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Photodynamic therapy (PDT) holds considerable promise as a tumor treatment
modality, characterized by its targeted action, compatibility with other
therapeutic approaches, and non - invasive features. PDT can achieve
remarkable spatiotemporal precision in tumor ablation through the generation
of reactive oxygen species (ROS). Nevertheless, despite its potential in tumor
treatment, PDT encounters multiple challenges in practical applications. PDT is
highly oxygen - dependent, and thus the effectiveness of PDT can be markedly
influenced by tumor hypoxia. The co-existence of abnormal vasculature and
metabolic deregulation gives rise to a hypoxic microenvironment, which not
only sustains tumor survival but also undermines the therapeutic efficacy of
PDT. Consequently, targeting tumor angiogenesis and metabolism is essential
for revitalizing PDT. This review emphasizes the mechanisms and strategies for
revitalizing PDT in tumor treatment, predominantly concentrating on interfering
with tumor angiogenesis and reprogramming tumor cell metabolism. Lastly, the
outlining future perspectives and current limitations of PDT are also summarized.
This could provide new insights and methodologies for overcoming the
challenges associated with PDT in tumor treatment, ultimately advancing the
field of PDT.

KEYWORDS
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1 Introduction

Malignant tumors have threatened human health and are one of the major causes of
death. Currently, tumor treatment modes in clinical practice are mainly based on surgery,
radiation therapy and chemotherapy. However, in many cases, surgical treatment does not
achieve complete resection of tumor tissues, and there is a risk of tumor metastasis and
recurrence (Raskov et al., 2020). Additionally, radiotherapy and chemotherapy lack tumor
specificity, resulting in significant toxic side effects that can damage normal tissues and
lead to various adverse reactions in patients (Wang et al., 2024). Therefore, there is an
urgent need to develop novel tumor treatment modalities to address the limitations of
traditional therapeutic approaches. In recent years, emerging therapeutic modalities such
as photodynamic therapy (PDT) have demonstrated significant potential in the treatment
of malignant tumors. PDT has garnered attention for its minimal invasiveness, excellent
spatiotemporal controllability, and high biocompatibility (Overchuk et al., 2023). PDT
utilizes photosensitizers that selectively accumulate in tumor cells. Upon activation by
specific light wavelengths, these photosensitizers generate reactive oxygen species (ROS),

Frontiers in Cell and Developmental Biology 01 frontiersin.org

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2025.1558393
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2025.1558393&domain=pdf&date_stamp=2025-03-27
mailto:xb_scu.edu@hotmail.com
mailto:xb_scu.edu@hotmail.com
https://doi.org/10.3389/fcell.2025.1558393
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcell.2025.1558393/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1558393/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1558393/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Lv et al. 10.3389/fcell.2025.1558393

FIGURE 1
Schematic illustration of different strategies for rejuvenating
photodynamic therapy. (A) Nanoparticles passively accumulate in
tumors due to the enhanced permeability and retention (EPR) effect,
where they can be activated with light to produce ROS; (B) The latest
strategies for rejuvenating PDT, from vascular normalization,
regulating extracellular matrix (ECM), and metabolic reprogramming
to reverse hypoxia.

leading to the destruction of tumor cells. PDT revolutionizes
oncological treatment through its cell-selective photochemical
reactions, offering new dimensions for therapeutic optimization
(Zolyniak-Brzuchacz et al., 2024). We review the latest strategies
focused on two primary approaches, regulating tumor angiogenesis
and disrupting tumor cell metabolism (Figure 1). Furthermore,
the review outlines future perspectives and current limitations
of PDT, highlighting the challenges that remain in optimizing
these strategies for clinical use. These insights not only provide a
comprehensive overview of potential interventions, but also serve as
a guide to effectively translating PDT into clinical oncology practice.

