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Targeting tumor angiogenesis
and metabolism: a new
perspective in pediatric thoracic
tumor therapy

Yong Lv† , Fanke Shu† , Dengke Luo, Ru Jia, YiDong Huang* and
Chang Xu*

Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China

Pediatric thoracic solid tumors encompass mediastinal tumors, chest wall
tumors, and lung tumors. The pathogenesis is complex, and the clinical
presentation is diverse, presenting numerous challenges in diagnosis and
treatment, which severely threaten the life and health of the affected
children. Angiogenesis provides nutritional and oxygen support for tumor
growth and metastasis, while metabolic reprogramming meets the unique
energy and material demands of tumor. Both processes play key roles in
pediatric thoracic tumor development. Therefore, targeting tumor vasculature
could be an important therapeutic strategy, and exploring the molecular
mechanisms of metabolic reprogrammingmay provide a theoretical foundation
for targeted treatment. This review summarizes relevant experimental research
on angiogenesis and metabolic reprogramming in pediatric thoracic tumors,
analyzes the limitations of current research, and proposes solutions and
recommendations. Through this review, we aim to provide comprehensive
information about pediatric thoracic solid tumors for clinicians and researchers,
promoting personalized treatment, and ultimately improve survival rates and
quality of life for affected children.
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1 Introduction to pediatric thoracic tumor

Pediatric thoracic tumors are a heterogeneous group of neoplasms, accounting for
15%–20% of all malignant tumors in childhood (Meazza and Gattuso, 2019). Pediatric
thoracic tumor included tumors in areas such as the chest wall, lungs, airways, mediastinal
organs, esophagus, and diaphragm (Zapala et al., 2017). They are primarily composed of
abnormal tissue formed from residual embryonic tissue or metastatic tumors (Mullen et al.,
2021). Clinically, neurogenic tumors and lymphomas are relatively common (Jaggers and
Balsara, 2004). The insidious progression of many thoracic tumors frequently delays
diagnosis, initial asymptomatic phases transition to clinically significant manifestations
when mass effects compromise critical structures, such as airway compression precipitating
stridor, mediastinal invasion causing superior vena cava syndrome, and diaphragmatic
involvement leading to respiratory insufficiency (Guye et al., 2007). The incidence
of malignant pediatric thoracic tumor has been an increasing trend in recent years
(Bhakta et al., 2019). Pediatric thoracic tumors present a heterogeneous prognostic
landscape (Figure 1). Many children with thoracic tumors have already progressed to the
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FIGURE 1
The overview of pediatric thoracic tumors and its prognosis (Created with BioGDP.com (Jiang et al., 2025)).

middle and late stages when they are diagnosed, which
seriously affects the survival rate of the children, and
has become one of the main causes of death in children
(Lam et al., 2019).

1.1 Clinical treatment for pediatric thoracic
tumor

Pediatric thoracic tumors are mainly divided into chest wall
tumors, lung and airway tumors, and mediastinal tumors according

to their origin. At present, the main treatment methods of pediatric
thoracic tumors are still surgery and chemotherapy. We integrate
the pathological features and clinical management of various
pediatric thoracic tumors. Table 1 systematically summarizes
the anatomic sites, origin cells, involved organs, recommended
treatment options, and current treatment challenges of each
pediatric thoracic tumor.

Annotation. HL: Hodgkin Lymphoma; NHL: Non-Hodgkin
Lymphoma; GCT: Germ Cell Tumor; ALK: Anaplastic
Lymphoma Kinase; EGFR: Epidermal Growth Factor Receptor;
GD2: Disialoganglioside GD2; MEK: Mitogen-activated
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TABLE 1 Pediatric thoracic tumors: Classification and clinical characteristics.

