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Axon guidance proteins not only play a role in the formation of proper neural
circuits but also have other important functions, such as cell survival, migration,
and proliferation in the brain. Therefore, mutations in the genes encoding these
proteins frequently cause various types of neurological disorders, including
psychiatric disorders and neurodegenerative diseases. We previously identified
an axon guidance protein, draxin, that is essential for the development of several
neural circuits and cell survival in the brain. Recently, the deletion of the draxin
gene was identified in an inbred BTBR T+ Itpr3tf/J (BTBR/J) mouse, which is a
widely used model of Autism Spectrum Disorder (ASD), suggesting that draxin
deletion is a genetic factor for ASD-like characteristics in BTBR/J mice. In this
review, I summarize the neuroanatomical abnormalities in draxin knockout mice
by comparing them to BTBR/J mice and discuss the possible contributions of
draxin to anatomical and behavioral phenotypes in BTBR/J mice.
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Introduction

Draxin was first identified as an axon guidance protein that regulates commissural
axons in the spinal cord and the forebrain. It is a secreted protein that shares no
homology with other known proteins (Islam et al., 2009; Miyake et al., 2009). Draxin
has been shown to bind to netrin-1 and its receptors, including Deleted in colorectal
cancer (Dcc) and Neogenin (Neo1) (Ahmed et al., 2011; Shinmyo et al., 2015). Previous
studies have suggested that draxin regulates the outgrowth of axons originating from
various types of neurons in vitro (Islam et al., 2009; Naser et al., 2009; Ahmed et al.,
2010; Ahmed et al., 2011; Chen et al., 2013; Meli et al., 2015; Shinmyo et al., 2015).
Draxin knockout (KO) mice show developmental abnormalities in various neural
circuits, including the corpus callosum, the hippocampal commissure, the anterior
commissure, the fornix, and the thalamocortical axons (Islam et al., 2009; Zhang et al.,
2010; Shinmyo et al., 2015). Thus, draxin may control the development of neural
circuits in the brain through the netrin-1 receptors or by modulating netrin-1-mediated
axon guidance.

Previous human and animal studies have shown that axon guidance proteins are
associated with structural changes in neuronal connections during neurological disorders
(Nugent et al., 2012; Van Battum et al., 2015). In addition, because axon guidance cues have
other important functions in the brain, such as cell survival, migration, and proliferation
(Mehlen et al., 2011), mutations in the genes encoding axon guidance proteins can cause
many neurological disorders. Indeed, draxin and/or netrin signaling has been shown to be
associated with several neurological disorders, including psychiatric disorders, gliomas, and
neurodegenerative diseases (Infante et al., 2015; Vosberg et al., 2020; Ahn et al., 2021;
Jasmin et al., 2021; Cai et al., 2024). Recently, an 8-bp frameshift deletion of the draxin gene
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was identified in an inbred BTBR T+ Itpr3tf/J (BTBR/J) mouse, a
widely used model of Autism Spectrum Disorder (ASD) (Morcom
et al., 2021; Arslan et al., 2023). Furthermore, draxin deletion in
BTBR/J mice was shown to contribute to the dysgenesis of the
corpus callosum, which is a neuroanatomical abnormality
characteristic of human ASD (Arslan et al., 2023). In this review,
I summarized the neuroanatomical abnormalities in draxin KO
mice by comparing them to BRBR/J mice.

Dysgenesis of the corpus callosum in
human ASD

ASD is a neurodevelopmental disorder defined by impairments
in social interactions, communication deficits, and repetitive
behaviors with restricted interests (Lai et al., 2014). Identifying
abnormalities in brain structures in ASD is critical for developing
more precise and objective diagnoses and for creating effective new
treatments. One prominent mechanism that has been suggested to
contribute to the underlying pathology of ASD is abnormal long-
range neuronal connectivity. This is because numerous MRI studies
have demonstrated reduced fractional anisotropy in major white
matter tracts in individuals with ASD, including the cingulum,
uncinate fasciculi, occipitotemporal tracts, and, most consistently,
the corpus callosum (Barnea-Goraly et al., 2004; Alexander et al.,
2007; Keller et al., 2007; Frazier and Hardan, 2009; Kumar et al.,
2010; Weinstein et al., 2011).

The corpus callosum is a large bundle of nerve fibers that
connects the left and right hemispheres of the brain. Variable
corpus callosum abnormalities have been reported in the
anterior, midbody, and posterior regions of the forebrain in ASD
(Egaas et al., 1995; Saitoh et al., 1995; Haas et al., 1996; Piven et al.,
1997; Manes et al., 1999; Hardan et al., 2000). These observations
suggest that the abnormal development of the corpus callosum is
associated with ASD. This is consistent with recent results from
mega-analyses comparing white matter microstructural differences
between healthy participants and those with psychiatric disorders,
showing that patients with schizophrenia, bipolar disorder, or ASD
disorder have common alterations in the corpus callosum
(Koshiyama et al., 2020).