2 Photocatalytic treatment
mechanisms

PDT is a therapeutic method in which a photosensitizer (PS),
stimulated by an external light source, converts oxygen inside the
tumor cells into toxic ROS, which induces cell death by oxidizing
intracellular biomolecules (Wang K. et al., 2022). Upon activation
by light, the PS undergoes an energy transition from the ground
state to a short-lived singlet state, which then undergoes intersystem
crossing to a more stable triplet state (Jiang et al., 2023). From
there, the PS can either release energy as heat or fluorescence,
or interact with endogenous substances to generate free radicals,
such as hydrogen peroxide and superoxide anion. The formation
of ROS occurs through two mechanisms (Aebisher et al., 2024).
Type IMechanism, the PS participates in electron transfer processes,
generating radicals. These radicals can react with oxygen to produce
ROS such as superoxide anion (O2

−), hydroxyl radical (OH·), and

hydrogen peroxide (H2O2). Type II Mechanism, the PS transfers
energy from its triplet state to molecular oxygen (3O2), resulting
in the formation of highly reactive singlet oxygen (1O2), which
is capable of inducing cell damage and death (Figure 2). Type
I and type II reactions can be carried out simultaneously, and
the ratio between them mainly depends on the photochemical
and photophysical properties of PS and the concentrations of
substrates and cellular oxygen (Yuan et al., 2021). Meanwhile,
the two reactions can trigger different modes of cell death,
in addition to the “conventional” cell death pathways such as
apoptosis, necrosis and autophagy, other “unconventional” cell
death modes such as ferroptosis and pyroptosis were also triggered.
These findings provide new insights into the PDT-induced death
signaling pathway (Mishchenko et al., 2022).

3 Alleviating tumor hypoxia and
enhancing PDT efficacy

Despite the promising potential of PDT in tumor treatment,
several drawbacks have emerged during its clinical application,
garnering increasing attention in current research. The hypoxic
tumormicroenvironment, the existence ofmetabolic reprogramming
defense mechanism, and abnormal tumor angiogenesis greatly limit
the efficacy of PDT, and make the clinical application of PDT face
great challenges. Firstly, most PDT processes are oxygen-dependent,
which often leads to reduced efficacy when treating hypoxic tumors
(Srivastava et al., 2023). Secondly, tumorhypoxiaprimarily arises from
structural abnormalities and functional dysregulation of tumor blood
vessels, which lead to insufficient oxygen supply, thereby limiting
the overall efficacy of photodynamic therapy (Guo et al., 2023).
Thirdly, tumor metabolic abnormalities, such as aberrant glycolysis,
abnormal mitochondrial metabolism, significantly influence the
efficacy of PDT (Lin et al., 2024).

In recent years, various strategies have been reported to improve
tumor hypoxia with the aim of enhancing the efficacy of PDT.
One of the strategies lies in the nano-delivery systems that carry
oxygen to ameliorate the hypoxic microenvironment in tumors
(Luo et al., 2018). Another significant consideration is the supply
of oxygen, strategies focuses on in situ oxygen generation within
tumors to alleviate oxygen deficiency (Gao et al., 2020). In addition
to oxygenation strategies, some studies have applied oxygen-
independent PDT mechanisms to improve treatment outcomes
(Yi et al., 2020). Recent advancements in oxygen-independent
PDT leverage nanomaterials that generate cytotoxic free radicals
under hypoxia. For example, AIE-active phenanthroimidazole
derivatives (AQPO and AQPI) with minimized singlet–triplet
splitting, which shift ROS production from oxygen-dependent
singlet oxygen (Type-II) to hypoxia-tolerant free radicals (Type-
I), demonstrating enhanced therapeutic efficacy in vivo (Xiao Y.-
F. et al., 2022). This approach not only bypasses hypoxia limitations
but also disrupts redox homeostasis, amplifying metabolic stress
in tumors. Manganese oxide nanosystems catalytically convert
H2O2 to O2, addressing hypoxia while enhancing PS activation
(Liu et al., 2019). Furthermore, Mn2+-coordinated PSs exhibit
photocatalytic O2 regeneration, sustaining ROS production in
deep tumor regions, these systems synergize with anti-angiogenic
therapies by normalizing vessel permeability and reducing VEGF
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FIGURE 2
Schematic representation of photodynamic processes in tumor treatment. PS, Photosensitizer; S0, Ground state; S1, Excited singlet state; T1, Excited
triplet state; ISC, Intersystem crossing.

expression (Zuo et al., 2024). However, studies aimed at improving
the tumor hypoxic microenvironment by intervening in tumor
angiogenesis and metabolism to enhance PDT have not received
adequate attention.