Tumor type Cellular
origin/Molecular
features

Affected
organs/Systems

First-line therapies Current limitations

Chest Wall Tumors

Ewing Sarcoma (ES)
(Wang et al., 2021)
(van den Berg et al., 2008)
(Riggi et al., 2021)

Bone/soft tissue progenitors;
EWS-FLI1 fusion

Ribs, soft tissues Surgical resection +
chemotherapy (vincristine,
actinomycin-D,
cyclophosphamide); emerging
targeted therapies

High mortality in metastatic
cases; delayed clinical
translation of fusion-targeted
drugs

Rhabdomyosarcoma (RMS)
(Chen et al., 2024a)
(Zarrabi et al., 2023)
(Mascarenhas et al., 2019)

Primitive mesenchymal cells;
PAX3/7-FOXO1 fusion

Intercostal muscles Neoadjuvant chemotherapy
surgery ± radiotherapy

Molecular heterogeneity;
aggressive behavior in
PAX-fusion-positive subtypes

Lung/airway Tumors

Inflammatory Myofibroblastic
Tumor (IMT) (Casanova et al.,
2020) (Chmiel et al., 2024;
Mahajan et al., 2021)

Spindle cells; ALK
rearrangement

Lungs, bronchi Complete excision; ALK
inhibitors (e.g., crizotinib)

Limited chemosensitivity in
unresectable cases

Pulmonary Carcinoid (PC)
(Petursdottir et al., 2020)
(Uprety et al., 2020)

Neuroendocrine cells Bronchial tree Surgical resection ±
somatostatin analogs;
etoposide/cisplatin for
advanced cases

Metastasis risk in atypical
variants; lack of optimized
chemotherapy regimens

Mucoepidermoid Carcinoma
(MEC) (Horio et al., 2024)
(Wu et al., 2019; Li et al., 2017)

Airway mucous glands;
CRTC1-MAML2 fusion

Tracheobronchial system Surgical resection; EGFR
inhibitors (e.g., gefitinib)

Controversy over adjuvant
therapy for high-grade tumors;
unclear mechanisms of EGFR
targeting

Pleuropulmonary Blastoma
(PPB) (Thacker et al., 2023)
(Dehner et al., 2019)
(Knight et al., 2019)

DICER1 mutation Lungs, pleura Surgery ± chemoradiotherapy Metastasis in 30% of Type
II/III; limited availability of
DICER1 mutation screening

Mediastinal Tumors

Neuroblastoma (NB)
(Zheng et al., 2024)
(Liang et al., 2020)
(Wahba et al., 2023)

Neural crest cells; MYCN
amplification

Posterior mediastinum Surgery + chemotherapy;
anti-GD2 immunotherapy;
ALK/MEK inhibitors (e.g.,
crizotinib)

Therapy resistance in high-risk
group; slow clinical translation
of targeted agents

Lymphoma (HL/NHL)
(Bucklein, 2023) (Metzger and
Mauz-Korholz, 2019;
Mauz-Korholz et al., 2018)

B/T lymphocytes Anterior mediastinum Chemotherapy ± low-dose RT;
anti-CD30/CD20 antibodies
(e.g., rituximab)

Requirement of stem cell
transplantation in refractory
cases; radiation-related
toxicities

Germ Cell Tumor (GCT)
(Mosbech et al., 2014)
(De Felici et al., 2021)
(Hulsker et al., 2021)

Primordial germ cells Anterior mediastinum Surgery ± cisplatin-based
chemotherapy; TKIs (e.g.,
sunitinib)

Poor prognosis of primary
mediastinal GCT; insufficient
evidence for targeted therapies

protein kinase; TKIs: Tyrosine Kinase Inhibitors; PAX3/7:
Paired Box gene 3/7; FOXO1: Forkhead Box O1; CRTC1:
CREB Regulated Transcription Coactivator 1; MAML2:
Mastermind-Like Protein 2; DICER1: Ribonuclease III
enzyme DICER1.

1.2 Critical differences between pediatric
thoracic tumor and adult cancers

Pediatric thoracic tumors in children differ significantly from
those in adults in terms of pathogenesis and genetic landscape
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(Chen X. et al., 2024). Firstly, the types of tumors are different.
Pediatric thoracic tumors often arise fromdevelopmental tissues and
are associated with genetic mutations present at birth or acquired
early in life, whereas adult thoracic malignancies are primarily
driven by lifestyle-induced somatic mutations (Kattner et al., 2019).
Secondly, there are physiological differences between children and
adults. For example, pediatric chest cavity is smaller, and compared
to adults, thoracic tumors are more likely to compress the heart,
airways, and esophagus, leading to respiratory and circulatory
functional disorders (Pearson and Tan, 2015). Furthermore,
pediatric organs are not fully mature, and pediatric medications
carry higher risks, chemotherapy drugs at adult doses can be
highly toxic to children (Weingart et al., 2018). Given the specific
physiological, pathological, and pharmacokinetic differences in
children, there is an urgent need to develop treatment specifically
for pediatric thoracic tumors to improve therapeutic efficacy.

