macrophages may collaborate to facilitate
tumor progression, which aligns with previous findings. The
correlation diagram of cell components and reference profiles
further elucidates the relationships among these cell types.
Our analysis reveals strong correlations between CAFs and
M2 macrophages, indicating their potential involvement in
reshaping and regulating the immune landscape of the tumor
microenvironment (Figure 4B). The colocalization of CAFs and
M2 macrophages is a critical characteristic of the tumor boundary,
suggesting that this arrangementmay promote immune evasion and
support tumor growth andmetastasis.ThemIF analysis (Figure 4C)
provides visual confirmation of these findings. FAP+ACTA2+CAF
and CD68+CD163+M2 like TAM were frequently co-localized,
particularly in the tumor boundary, thereby reinforcing the spatial
correlation between FAP+ACTA2+CAF and CD68+CD163+M2 like
TAM in the TME.

In the other four independent samples, we also observed the
colocalization of FAP+ACTA2+CAF and CD68+CD163+M2 like
TAM in the tumor boundary (Supplementary Figure S1). These
results underscore the significance of the FAP+ACTA2+CAF and
CD68+CD163+M2 like TAM interaction at the tumor boundary,
suggesting their potential role in tumorigenesis, which may
contribute to immunosuppression, tissue remodeling, and tumor
progression. This highlights the relevance of these interactions
as potential therapeutic targets for breast cancer. Furthermore,
we focused on the spatial relationship between CD8+ T cells,
FAP+ACTA2+CAF, and CD68+CD163+ M2-like TAM. To this
end, we utilized immunofluorescence staining for analysis. The
results revealed that FAP+ACTA2+CAF and CD68+CD163+ M2-
like TAM were closely clustered around the tumor boundary,
while CD8+ T cells were located outside the tumor immune
barrier formed by FAP+ACTA2+CAF and CD68+CD163+ M2-
like TAM (Supplementary Figure S2). This finding suggests that
tumors with this structure may be associated with a locally
suppressive microenvironment, potentially leading to tumor
progression and immune escape.
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FIGURE 2
The analysis of the genetic functions of tumor boundary high-expression genes. (A) Gene Ontology (GO) enrichment analysis categorizes the
border-related genes into three primary functional groups: biological processes (BP), cellular components (CC), and molecular functions (MF). (B) The
analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways reveals significant enrichment within specific pathways. (C) Examination
of the Hallmark gene collection identifies five principal pathways.

Prognostic model based on Malignant
boundary related genes

Based on the differential genes identified at the tumor boundary,
we utilized Lasso regression to develop a prognostic model. The
optimal model, selected from 39 variables exhibiting the lowest
likelihood deviation (Figure 5A), allowed us to identify key genes
involved in extracellular matrix remodeling, inflammation, and
immune response, including A2M, ACTA2, FAP, and HSPG2, and
the malignant boundary related signature score = 0.1104 ∗ VWF
- 0.0499 ∗ TIMP1 + 0.2200 ∗ THY1 - 0.1422 ∗ SPARCL1 +
0.0317 ∗ SNCG - 0.1324 ∗ PLEKHO1 + 0.0143 ∗ MFGE8 +
0.0626 ∗ MARCKS - 0.0587 ∗ LSP1 - 0.0244 ∗ LCP1 - 0.1609 ∗ GSN
+0.1659 ∗ ENG - 0.0570 ∗ CD74–0.0421 ∗ CCL5 (Figures 5B, C).
Survival analysis conducted using the Kaplan-Meier method
indicates that patients with higher risk scores have a significantly
lower survival rate compared to those with lower risk scores (P <

0.001), with a risk ratio of 2.32 (95%CI: 1.649–3.27) (Figure 5D). By
correlating risk scores with clinical characteristics such as PAM50
subtypes, AJCC stages, age, and gender, we further validated the
prognostic accuracy of themodel. High-risk patients predominantly
belong to advanced cancer stages (III-IV) and specific molecular
subtypes. These findings demonstrate that the prognosis model
based on tumor border characteristics provides reliable predictive
value and correlates well with clinical characteristics, establishing
it as a robust tool for assessing progression risk in breast
cancer patients (Figure 5E).