Extracellular matrix (ECM), a structure that not only supports
blood vessel formation and stability, but also plays an important
role in tumor growth and metastasis (Yao et al., 2020). The
ECM is a critical regulator of tumor hypoxia and therapeutic
resistance. Excessive ECM deposition increases tumor stiffness
and interstitial fluid pressure, impairing both oxygen diffusion
and photosensitizer penetration into tumors (Hu et al., 2020).
Emerging strategies now prioritize ECM remodeling to alleviate
hypoxia and amplify PDT efficacy. For instance, Li et al. designed
ultrasound-responsive nanoparticles (UNPS) that generate ROS
under hyperbaric oxygen to degrade collagen, thereby reducing
ECMdensity.This dual-action approach enhanced oxygen perfusion
and nanoparticle penetration, achieving superior PDT effects
even at low laser doses (Li et al., 2018). Similarly, Cheng et al.
developed a CAF-reprogramming nanomaterial (FPC@S) that
degrades ECM proteins via localized ROS while releasing SIS3 to
suppress CAF-driven ECM overproduction. This dual modulation
normalized tumor vasculature and oxygenation, creating a favorable
microenvironment for PDT (Qiu et al., 2024). Deformable
nanomaterials like T-PFRT further address spatial barriers:
MMP2-responsive size-shrinking enables ECM penetration, while
TGF-β inhibition (via LY364947) prevents pathological ECM
deposition. Combined with oxygen-loaded hemoglobin (OxyHb)
and photosensitizers, this platform synergistically alleviates hypoxia
and enhances ROS generation (Liang et al., 2021). Pancreatic
ductal adenocarcinoma (PDAC) presents a unique challenge for
PDT due to its dense desmoplastic stroma and hypovascular
microenvironment, which severely limits nanomedicine penetration
and oxygen availability. Recent studies have addressed this
by developing stroma-targeting nanoplatforms. For instance,

iron oxide-based nanoparticles conjugated with collagenase-
I were shown to degrade extracellular matrix components in
PDAC models, enhancing PDT efficacy by improving both
photosensitizer delivery and oxygen perfusion (Shah et al.,
2022). Similarly, in glioblastoma multiforme (GBM), where the
blood-brain barrier (BBB) restricts drug accumulation, BBB-
penetrating nanoparticles loaded with chlorin e6 and catalase
demonstrated dual functionality: they alleviated hypoxia via H2O2
decomposition while achieving deep-tissue PDT activation under
MRI guidance (Wu C. et al., 2024).

4 Emerging photodynamic
nanotechnological approaches

Angiogenesis plays a pivotal role in tumorigenesis, serving as a
prerequisite for tumor initiation and a foundation for its growth,
invasion, and metastasis. Metabolic reprogramming refers to the
process by which tumor cells alter their metabolic pathways to
meet the demands of rapid proliferation and survival. Building
on the identified challenges in PDT, this part explores emerging
photodynamic nanotechnological approaches that demonstrate
enhanced PDT efficacy, with key methodologies and comparative
advantages summarized in Table 1.

5 Targeted vascular enhanced
photodynamic therapy

Abnormal vascular structures within the tumor
microenvironment often lead to inadequate accumulation of
photosensitizers, thereby weakening the therapeutic efficacy of PDT
(Yue et al., 2021). Tumors subjected to low-dose PDT not only fail to
eliminate tumor cells but also activate signaling pathway molecules

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1558393
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Lv et al. 10.3389/fcell.2025.1558393

TABLE 1 Intervention of tumor vasculature and metabolism enhanced photodynamic therapy.

Strategy type Nanocomposites Mechanism Advantages Limitations References

Vascular normalization LCL/ZnO LCL/ZnO regulated the
homeostasis of tumor
vascular endothelial cells
by activating
TRPV4-eNOS signalling.

Selectively targeting
tumor cells and
multifunctional therapy

Effectiveness relies on
tumor-specific H2O2
concentrations, which
may vary across cancer
types or stages.

Zhang et al. (2022a)

Vascular normalization DES Dexamethasone was
used to normalize
vascular function within
the TME to reduce local
hypoxia.

Enhanced tumor
penetration and
improved PDT efficacy

No data on
patient-derived models
and clinical trials

Zhu et al. (2020)

Vascular normalization Erb-AAPS Thalidomide to remodel
the tumor vasculature
and increase the tumor
accumulation of the
micelles.