1.3 Challenges in pediatric thoracic tumor
treatment

Pediatric thoracic tumors demonstrate aggressive growth
patterns with frequent thoracic occupation, inducing severe
compression or invasion of cardiopulmonary-vascular structures
(Sandler andHayes-Jordan, 2018).While surgery and chemotherapy
remain cornerstone therapies, their efficacy diminishes significantly
in recurrent or refractory cases (Burkhardt and Hermiston,
2019). Although targeted therapies against angiogenesis and
tumor metabolism pathways hold transformative potential, clinical
translation is hampered by insufficient pediatric-specific drug
development and trial data (Dasgupta et al., 2017). This review will
summarize the current research progress on targeting angiogenesis
and tumor cell metabolism, and discuss their potential applications
in the treatment of pediatric thoracic tumors, with the aim
of providing new insights and directions for future treatment
strategies.

2 Targeted tumor vascularization
strategies in pediatric thoracic tumors

2.1 Anti-angiogenesis

Angiogenesis is a critical step in tumor growth and metastasis,
serving to transport nutrients and remove metabolic waste products
from tumor cells (Jiang et al., 2020). Tumors induce angiogenesis
to promote metastasis and proliferation, inhibiting pro-angiogenic
factors, such as vascular endothelial growth factor (VEGF), is
a key anti-angiogenic therapy (Janes et al., 2024). Bevacizumab,
a VEGF-specific antibody, was the first clinically approved anti-
angiogenic drug (Garcia et al., 2020). Research data indicate
that low doses of bevacizumab not only reduce the formation
of pathological blood vessels but also repair existing vascular
defects (Summers et al., 2010). This further demonstrates that
appropriate doses of VEGF inhibitors can rebalance angiogenesis
signaling within tumors, actively recruit pericytes, and enhance
intercellular junctions (Jain et al., 2006). Researchers have found

that bevacizumab treatment reduced microvessel density in alveolar
RMS, increased tumor vessel maturity, enhanced the effectiveness of
ionizing radiation for alveolar RMS, and improved patient prognosis
(Myers et al., 2010). However, due to the relative specificity of
these targets, their clinical application still faces some challenges.
Research evidence suggests that anti-VEGF therapy may enhance
the signaling of platelet-derived growth factor receptor, thereby
promoting the recruitment of pericytes and reducing vascular
permeability. The high coverage of pericytes supports the survival
of tumor endothelial cells, and the hypoxic environment caused
by the disruption of the tumor vasculature further stimulates
tumor cells to develop stronger resistance and enhanced angiogenic
capability (Greenberg et al., 2008). Therefore, new VEGF-targeted
therapies are still under development. Sunitinib is a novel multi-
targeted inhibitor, and multiple clinical trials have demonstrated
its efficacy in patients with solid tumors. Sunitinib inhibits several
tyrosine kinases, particularly the VEGFR, thereby blocking the
angiogenesis process required for tumor growth, resulting in
clinical benefits for patients with mediastinal germ cell tumors
(Subbiah et al., 2014). Primary mediastinal germ cell tumors
exhibit significant angiogenic characteristics, with the formation of
abnormal tumor blood vessels in the incompletely matured stroma.
These blood vessels may contribute to a certain degree of resistance
to treatment (Levy et al., 2021). Researchers used CRISPR/Cas9
technology to knock out the REST gene in Ewing sarcoma cells. In
vivo experiments revealed that REST knockout tumors showed a
significant reduction in pericytes and blood vessel perfusion, with
a marked decrease in the ratio of pericytes to endothelial cells,
increased vascular leakage, and induced tumor hypoxic, leading to
inhibition of tumor growth and metastasis (Zhou et al., 2020). These
findings confirm the clinical potential of vascular target therapy in
Ewing sarcoma.