Favorable prognostic value of MBS across
various subtypes

Furthermore, we evaluated the prognostic across various
subtypes of BRCA. Kaplan-Meier survival curves were generated
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FIGURE 3
Analysis of spatial transcription groups across various breast cancer subtypes. (A) Spatial clustering of breast cancer tissue samples, including ductal
carcinoma in situ (DCIS), infiltrating ductal carcinoma (IDC), infiltrating lobular carcinoma (ILC), and triple-negative breast cancer (TNBC). Each point
represents a spatial transcription group. (B) The spatial distribution of the C0 cluster. (C) Comparison of boundary gene expression between cluster C0
and other clusters. Each point represents a gene, indicating the proportion of the gene’s presence, with color denoting the average expression level.
(D) DEGs among 12 clusters identified in the spatial transcription group data. Point size reflects the proportion of points corresponding to a given gene,
while color intensity represents the level of gene expression. (E) Spatial localization of cancer-associated fibroblasts (CAFs) and tumor-associated
macrophage (TAMs). The left panel for each subtype presented the CAF score distribution, the middle panel shows the TAM score distribution, and the
right panel illustrates the combined positioning (CAF_TAM) of CAF and TAM scores, highlighting potential interactions within the tumor
microenvironment.
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FIGURE 4
Cell-cell colocalization analysis and interaction analysis. (A) Cell to cell colocalization analysis using SpaCET illustrates the spatial relationships among
different cell types within the tumor microenvironment. Each point represents a pairwise co-localization of these cell types, with the Rho value
(Spearman’s rank correlation coefficient) indicating the strength of the co-localization. Larger dots correspond to higher fraction products, indicating
more frequent colocalization between cell types. The color scale represents Rho values, where red and blue indicate positive and negative correlations,
respectively. Statistical significance of co-localizations was assessed using Spearman’s correlation. (B) The correlation between cell scores and
reference cells is depicted, where each point represents a specific cell type. This representation shows the correlation between estimated cell scores
(Y-axis) and reference profiles (X-axis). The size of each point corresponds to the score product, and the shaded area represents the confidence range
of the model’s output. (C) Verification through multiple immunofluorescence staining demonstrates the co-localization of cancer-associated
fibroblasts (CAF) and macrophages within the tumor microenvironment. The markers used include DAPI (nucleus, blue), ACTA2 (CAF, purple), FAP
(fibroblast activation protein, green), CD68 (all macrophages, yellow), and CD163 (M2 macrophage marker, orange). The magnified area highlights the
spatial interaction between CAF and M2 macrophages.

for each major subtype, revealing significant differences in survival
outcomes correlated with risk scores. BRCA-LumA (P = 0.007, HR=
2.03, 95% CI: 1.208–3.854), and BRCA-LumB (P = 0.021, HR = 3.5,
95% CI: 1.786–7.052). The results showed that the novel signature
could refined Luminal BRCA: BRCA-LumA (P = 0.007, HR = 2.03,
95% CI: 1.208–3.854), and BRCA-LumB (P = 0.021, HR = 3.5,
95% CI: 1.786–7.052) (Figure 6A). Significant survival differences
were noted in the BRCA-IDC subtype (P < 0.001, HR = 2.8,
95% CI: 1.697–4.604), Additionally, significant survival differences
were observed in BRCA-ILC (P = 0.033, HR = 2.71, 95% CI:
1.084–6.745), with high-risk patients exhibiting significantly worse
survival outcomes (Figure 6B). Most cases of IDC are categorized

into the Her2, LumA, and LumB in PAM50 subtypes, while
ILC cases are primarily classified as LumA and LumB. Notably,
the high MBS subtype is predominantly composed of Luminal
tumors. The low MBS subtypes mainly consist of LumA and Basal,
with a lower proportion of LumB, which aligns with previous
survival analyses. These findings suggest that the current grading
system can still be further subdivided (Figure 6C). Additional
survival analyses indicate that the High-MBS LumB subtype
has the poorest prognosis, whereas the Low-MBS Basal subtype
exhibits a more favorable outcome (P = 0.00014); in the context
of pathological classification, prognosis is primarily associated
with MBS(P < 0.0001) (Figure 6D). These results underscore the
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FIGURE 5
The development and verification of breast cancer prognosis is presented herein. (A) The Lasso (Least Absolute Shrinkage and Selection Operator)
regression model is utilized for feature selection. The figure illustrates the relationship between the LAMBDA value and the number conversion, with
the vertical dotted line indicating the optimal LAMBDA value determined through 10-fold cross-validation, corresponding to the minimum deviation.
(B) The Lasso coefficient curve of the candidate prognostic genes is depicted, where each colored line represents a gene; the vertical dotted line
denotes the selected LAMBDA value retained in the final model. (C) The genes and their coefficients used to build the model are showed. (D)
Kaplan-Meier survival analysis is conducted based on the characteristics of the prognostic genes, comparing high-risk and low-risk groups using a
median threshold value. (E) The clinical characteristics of patients within the risk groups are summarized. The heat map illustrates the overall survival
period (OS), PAM50 molecular subtype, pathology, AJCC staging, age, and gender distribution among high-risk and low-risk groups, indicating a
correlation between risk scores and clinical pathological characteristics.
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significance of MBS characteristics in breast cancer prognosis,
highlighting the need for focused efforts in accurate prognosis and
prediction.