Combined strategies
significantly improve
antitumor effects by
synergizing nanoparticle
accumulation and active
targeting

Efficacy relies on
tumor-specific TME
features, which may vary
across patients or cancer
types.

Yan et al. (2021)

Vascular normalization ECCaNPs Erlotinib normalizes
tumor blood vessels by
inhibiting the
EGFR/ERK/AKT axis to
enhance intra-tumoral
oxygenation.

pH-Responsive Release;
Multifunctional Therapy;
Biocompatibility and
Targeting

Double-emulsion
process may hinder
scalability and
reproducibility. Efficacy
may vary in tumors with
low EGFR expression or
resistance mutations.

Liu et al. (2022)

Vascular normalization PA7R@siPD-L1 A7R dissociated from
the micelle complex
targets VEGFR-2 and
NRP-1 on tumor
endothelial cells to
normalize blood vessels.

Restructures chaotic
tumor vasculature,
alleviates hypoxia, and
enhances immune-cell
infiltration.

Multifaceted design
(PDT + siRNA +
peptide) complicates
manufacturing and
clinical translation.

Yi et al. (2022)

Vascular normalization SPMI/3 PFKFB3 kinase
inhibitor-based
nanoplatforms
normalized tumor
vessels.

Tumor-Targeted
Delivery; Combines
PDT and PTT for potent
early-stage tumor
inhibition

Degradation pathways
and byproducts of
polydopamine (PDA)
remain undefined,
raising safety concerns.

Yu et al. (2024)

Intervention in Aerobic
Glycolysis

C&S/Fe@S-S-OSCLMs Sal-B-Fe alleviates tumor
hypoxia by inhibiting
aerobic glycolysis.

Focuses on
cancer-specific glucose
metabolism, improving
treatment precision and
sparing healthy tissues.

Efficacy relies on tumor
GSH levels, which may
vary across cancer types
or stages.

Su et al. (2023)

Intervention in Aerobic
Glycolysis

Polymer@Gef-YAP-
siRNA NPs

Hypoxia was
significantly alleviated by
YAP-siRNA and
GefHIF-1α expression
and inhibition of
glycolysis.

Combines targeted
therapy (Gefitinib), gene
therapy (YAP-siRNA),
and photodynamic
therapy (PDT) to
overcome EGFR-TKI
resistance in cancer.

Potential off-target
effects and transient gene
silencing require further
optimization.

Huang et al. (2022)

Intervention in Aerobic
Glycolysis

TCe6/CHC NPs CHC regulates lactate
metabolism to spare
more intracellular
oxygen for PDT.

TPGS modification
improves Ce6’s solubility,
stability, and cellular
internalization. CHC
alleviating tumor
hypoxia.

Multi-step chemical
coupling and
co-assembly may hinder
scalability.

Qin et al. (2021)

(Continued on the following page)
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TABLE 1 (Continued) Intervention of tumor vasculature and metabolism enhanced photodynamic therapy.

Strategy type Nanocomposites Mechanism Advantages Limitations References

Intervention in
Mitochondrial OXPHOS

ATO-IPS@NPs The released ATO targets
mitochondrial complex
III to inhibit cellular
respiration

Using
low-oxygen-consuming
Type-I photosensitizer
(IPS), preserving
intratumoral oxygen for
enhanced PDT efficacy.

Tumor-specific
OXPHOS activity
variations may reduce
ATO’s effectiveness in
some cancers.

Zhang et al. (2022b)

Intervention in
Mitochondrial OXPHOS

HAS-Ce6/NTZ/FCS NPs The conventional
anti-parasitic drug
nitensamide (NTZ)
regulates tumor cell
metabolism to effectively
improve tumor hypoxia.

Fluorinated chitosan
(FCS) reversibly
modulates bladder
epithelium tight
junctions, enabling
efficient tumor
penetration for
intravesical PDT.

Self-assembled NPs may
face aggregation or
inconsistent drug release
during storage or in vivo.

Wang et al. (2021)

Intervention in
Mitochondrial OXPHOS

3BP@PLGA-IR780 3BP can effectively
inhibit the oxygen
consumption of tumor
cells by inhibiting
mitochondrial
respiratory chain.