Additional studies targeting anti-angiogenesis have focused on
angiogenesis-related signal pathways. The FGF/FGFR signaling
pathway also plays an important role in promoting tumor
angiogenesis, and FGF is a pro-angiogenic factor that synergistically
induces tumor angiogenesis with VEGF (Presta et al., 2017).
Researchers found that the FGF pathway and neural cell adhesion
molecule 1 (NCAM1) were activated in the gene expression
profile of pleuropulmonary blastoma, and that intervening in the
FGF signaling pathway by targeting NCAM1 could effectively
inhibit tumor growth and progression, which provided a new
idea for pleuropulmonary blastoma treatment (Shukrun et al.,
2019). TGF-β has been shown to stimulate angiogenesis,
and the abundant vasculature in carcinoid may be a result
of the indirect effects of TGF-β within the tumor stroma.
The role of TGF-β in pulmonary carcinoid depends on its
microenvironment, and modulating TGF-β could become one
of the strategies for targeted therapy in pulmonary carcinoid
(Slodkowska et al., 2000). Activation of the EGFR signaling
pathway induces upregulation of VEGF expression to drive tumor
growth (Hung et al., 2016). The high-grade mucoepidermoid
carcinomas exhibit stronger invasiveness. In high-grade MECs,
the EGFR and ERK signaling pathways are often abnormally
activated, targeting EGFR may provide additional therapeutic
benefits, potentially improving patient survival prognosis and
quality of life (Lujan et al., 2010).
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2.2 Vascular normalization

Due to the excessive and sustained release of pro-angiogenic
factors within the tumor microenvironment, the newly formed
vascular network may fail to mature. The uneven caliber of
blood vessels and the tortuous, disorganized structure of the
vascular network subsequently contribute to increased localized
hypoxia (Guelfi et al., 2024). Furthermore, the reduced density of
pericytes and their decreased connection to endothelial cells lead to
abnormal tumor vasculature. The characteristics of these abnormal
blood vessels, including high permeability and low perfusion,
impair drug delivery and thereby decrease the effectiveness of
tumor treatment (Jiang Z. et al., 2023). In 2001, the concept of
vascular normalization was formally introduced, which involves
remodeling tumor blood vessels to restore their structure and
function to improve vascular oxygenation and perfusion, rather
than solely disrupting the growth of blood vessels (Jaszai and
Schmidt, 2019). In the context of pediatric thoracic tumors,
vascular normalization holds unique promise. Studies in pediatric
thoracic tumor models, such as alveolar rhabdomyosarcoma,
demonstrate that mTOR/VEGF inhibition (e.g., rapamycin) can
normalize vasculature and enhance radiation efficacy (Myers et al.,
2012). Studies in pediatric tumor neuroblastoma, demonstrate that
anlotinib can normalize vasculature and induces tumor regression
(Su et al., 2022). However, clinical translation remains limited,
with few trials explicitly testing vascular normalization strategies
in pediatric thoracic tumors. While anti-angiogenic drugs (e.g.,
VEGF inhibitors) reduce tumor vascularity, they may exacerbate
hypoxia and promote treatment resistance in slow-growing pediatric
tumors, which often rely on prolonged therapy (Lupo et al.,
2016). Vascular normalization, by contrast, aims to stabilize the
tumor microenvironment, potentially improving chemotherapy or
radiation sensitivity and reducing metastatic shedding (Yu et al.,
2023), a critical advantage for children with thoracic tumor. The
scarcity of dedicated studies in pediatric thoracic tumors reflects
challenges in modeling these rare cancers and concerns about
long-term vascular toxicity in developing tissues. Nevertheless,
emerging data from adult thoracic malignancies (e.g., lung cancer)
and pediatric preclinical models suggest that normalization could
mitigate hypoxia-driven aggression and therapy resistance in these
tumors, justifying its inclusion in this review (Jiang S. et al., 2023).

2.3 Immune cells are involved in regulating
tumor angiogenesis

Immune cells can coordinate the entire process of tumor
angiogenesis. Innate immune cells, such as mature dendritic
cells and M1 tumor-associated macrophages, produce cytokines
that inhibit tumor angiogenesis. Adaptive immune cells, such as
CD8+ T cells and T helper cells 1, secrete interferons, which are
effective cytokines that suppress angiogenesis and induce vascular
normalization (Delprat and Michiels, 2021). Immune cells play a
complex role in tumor angiogenesis, and combining immune cell
therapy and targeting tumor vasculature can help to personalize
tumor therapy. Ewing sarcoma is a highly vascularized tumor with
consistent expression of VEGFR2 on its blood vessels. Chimeric
Antigen Receptor (CAR) T-cell engineering directly links T cells

to specific tumor markers, enhancing their ability to recognize and
kill tumor cells. Researchers used VEGFR2-specific CAR-T cells to
selectively target and disrupt the Ewing sarcoma tumor-associated
vasculature, inducing hypoxic tumor cell death and eradicating the
tumor (Englisch et al., 2020). Neuroblastoma is characterized by
a highly vascularized nature. Studies have shown that Anlotinib,
by inhibiting pro-angiogenic factor receptors and reducing pro-
angiogenic factors, reverses the early exhaustion of CD4+ T cells.
This promotes tumor vascular normalization, leading to increased
infiltration of immune effector cells and significantly inducing the
regression of neuroblastoma (Su et al., 2022).