High-MBS score BRCA had poor response
to adjuvant therapy

We calculated the IC50 values to compare the estimated drug
sensitivities of the high-MBS and low-MBS groups to various
compounds and performed Wilcoxon tests to assess the statistical
significance of the differences between the two groups. Oxaliplatin,
Erlotinib, and Bortezomib exhibited significantly lower IC50 values
in the low-risk group, indicating that these patients are more
sensitive to these drugs (P values: P = 8.4e−14, P = 2e−16, and
P = 0.049). Mitomycin C, 5-Fluorouracil, and Vinorelbine also
demonstrated significant differences, with low-risk patients showing
greater sensitivity to these drugs (P = 2.9e−13, P = 2.2e−16, and P =
2.6e−16). This further underscores the disparity in drug sensitivity,
as low-risk patients exhibit a trend of increased sensitivity to
Gemcitabine and Pyrimethamine (P = 1.3e−16 and P = 9.9e−13)
(Figure 7A). Additionally, Dasatinib, Thapsigargin, and Sorafenib
demonstrated significant differences in drug sensitivity between
high-risk and low-risk groups (Figure 7B). Overall, breast cancer
characterized by high MBS traits displays reduced sensitivity to
auxiliary treatments.

Patients with high-MBS were unlikely to
benefit from immunotherapy

The characteristics of the tumor microenvironment and
treatment responses were analyzed using the TIDE model,
which classifies patients based on their treatment response and
evaluates responders and non-responders through TIDE scores.
Furthermore, we examined the differences in responders between
patients with high and low MBS (Figure 8A). The chi-square
test revealed significant differences, with the high-MBS group
comprising 81% non-responders and 19% responders, while
the low-MBS tissue included 67% non-responders and 33%
responders (chi-square value = 26.56, P = 2.56e−07) (Figure 8B).
Compared to the low-characteristic group, the TIDE values in the
high-characteristic group were significantly higher (P < 0.0001)
(Figure 8C), indicating more severe immune dysfunction in the
high-risk group. Additionally, we compared the expression profiles
of key immune-related genes and pathways between the two groups,
including CAF, CD274, CD8, dysfunction, exclusion, MDSC,
Merck18, MSI, TAM M2, and IFNG. The box plots indicated
significant differences in gene expression between the low-feature
and high-feature groups, with the high-MBS group exhibiting
markedly elevated CAF, exclusion, MDSC, and M2 scores (P
< 0.0001) (Figure 8D), which is consistent with its phenotype
representing a poorer immune response. Notably, the enrichment
scores of CAF and M2 macrophages were significantly increased,
aligning with previous analyses that suggest the barrier formed
by CAF and M2 macrophages at the tumor boundary can promote
tumor immune escape. In the low-MBS group, we observed a higher
presence of immune activation markers, including MSI, IFNG,

and CD8, which is consistent with previous research findings (P
< 0.0001).

Discussion

Tumor boundary research has long been a focal point in
cancer studies, as these regions represent the interface between
malignant and non-malignant tissues, often determining the
progression and metastasis of cancer (Erickson et al., 2022).
Traditionally, research has concentrated on the core of tumors,
while the boundaries between tumors and surrounding tissues
have received less attention. However, emerging studies underscore
the complexity of these boundary areas, where the surrounding
matrix and immune environment significantly influence prognosis
(Qi et al., 2022; Liu et al., 2023). In breast cancer, the role
of the boundaries between normal tissue and malignant growth
remains unclear, especially regarding the intricate interactions
among various cell types surrounding the tumor. This study aims
to utilize spatial transcriptomic (ST) to create a molecular map of
the tumor boundary, thereby providing a comprehensive analysis
of gene expression in different tumor regions to address this
knowledge gap.