IR780 enables precise
subcellular localization
in mitochondria,
enhancing ROS
generation at the site of
energy metabolism.

3BP’s efficacy depends
on tumor glycolytic
activity, which may vary
across cancer types.

Wen et al. (2021)

Intervention in
Glutamine Metabolism

BCH NPs GLS inhibitor BPTES
blocked the glutamine
metabolic pathways by
inhibiting GLS activity.

Enhancing redox
imbalance for
tumor-selective killing.

Glutamine-independent
cancer cell
subpopulations may
evade therapy.

Yu et al. (2023)

Intervention in
Glutamine Metabolism

C9SN C968-mediated GSH
deprivation through
inhibiting glutamine
metabolism prevented
PDT-generated ROS
from being annihilated
by GSH

Amplifying intracellular
oxidative stress and
remodeled the ITM by
blocking glutamine
metabolism.

more work will need to
be done to explore the
inhibitory effect of C9SN
on other tumor cells,
especially those with
lower glutaminase
activity

Mai et al. (2023)

Intervention in
Glutamine Metabolism

CeV CeV can reduce the
uptake of glutamine
through
V9302-mediated
alanine-serine-cysteine
transporter of type-2
(ASCT2) inhibition

Leading to a reduced
glutathione (GSH)
production and an
amplified oxidative
stress.

Efficacy relies on tumor
glutamine addiction;
resistant clones may
bypass ASCT2
inhibition.

Zhao et al. (2022a)

Intervention in
Cholesterol Metabolism

CPSA NPs The SIM released from
NPs could inhibit the
HMGCR from reducing
the cholesterol level in
tumor tissue specifically

Ce6-mediated PDT/PTT
induces immunogenic
cell death (ICD),
releasing tumor antigens
to activate adaptive
immunity and immune
memory.

Chronic SIM use could
induce myopathy or
hepatotoxicity.

Song et al. (2023)

Intervention in
Cholesterol Metabolism

EALP AVA reprograms the
immunosuppressive
microenvironment by
blocking cholesterol
metabolism.

Amplifying antitumor
immunity alongside
IR780-induced
immunogenic cell death.

Long-term toxicity and
metabolic fate of MnO2
nanoparticles remain
unverified.

Jian et al. (2022)

crucial for tumor survival, thereby facilitating tumor survival and
recurrence (Wan et al., 2021). Therefore, how to solve the obstacles
of photosensitizer delivery, improve the uptake and aggregation
of photosensitizer in the tumor, reduce tumor recurrence, and thus
improve the efficacy of photodynamic therapy is a scientific problem
that needs to be solved urgently. Recent strategies have focused on

combining PDT with anti-angiogenic agents, offering a potential
therapeutic synergy. However, growing evidence suggests that
anti-angiogenic drugs are unable to sustain long-term inhibition
of tumor angiogenesis, and do not significantly improve long-
term survival outcomes (Broekgaarden et al., 2015). Furthermore,
excessive anti-angiogenic treatment can exacerbate tumor hypoxia,
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impairing PDT efficacy (Loges et al., 2009). In recent years, some
approaches have emerged to improve photodynamic antitumor
efficacy, including the use of vascular normalization strategies.

5.1 Vascular interruption strategy

PDT-induced vascular damage acts as a double-edged sword
in cancer therapy. The rapid generation of reactive oxygen species
(ROS) during PDT induces endothelial cell apoptosis, platelet
activation, and thrombosis, leading to vascular occlusion within
minutes to hours post-treatment (Tao et al., 2022). While this
“vascular shutdown” effectively starves tumors, surviving hypoxic
cells at the tumor periphery often upregulate pro-angiogenic factors
(e.g., VEGF, HIF-1α) and adopt aggressive metabolic phenotypes
(e.g., enhanced glycolysis, lactate shuttling), driving recurrence and
metastasis (Jung et al., 2021). To address this paradox, recent
advances in photodynamic nanomedicine have focused on two
synergistic strategies.