3 Strategies for targeting tumor
metabolism in pediatric thoracic
tumors

Tumor cells reprogram their metabolism to meet their energy
demands, characterized by upregulation of aerobic glycolysis,
increased fatty acid synthesis, and enhanced amino acid catabolism.
As one of the important markers in the process of malignant tumor
occurrence and development, metabolic reprogramming provides
an important material and energy basis for tumor cell proliferation
and metastasis, in which glucose metabolism, fatty acid metabolism
and amino acid metabolism play important roles (Xiang et al.,
2023). Metabolic reprogramming not only acts on tumor cells but
also regulates tumor by influencing the tumor microenvironment
(Zhang et al., 2024). Therefore, targeted therapies based on tumor
metabolism have gained widespread attention. Targeted drugs
developed for glucose metabolism, lipid metabolism, and amino
acid metabolism have shown promising results in both basic
research and clinical trials (Wang et al., 2024). Then we provide
a systematic exposition of metabolic reprogramming in pediatric
thoracic solid tumors, and this may help in recognizing tumor
vulnerabilities and identifying new therapeutic targets.

3.1 Glycolysis and oxidative
phosphorylation

Glycolysis and mitochondrial oxidative phosphorylation are
two main pathways of cellular energy metabolism, and their roles in
pediatric thoracic solid tumors are complex and diverse. Glycolysis
is a process in the cytoplasm where glucose is broken down into
pyruvate, and even under aerobic conditions, tumor cells tend to
generate energy through glycolysis, a phenomenon known as the
Warburg effect. The key enzymes in the glycolytic process, such
as hexokinase, phosphofructokinase, and pyruvate kinase, have
become research targets for cancer therapy (Tufail et al., 2024).
Mitochondrial oxidative phosphorylation is a process that generates
ATP through the electron transport chain and the tricarboxylic acid
cycle. Mitochondrial oxidative phosphorylation not only provides
energy to the cell, but also participates in cellular anabolism and
signal transduction, which is essential for the proliferation and
survival of tumor cells (Wu et al., 2022). Studying the role of
glycolysis and mitochondrial oxidative phosphorylation not only
provides clues for understanding metabolic reprogramming in
pediatric thoracic tumors, but also offers potential targets for
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developing new therapeutic strategies. The metabolism of Ewing
sarcoma cells relies on aerobic glycolysis. Melatonin reduces
glycolytic metabolism by inhibiting the activity of HIF-1α in Ewing
sarcoma cells, leading to decreased glucose uptake, lactate levels, and
lactate dehydrogenase activity.This effectively suppresses the growth
and survival of Ewing sarcoma cells, with potential therapeutic value
(Sanchez-Sanchez et al., 2015). MYCN proto-oncogene (MYCN)
acts as both an oncogenic driver and a metabolic reprogramming
regulator, altering cellular energy metabolism to fuel neuroblastoma
progression (Talapatra and Reddy, 2023). Research has shown that
MYCN amplification can significantly enhance the uptake and
consumption of glucose in neuroblastoma. Specifically,MYCN, as an
oncogenic protein, directly regulates several key enzymes involved
in glucosemetabolism, including enzymes in the glycolytic pathway,
thereby promoting the elevation of glycolysis (Oliynyk et al.,
2019). Considering this metabolic characteristic, glycolysis
inhibitors have been used to treat MYCN-amplified neuroblastoma.
These glycolysis inhibitors effectively inhibit glycolytic activity
in MYCN-amplified cells in neuroblastoma models, thereby
reducing the energy supply to tumor cells and limiting their
proliferative capacity, demonstrating potential antitumor effects
(Levy et al., 2012; Hagenbuchner et al., 2016). MYCN also regulates
mitochondrial respiration and oxidative phosphorylation by
increasing the expression of various enzymes in neuroblastoma,
thereby supporting the rapid proliferation of tumor cells. In
this context, depletion of dihydrolipoamide succinyltransferase
can significantly inhibit the production of reduced nicotinamide
adenine dinucleotide, disrupt oxidative phosphorylation, and
subsequently impair neuroblastoma formation and inhibit tumor
invasion (Anderson et al., 2021).Moreover, the combination therapy
of vorinostat and rapamycin significantly reduced levels of two
critical glycolysis rate-limiting enzymes - Hexokinase 2 (HK2,
catalyzing the first phosphorylation step) and Glucose-6-phosphate
isomerase (GPI, mediating glucose-6-phosphate isomerization) - in
neuroblastoma models. This suppression coincided with elevated
reactive oxygen species (ROS) levels, effectively blocking tumor
metabolic reprogramming and revealing therapeutic potential for
advanced neuroblastoma (Bishayee et al., 2022).