In this study, we utilized various types of spatial transcription
data from mammary cancer subtypes, including DCIS, IDC, ILC,
and TNBC. We identified tumor boundaries that are enriched in
genetic reprogramming, immune regulation, and cell migration
associated with the ECM. These findings underscore the dynamic
nature and heterogeneity of the tumor microenvironment. The
tumor boundary serves as a site for active cellular interactions
that promote cancer progression. Notably, genes associated with
EMT, immune cell migration, and ECM remodeling are highly
expressed at the tumor boundary, reinforcing the importance of
this region in facilitating tumor invasion and metastasis. EMT
facilitates tumor cells in breaching local tissue barriers by enabling
them to acquire interstitial characteristics (Kalluri and Weinberg,
2009; Ariosa et al., 2021), such as enhanced migratory capabilities,
increased invasiveness, and drug resistance (Hashemi et al., 2022).
This process allows tumor cells to enter the bloodstream or
lymphatic system, ultimately leading to the formation of metastases.
EMT plays a crucial role in the metastasis of breast cancer
(Chen et al., 2024). Consequently, understanding the mechanisms
underlying EMT is of paramount importance for developing
effective treatments for breast cancer, as both chemotherapy and
targeted therapies are linked to the resistance exhibited by tumor
cells. EMT can promote the characteristics of tumor cells that
contribute to their resistance to chemotherapy drugs (Xu et al.,
2017; Li et al., 2023). Furthermore, during the EMT process,
the interaction between tumor cells and the ECM is intensified,
complicating the ability of the immune system to identify and
eliminate these cells, thereby further enhancing their capacity
for escape (Zhou et al., 2019).

Our analysis also reveals a significant co-localization of CAFs and
M2-like TAMs at the tumor boundary, indicating their synergistic
role in supporting themicroenvironment conducive to tumor growth.
CAFs constitute a heterogeneous population that persists in the TME,
significantly contributing to tumor progression. They are involved in
tumor invasion,metastasis, immune evasion, and treatment resistance
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FIGURE 6
The prognosis of risk characteristics across various breast cancer subtypes is analyzed. (A) Kaplan-Meier survival analysis of different PAM50 molecular
subtypes of breast cancer, including Basal, HER2+, Luminal A (LumA), and Luminal B (LumB), reveals that patients are categorized into high-risk and
low-risk groups based on risk scores. Each panel presents the hazard ratio (HR), 95% confidence interval (CI), and P-values from the risk assessment.
Notable differences in survival rates are observed between the LumA and LumB subtypes. (B) Kaplan-Meier survival analysis for breast cancer subtypes,
specifically IDC and ILC, indicates that high-risk patients in both subtypes exhibit significantly poorer outcomes. (C) A schematic representation
illustrates the relationship between breast cancer pathology, PAM50 molecular subtypes, and risk groups. The classification of patients into high-risk
and low-risk groups based on different pathologies and molecular subtypes suggests a correlation with their risk characteristics. (D) Kaplan-Meier
survival analysis compares high-risk and low-risk groups for both PAM50 subtypes (left) and pathological subtypes (right). The survival curves
demonstrate that the risk characteristics effectively stratify patients into distinct subtypes, with high-risk patients consistently exhibiting poor
prognoses.

Frontiers in Cell and Developmental Biology 12 frontiersin.org

https://doi.org/10.3389/fcell.2025.1570696
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Wu et al. 10.3389/fcell.2025.1570696

FIGURE 7
Chemotherapy sensitivity analysis for Malignant-boundary signature. (A) Comparison of the estimated effects of various chemotherapy drugs between
the MBS-high group and the MBS-low group. The drugs analyzed include Oxaliplatin, Erlotinib, Bortezomib, Mitomycin C, 5-Fluorouracil, Vinorelbine,
Gemcitabine and Pyrimethamine. We utilized the Wilcoxon test to assess statistical significance, displaying the P values in each panel. A lower IC50
value indicates higher drug sensitivity. (B) Comparison of IC50 of Dasatinib, Thapsigargin, and Sorafenib between MBS-high and MBS-low groups.

throughvariousmechanisms.CAFsactivelysecreteECMcomponents,
including collagen, fibronectin, and hyaluronic acid, which create a
rigid tumor matrix that promotes cancer cell migration and invasion
(Kalluri and Zeisberg, 2006). Furthermore, CAFs release growth
factors such as TGF-β, VEGF, and FGF, which enhance EMT and
tumor proliferation (Gascard and Tlsty, 2016). CAFs can also inhibit
anti-tumor immunity by secreting cytokines such as IL-6 and TGF-β,
leadingtotherecruitmentofimmunosuppressivecells likeTregulatory
cells and M2-like TAMs, thereby promoting immune evasion within

