
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Cell Dev. Biol.
Sec. Molecular and Cellular Pathology
Volume 13 - 2025 | doi: 10.3389/fcell.2025.1569759
This article is part of the Research TopicElectric Stimulation in the Eye and Brain: Advancements and ApplicationsView all 8 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Transcorneal electrical stimulation (TES), a noninvasive therapeutic technique, has gained attention for its potential to treat retinal and optic nerve diseases. TES involves applying weak electrical currents via electrodes on the cornea to stimulate retinal ganglion cells (RGCs) without causing activation of photoreceptors, inducing phosphenes, and enabling the evaluation of inner retinal function. This is valuable for assessing residual retinal activity in patients with photoreceptor degeneration, such as those with retinitis pigmentosa (RP).TES has demonstrated significant neuroprotective effects on RGCs and photoreceptors through mechanisms involving the upregulation of neurotrophic factors (e.g., insulin-like growth factor 1, brain-derived neurotrophic factor, and ciliary neurotrophic factor), reduction of inflammatory responses, and enhanced ocular blood flow. These findings are supported by extensive animal studies, showing its efficacy in mitigating retinal degeneration and optic nerve damage while promoting axonal regeneration.Clinically, TES has shown potential in improving visual function in diseases such as RP, optic neuropathies, and ischemic retinal conditions; however long-term benefits remain a challenge. Randomized controlled trials have indicated the safety and modest therapeutic effects of TES, suggesting its potential as an adjunct treatment for visual impairments.Moreover, TES may extend beyond ophthalmology into neurology. Because the retina is anatomically connected to the brain, TES can influence brain regions such as the visual cortex and hippocampus. Preliminary research proposes its potential for modulating brain networks, cognition, and emotional pathways, offering hope for treating neurodegenerative diseases such as Alzheimer's and Parkinson's disease.In summary, TES represents a versatile and promising therapy for retinal and neurological disorders, and ongoing advancements will likely expand its applications in clinical practice. Further studies are warranted to optimize its parameters, enhance its efficacy, and explore its full therapeutic potential.
Keywords: Transcorneal electrical stimulation, Neuroprotection, photoreceptor, retinal ganglion cell, Neuromodulation
Received: 01 Feb 2025; Accepted: 09 Apr 2025.
Copyright: © 2025 Morimoto. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Takeshi Morimoto, Department of Advanced Visual Neuroscience, Osaka University, Suita, Japan
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.