3.2 Amino acid and nucleic acid
metabolism

Glutamine is a major amino acid in the body and a primary
fuel source for tumor cells (Jain et al., 2012). The consumption of
glutamine disrupts the redox equilibrium of tumor cells, thereby
decreasing the proliferation capacity of neuroblastoma cells and
enhancing the radiosensitivity of non-MYCN amplified tumor cell.
Targeting glutamine metabolism might be a potential therapeutic
approach for neuroblastoma (Le Grand et al., 2020). Research
has found that rhabdomyosarcoma consumes more glucose and
glutamine than healthy tissue. After receiving radiation therapy,
the rhabdomyosarcoma undergoes metabolic reprogramming,
characterized by a weakened tricarboxylic acid cycle involving
glucose and a shift towards reactions dominated by glutamine
metabolism. Inhibiting glutaminase in vivo can enhance the
effectiveness of tumor radiation therapy, suggesting that drug
targeting of glutamine metabolism could be a method to sensitize

rhabdomyosarcoma patients to radiotherapy (Patel et al., 2024).
One-carbon metabolism is a series of biochemical reactions that
involve the transfer, oxidation, or reduction of single-carbon units.
These units are crucial for the synthesis of essential biomolecules like
nucleotides, certain amino acids, and other cellular components.
The major pathways of one-carbon metabolism include serine
metabolism, glycine metabolism, and folate metabolism (Yang et al.,
2021). Researchers have discovered that the Serine-glycine-one-
carbon (SGOC) biosynthetic pathway is significantly activated
in MYCN amplified neuroblastoma cells. Tumor cells utilize the
SGOC pathway to convert carbon sources from glucose into serine
and glycine to meet their needs for rapid proliferation. Based
on this finding, researchers have used small molecule inhibitors
to effectively block the SGOC pathway, not only disrupting the
amino acid synthesis but also enhancing metabolic stress, thereby
promoting tumor cell death through autophagy (Xia et al., 2019).
Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) is a key
enzyme in the folate metabolic pathway, involved in one-carbon
metabolism, and supports tumor cell growth by maintaining the
redox homeostasis of NADPH. In neuroblastoma, by targeting and
inhibiting the activity of MTHFD1, the folate metabolic pathway
is further suppressed, increasing the level of ROS within tumor
cells, enhancing their metabolic stress, and triggering tumor cell
apoptosis, thereby exerting an anti-tumor effect (Guan et al.,
2024). MYCN enhances the dependency of neuroblastoma cells on
pyrimidine nucleotide synthesis by upregulating enzymes related
to pyrimidine biosynthesis, such as dihydroorotate dehydrogenase
(DHODH). Considering this metabolic characteristic, researchers
have inhibited tumor progression by genetically editing or
pharmacologically inhibiting DHODH. Additionally, using
dipyridamole to inhibit nucleotide transport, in combination with
DHODH inhibitors, has augmented the therapeutic efficacy against
neuroblastoma (Yu et al., 2021). The EWS/FLI fusion gene (EF)
drives metabolic reprogramming, diverting glycolytic intermediates
towards the synthesis of serine and glycine to support the occurrence
and development of Ewing sarcoma. Key regulatory enzymes
in these metabolic reprogramming processes may become new
therapeutic targets (Tanner et al., 2017).