The corpus callosum plays a critical role in the transmission
and integration of information between the left and the right
hemispheres. The anterior corpus callosum connects regions of
the prefrontal cortex and is associated with higher-order
cognitive, emotional, and social functions. The midbody of the
corpus callosum connects multiple regions, including the
primary motor and sensory cortices, and is involved in
sensory and motor processing. The posterior corpus callosum
links the occipital lobes and is crucial for the processing and
integration of visual information. Abnormal development in
specific regions of the corpus callosum may be associated with
the specific cognitive and behavioral characteristics of ASD.
However, abnormalities in brain structures in patients with
ASD have been observed not only in the corpus callosum but
also in other regions. Therefore, to understand the causes of
behavioral abnormalities in ASD accurately, it is important to
analyze animal models of specific anatomical and functional
abnormalities.

BTBR mouse, an idiopathic animal model
of ASD

Characteristic behavioral phenotypes of ASD have been
modeled in mice. One such model is the inbred BTBR/J mouse,
which is the most extensively researched and the most commonly
reproduced inbred strain (Nadler et al., 2006; Bolivar et al., 2007;
Moy et al., 2007). BTBR/J mice exhibit impaired in social
interactions and high levels of repetitive behaviors (Moy et al.,
2007; McFarlane et al., 2008; Dodero et al., 2013). Furthermore,
this strain is characterized by the absence of the corpus callosum and
a smaller-to-absent hippocampal commissure (Wahlsten et al.,
2003). A previous study identified several genomic regions in
BTBR/J mice that distinctly influenced their ASD-like
characteristics (Jones-Davis et al., 2013). Recently, an 8-bp
frameshift deletion of the draxin gene, leading to the loss of
draxin function, was identified in BTBR/J mice (Morcom et al.,
2021; Arslan et al., 2023). The draxin gene is located in a genomic
region that was previously identified as contributing to commissural
abnormalities in BTBR/J mice (Jones-Davis et al., 2013). Since
draxin KO mice display malformations of the corpus callosum
and the hippocampal commissure, draxin is a promising
candidate for explaining the defects in these commissures in
BTBR/J mice. Consistently, abnormal development of the corpus
callosum was partially restored in BTBR/J mice with a heterozygous
knock-in that reverted the 8 bp draxin deletion to the wild-type,
suggesting that the draxin deletion contributes to agenesis of the
corpus callosum in BTBR/J mice (Arslan et al., 2023).

Similarities in neuroanatomical phenotypes
between draxin KO and BTBR mice

Since previous studies have suggested that BTBR/J mice are
characterized by multiple genetic aberrations, it is important to
clarify the contribution of draxin to the anatomical and behavioral
phenotypes of BTBR/J mice. Draxin KO mice show various
developmental abnormalities in the brain similar to those
observed in BTBR/J mice. BTBR/J mice exhibit an absence of the

TABLE 1 Anatomical abnormalities in brains of draxin KO and BTBR mice.

Draxin KO BTBR/J

Aberrant neural circuits

Corpus callosum + +

Hippocampal commissure + +

Anterior commissure + +

Thalamocortical axons + +

Corticofugal axons + ?

Fornix + ?

Other abnormalities in the brain

Shrinkage of the hippocampus + +

Reduced size of the amygdala ? +

+ Abnormal development; ?, not investigated.
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corpus callosum, and reductions in the hippocampal and the
anterior commissures (Table 1) (Wahlsten et al., 2003; Ellegood
et al., 2015). Similar to BTBR/J mice, draxin KO mice show severe
defects in all forebrain commissures, the corpus callosum, the
hippocampal commissure, and the anterior commissure (Islam
et al., 2009). Given that the abnormal development of the corpus
callosum was partially rescued in BTBR/J mice with a heterozygous
knock-in that reverted the 8 bp draxin deletion to the wild-type, the
draxin deletion contributes to the absence of the corpus callosum in
BTBR/J mice (Arslan et al., 2023). However, this observation
suggests that additional genetic factors contribute to the absence
of the corpus callosum in BTBR/J mice. Both draxin KO mice and
BTBR mice with a C57Bl/6J genetic background display variable
penetrance of the corpus callosum defect, suggesting that other
genetic factors modify the corpus callosum phenotype driven by the
draxin mutation (Morcom et al., 2021).