the TME. Additionally, CAFs enhance drug resistance by forming a
physical barrier that restricts drug penetration and secreting soluble
factors that activate survival pathways in cancer cells. For instance,
IL-6 secreted by CAFs can activate the JAK/STAT3 pathway, thereby
reducing the sensitivity of breast cancer cells to chemotherapy. In
estrogen receptor-positive breast cancer, CAFs communicate through
paracrine signaling involving IL-6 andCXCL12 (Liu et al., 2019).M2-
like TAMs secrete VEGF and PDGF, which enhance the formation of
newbloodvessels andsupport tumorgrowthandmetastasis (Qianand
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FIGURE 8
Tumor boundary characteristics and immune response in breast cancer. (A) Distribution of TIDE scores across all patients. Based on TIDE values,
responders (blue) and non-responders (red) are clearly distinguished, indicating the predictive value of TIDE in assessing immune evasion in cancer
treatment. (B) Proportion of responders and non-responders in low and high TIDE score groups. Chi-square analysis was used for statistical analysis. (C)
Comparison of TIDE scores between the low and high MBS groups (∗represents P < 0.05; ∗∗represents P < 0.01; ∗∗∗represents P < 0.001, ∗∗∗∗represents
P < 0.0001). (D) Comparison of expression profiles of various immune-related genes and pathways in the low and high signature groups. The box plots
show the median and interquartile range (∗represents P < 0.05; ∗∗represents P < 0.01; ∗∗∗represents P < 0.001, ∗∗∗∗represents P < 0.0001).

Pollard, 2010). Additionally,M2TAMs contribute to chemoresistance
by secreting IL-10 and transforming TGF-β, which provide survival
signals to cells and inhibit apoptosis induced by chemotherapeutic
agents such as doxorubicin and paclitaxel. Furthermore, M2 TAMs
promote resistance to endocrine therapy by actively activating the
STAT3 and NF-κB pathways in ER+ breast cancer, thereby reducing
sensitivity to hormone therapies (DeNardo et al., 2011). In conclusion,
both CAF and M2-like TAM play critical roles in the progression of
breast cancer and the development of drug resistance.The interaction
between CAFs and M2 TAMs contributes to the remodeling of the
ECM, promotes tumor angiogenesis, facilitates immune evasion, and
enhances chemical resistance. Investigating the CAF-M2 interaction
represents a promising strategy for improvingbreast cancer treatment.
Future research should prioritize the development of combined
therapies targeting both CAFs and TAM-like M2 TAMs to overcome
resistance to chemotherapy, endocrine therapy, and immunotherapy.

In addition to the molecular insights provided by the spatial
analysis, we have developed a prognostic model based on border-
related genes. Through this model, we identified a set of genes
capable of predicting patient survival outcomes with high precision.
Notably, the MBS scores are closely associated with clinical

outcomes; a high score indicates a poor prognosis. Importantly,
the MBS score can predict survival across various breast cancer
subtypes, including HER2-positive, luminal, and basal subtypes,
underscoring the robustness of the model. Furthermore, the
MBS score correlates with chemotherapy resistance, as patients
with high MBS scores had limited opportunity to benefit from
chemotherapy strategies. Some commonly used drugs, such as 5-
FU and doxorubicin, may not benefit patients with high MBS.
This suggests that tumor boundaries not only influence cancer
progression but also play a crucial role in determining treatment
responses. High-risk groups with elevated MBS scores represent
a particularly challenging subset of breast cancer patients who
may not respond well to conventional therapies, highlighting
the urgent need for new treatment strategies targeting tumor
boundaries.

However, this study does have several limitations that warrant
consideration. Firstly, the spatial transcriptomic data is derived
from a limited number of samples, which may not fully capture
the heterogeneity of different breast cancer subtypes. While this
study employs multiple datasets from various cohorts, further
validation in larger and more diverse patient populations is
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necessary to confirm the stability of the identified biomarkers and
prognostic models.

In conclusion, the tumor-stroma boundary plays a crucial role in
tumor progression, metastasis, and immune evasion.Themolecular
characteristics of this region, revealed through spatial multi-omics
analysis, can serve as diagnostic markers for risk stratification and
the prediction of therapeutic response. Patients with high MBS
scores have a poor prognosis and exhibit resistance to chemotherapy,
indicating that suchpatients require intensified combination therapy
rather than relying solely on standard chemotherapy. High MBS
tumors demonstrate immune dysfunction and immune exclusion,
which limit the efficacy of immune checkpoint inhibitors.Therefore,
the MBS score aids in differentiating patients: those with low
MBS may benefit from monotherapy with immune agents, while
those with high MBS necessitate combined immune activation
strategies to overcome resistance. Incorporating the MBS score into
clinical decision-making can optimize treatment strategies based
on the characteristics of the tumor microenvironment (TME).
Targeting the interaction between CAF-M2 TAM at the tumor
boundary represents a potential therapeutic direction. For instance,
combining CAF-targeting drugs (such as TGF-β inhibitors and
FAP inhibitors) with immune checkpoint inhibitors may reverse
immune exclusion.
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