3.3 Lipid metabolism

Lipids are one of the three major nutrients essential for
maintaining life functions, energy storage, and metabolic
homeostasis (Snaebjornsson et al., 2020). Lipid metabolism
reprogramming is a significant metabolic characteristic of
tumor, referring to the process where tumor cells readjust their
lipid metabolic pathways in response to various internal and
external stimuli. This adaptation promotes tumor to cope with
new physiological conditions and sustains its rapid growth
(Broadfield et al., 2021). In normal cells, the majority of lipids
required for metabolism are obtained through dietary intake or
synthesized in the liver. However, in tumor cells, lipid metabolism
reprogramming favors de novo lipid synthesis, with lipids being
stored inside the cells in the form of lipid droplets, and enriched in
hypoxic tissue (Cao, 2019; Shakya et al., 2021). Citrate located in
the cytosol is transformed into acetyl-CoA through the catalysis of
ATP-citrate lyase. Subsequently, under the influence of acetyl-CoA
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carboxylase (ACC) and fatty acid synthase (FASN), acetyl-CoA is
utilized for the synthesis of palmitic acid. Furthermore, stearoyl-
CoA desaturase 1 (SCD1), long-chain fatty acid elongases, and fatty
acid desaturase two are capable of further modifying and elongating
palmitic acid, thereby generating fatty acids with diverse chain
lengths and degrees of saturation (Jeon et al., 2023). Fatty acids
can be oxidized and decomposed under the catalysis of a series of
enzymes, generating energy, with β - oxidation being the principal
catabolic pathway, carnitine palmitoyltransferase 1 (CPT1), a crucial
rate-limiting enzyme in fatty acid β-oxidation (Ngo et al., 2023).
Malonyl - CoA decarboxylase (MCD) is an important enzyme
in cellular fatty acid oxidation (Ussher et al., 2016). Clinically
actionable targets in this rewired metabolism include:

FASN: As a key enzyme catalyzing de novo fatty acid synthesis,
FASN is activated in pediatric osteosarcoma with lung metastasis,
suggesting that FASN is an important target for pediatric thoracic
solid tumors (Liu et al., 2012).

ACC: The ACC is also a rate-limiting enzyme for fatty acid
synthesis. Targeted inhibition of ACC will block fatty acid synthesis,
thereby promoting neuroblastoma differentiation and reducing
tumor load (Ruiz-Perez et al., 2021).

CPT1: In neuroblastoma, the suppression of CPT1, a crucial
rate-limiting enzyme in fatty acid β-oxidation, results in a
reduced extent of fatty acid β-oxidation and subsequently inhibits
tumor growth (Oliynyk et al., 2019).

MCD: In rhabdomyosarcoma models, pharmacological
inhibition of malonyl-CoA decarboxylase disrupted this balance
by elevating malonyl-CoA levels and suppressing fatty acid
oxidation, ultimately arresting cell cycle progression and impairing
proliferation (Miyagaki et al., 2021).

4 Discussion

Pediatric thoracic solid tumors should be treated with a
multidisciplinary approach. Targeting tumor blood vessels has
emerged as an important strategy in tumor treatment, aimed
at improving tumor blood supply, enhancing drug delivery, and
increasing therapeutic effectiveness. However, targeting tumor
vasculature still faces several challenges. One of the primary
difficulties arises from the heterogeneous nature of tumor blood
vessels. Tumors contain various cell types and tissues, which
results in blood vessels with different morphological and functional
characteristics across different regions of the tumor. This makes
strategies to normalize tumor blood vessels more complex. The
tumor microenvironment is composed of diverse cell types,
including tumor cells, immune cells, and fibroblasts, which
interact with the blood vessels in complex ways. These cells can
release a variety of factors that influence the process of blood
vessel normalization. Despite these challenges, ongoing research
aims to develop more effective strategies to normalize tumor
blood vessels and improve the delivery of tumor treatments. By
better understanding the tumor vasculature and its interactions
with the surrounding cells, scientists hope to overcome these
obstacles and enhance the efficacy of vascular-targeted therapies.
Tumor vascular normalization has emerged as a promising
strategy to enhance the effectiveness of tumor treatments.
However, Current methods to detect the therapeutic window for