Draxin KO mice also show severe defects in the thalamocortical
and corticofugal projections (Shinmyo et al., 2015). During normal
brain development, corticofugal and thalamocortical axons meet in
the internal capsule and depend on each other for their guidance to
the thalamus and neocortex, respectively (Lopez-Bendito and
Molnar, 2003). Corticofugal axons grow from the cortex into the
internal capsule in wild-type mice. In contrast, some corticofugal
axons of draxin KO mice do not enter the internal capsule but
instead grow toward the external capsule. Thalamocortical axons in
draxin KO mice grow normally toward the internal capsule.
However, some of them do not enter the cortex and instead
either stall or turn laterally toward the external capsule, whereas
others enter the cortex with an abnormal topographic organization.
Visualization of the cortical sensory regions revealed disruptions in
the spatial positions of thalamocortical axon terminals in draxin KO
mice (Shinmyo et al., 2015). Thus, draxin is essential for guiding
thalamocortical axons from the internal capsule to the cortex, as well
as for their region-specific connections between the thalamus and
cortex. Importantly, the topography of thalamocortical projections
changes in BTBR/J mice, in which the primary somatosensory and
visual cortical areas are medially shifted (Fenlon et al., 2015).
Therefore, abnormalities in the topographic organization of
thalamocortical projections are a common feature of draxin KO
and BTBR/J mice, although this phenotype in draxin KO mice
requires further investigation. Another similarity in the anatomical
phenotype between draxinKOmice (Zhang et al., 2010) and BTBR/J
mice (Mercier et al., 2012) is the shrinkage of the hippocampus. In
addition to the hippocampus, the size of the amygdala nuclei is
reduced in BTBR/J mice (Mercier et al., 2012). However, it remains
unclear whether the anatomy of the amygdala is altered in draxin
KO mice or not. Collectively, draxin deletion is likely to be the
primary genetic factor underlying the neuroanatomical phenotypes
in BTBR/J mice.

Discussion

In this review, I have summarized the similarities in
neuroanatomical phenotypes between draxin KO and BTBR/J
mice. In addition to their phenotypical similarities, recent studies
have suggested that draxin contributes to neuroanatomical
phenotypes in BTBR/J mice (Morcom et al., 2021; Arslan et al.,

2023). However, the contribution of draxin to the behavioral
phenotypes of BTBR/J mice remains unclear. To address this
issue, it is necessary to perform behavioral analyses in draxin KO
mice and draxin knock-in BTBR mice.

It is important to determine the neuroanatomical abnormalities
responsible for the behavioral phenotypes of ASD. Previous studies
on humans with ASD and BTBR/J mice have suggested that
dysgenesis of the corpus callosum is strongly associated with
behavioral abnormalities in ASD. However, there is no direct
evidence supporting this idea because dysgenesis of the corpus
callosum is generally accompanied by other anomalies in brain
structures in both humans and mice. For example, patients with
corpus callosum anomalies frequently display dysgenesis of the
hippocampal commissure (Hetts et al., 2006). Therefore, to
examine whether the behavioral phenotypes characteristic of ASD
are caused by anomalies in the corpus callosum, a mouse model with
a specific defect in the corpus callosum is required. Surgical lesions
of the corpus callosum at an early postnatal stage do not affect the
juvenile play or adult social behaviors, nor do they increase repetitive
self-grooming (Yang et al., 2009). This evidence does not support the
hypothesis that disconnection of the corpus callosum is a causal
factor for ASD-like behaviors in mice. However, experimental
lesions at the postnatal stage may not replicate congenital corpus
callosum anomalies. Both BTBR/J and draxin KOmice show corpus
callosum agenesis with similar misprojections of the callosal axons.
In these mice, callosal axons fail to cross the midline; instead, they
form ipsilateral “Probst” bundles that run parallel to the midline
(Islam et al., 2009; Fenlon et al., 2015). Since this aberrant neuronal
circuitry is retained throughout adulthood, it may contribute to
ASD-like behaviors in mice.

Furthermore, both draxin KO and BTBR/J mice have
abnormalities in the topographic organization of connections
between the thalamus and the cortex (Fenlon et al., 2015;
Shinmyo et al., 2015). This suggests that the alteration in cortical
area patterning caused by the deletion of the draxin gene contributes
to the previously observed sensory and behavioral deficits in BTBR/J
mice (Moy et al., 2007; McFarlane et al., 2008). It is critical to
generate conditional draxin KO mice with specific neural structural
abnormalities and perform behavioral analyses to investigate these
possibilities. Recently, it was reported that BTBR TF/ArtRbrc
(BTBR/R) mice, a sister strain of BTBR/J, show core symptoms
of ASD despite having an intact draxin gene and preserved forebrain
commissures (Lin et al., 2023). BTBR/R mice will be useful for
understanding the draxin-independent mechanisms that cause
ASD-like behaviors.
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