vascular normalization (histological/imaging techniques) face
reproducibility and operational limitations, necessitating new
biomarkers. Despite promising drugs, intrinsic/acquired resistance
underscores the need to decipher vessel phenotypes and resistance
mechanisms for personalized therapies. Recent clinical trials
underscore the translational potential of vascular-targeting agents
in pediatric thoracic tumors. For instance, bevacizumab, when
combined with irinotecan, topotecan, or temozolomide in relapsed
neuroblastoma, achieved a protocol-defined success criteria for
overall response (complete or partial) rate and appeared to improve
progression-free survival by normalizing aberrant vasculature and
improving drug delivery (Moreno et al., 2024). Similarly, the multi-
kinase inhibitor anlotinib reduced perfusion in pediatric soft tissue
sarcomas, correlatingwith prolonged disease stabilization (Li, 2021).
These findings highlight vascular modulation as a viable adjunct to
cytotoxic regimens. By gaining deeper insights into these factors, we
can develop more refined and personalized treatment strategies for
patients, ultimately maximizing the chances of successful treatment
outcomes for pediatric thoracic solid tumors.

The metabolic pathways of glycolysis and oxidative
phosphorylation in tumor were highly complex and interconnected.
For example, under the Warburg effect, tumor cells tend to
favor glycolysis even when oxygen is abundant, yet oxidative
phosphorylation within these cells is not entirely suppressed. The
dynamic balance and switching mechanisms between these two
pathways remain poorly understood. This complexity makes it
challenging to precisely target metabolic pathways, as interventions
aimed at a single metabolic step may trigger compensatory changes
in other metabolic pathways. Such compensatory adaptations can
undermine the effectiveness of targeted therapies, highlighting the
need for a deeper understanding of these interconnected metabolic
networks to develop more effective and specific therapeutic
strategies. Metabolic interventions are gaining traction in pediatric
oncology, with early-phase trials demonstrating feasibility. Notably,
DCA restored mitochondrial respiration in neuroblastoma models,
inhibits neuroblastoma growth by specifically acting against
malignant undifferentiated cells—a critical advantage in pediatric
populations (Vella et al., 2012). Amino acid and nucleic acid
metabolic products play diverse roles in tumor. For instance, amino
acids not only serve as building blocks for protein synthesis but also
participate in cell signaling, energy metabolism, and various other
processes. This multifunctionality complicates the development of
drugs targeting amino acid metabolism, as inhibiting tumor cell
growth may unintentionally affect other physiological processes.
Genetic heterogeneity exists across different tumor types and
even within the same tumor, leading to considerable variation in
the reprogramming of amino acid and nucleic acid metabolism.
For example, specific genetic mutations may alter the expression
of amino acid transporters, thereby changing the intracellular
amino acid metabolic state. This heterogeneity makes it nearly
impossible to develop universal therapeutic strategies targeting
amino acid and nucleic acid metabolism, necessitating personalized
metabolic analysis and treatment design for each patient. Lipid
metabolism encompasses the uptake, synthesis, and degradation
of key lipid molecules, including fatty acids, phospholipids,
and cholesterol, and these processes are continually dynamic
in tumor. For instance, tumor cells can adapt the rates of lipid
synthesis and degradation in response to nutrient availability and
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microenvironmental signals. This versatility and dynamism make
it challenging to precisely identify the key regulatory points in
lipid metabolism, which, in turn, complicates the development
and application of targeted therapies aimed at lipid metabolism.
The interplay between angiogenesis and metabolism offers
untapped therapeutic synergies. Metabolic symbiosis induced by
antiangiogenic therapy highlights cancer ability to evade therapeutic
barriers by hijacking homeostatic mechanisms to fuel tumor
evolution and undermine targeted treatments, dual inhibition of
LDHA and VEGF receptors in murine models induced more tumor
regression than monotherapy (Allen et al., 2016).

In summary, metabolic reprogramming encounters numerous
challenges in the treatment of pediatric thoracic solid tumors.
Although the metabolic pathways of pediatric thoracic solid tumors
have been gradually discovered and continuously refined, most
research has focused on tumor phenotypes rather than delving
into downstream regulatory mechanisms. Given the complexity of
metabolic mechanisms and the wide distribution of downstream
targets for single regulatory factors, it is particularly important
to identify the key metabolic dependency sites of tumors. It is
hoped that future interdisciplinary approaches, utilizing multi-
omics and organoid technologies, will provide new insights for
targeted metabolic therapies in pediatric thoracic solid tumors,
paving the way for the development of precision treatment strategies
and improving patient prognosis.
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