First, spatiotemporal control of vascular damage, nanoparticle-
based PDT platforms (e.g., liposomes, polymeric micelles) enable
precise spatial targeting of tumor vasculature while sparing normal
tissues. For example, RGD peptide-modified nanoparticles selectively
bind to αvβ3 integrins overexpressed on tumor endothelial cells,
enhancing vascular disruption efficiency and reducing off-target
effects (Javid et al., 2024).Additionally, light-triggeredROSgeneration
fromphotosensitizers (e.g., chlorin e6) encapsulated inpH-responsive
carriers allows controlled ROS release only within the acidic
tumor microenvironment, minimizing premature vascular damage
(Yang et al., 2018). Second, combinatorial vascular modulation,
co-delivery of PDT agents with anti-angiogenic drugs (e.g.,
bevacizumab-conjugated nanoparticles) to prevent compensatory
revascularization (Tangutoori et al., 2016).These strategiesunderscore
the transformative potential of photodynamic nanomedicine in
balancing acute vascular destruction with long-term metabolic
regulation, ultimately mitigating relapse risks.

5.2 Vascular normalization strategy

Tumors often exhibit rapid and aberrant angiogenesis, which
results in malformed blood vessels that hinder the effective delivery
of photosensitizers in PDT. Targeting these pathological blood
vessels presents a rational therapeutic strategy (Yang et al., 2021).
In 2005, Jain and colleagues introduced the concept of “vascular
normalization,” suggesting that anti-angiogenic therapies, when
administered within specific dosages and time windows, could
restore balance in tumor vasculature, leading to more organized
blood vessels, increased perfusion, and a temporary normalization
of the tumor vasculature. This normalization alleviates tumor
hypoxia, improves the delivery and accumulation of therapeutic
agents, and enhances the overall therapeutic efficacy (Xiao M. et al.,
2022). Vascular normalization has thus emerged as a promising
approach to enhance PDT outcomes, ultimately improving PDT
effectiveness (Figure 3).

A recent study reported a novel nanomaterial, SA-PEG-
MPDA, which is loaded with indocyanine green and SPMI/3.
After irradiation with 808 nm NIR light, this nanomaterial

FIGURE 3
Vascular normalization strategies for enhancing PDT tumor therapy.
[Created with BioGDP.com (Jiang et al., 2025)].

demonstrated significant antitumor efficacy. Moreover, SA-PEG-
MPDA facilitated the normalization of tumor vasculature by
increasing the coverage of laminin and pericytes, decreased the
permeability of blood vessels, and improved the hypoxia of
tissues, thus effectively enhancing the therapeutic effect of PDT
(Xu et al., 2021). Previous studies have shown that the multi-
targeted tyrosine kinase inhibitor, Lenvatinib, can inhibit vascular
endothelial growth factor receptors (VEGFRs) and induce tumor
vascular normalization (Liu et al., 2021). Tan et al. developed a
Combo-NP, a nanomaterial loaded with lenvatinib. Upon near-
infrared (NIR) light irradiation, the Combo-NP is cleaved by ROS,
releasing lenvatinib. The released lenvatinib normalizes tumor
blood vessels, reduces tumor hypoxia, and significantly enhances
the effectiveness of photodynamic therapy (Zheng XQ. et al.,
2023). Zhang et al. introduced a novel nanomaterial, LCL/ZnO,
which demonstrates significant potential in tumor vascular
normalization. LCL/ZnO promotes the normalization of abnormal
tumor vasculature, reducing tumor hypoxia, and enhancing the
overall therapeutic effect of PDT. Beyondmerely normalizing tumor
blood vessels, LCL/ZnO also extends the duration of the vascular
normalization window, improving tumor vascular perfusion. The
singlet oxygen (1O2) generated by LCL/ZnO activates signaling
pathways in tumor-derived endothelial cells, including transient
receptor potential vanilloid-4 (TRPV4) and endothelial nitric
oxide synthase (eNOS), which contribute to vascular normalization
(Zhang et al., 2022a).

6 Interfering with tumor cell
metabolism to enhance
photodynamic therapy

Metabolic reprogramming is often characterized by enhanced
glycolysis, increased lipid synthesis, and alterations in amino
acid metabolism, enabling tumor cells to thrive in nutrient-
deprived and hypoxic environments. PDT has emerged as
a promising treatment modality, where a photosensitizer
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generates ROS under specific light irradiation to selectively
induce tumor cell death. However, the metabolic adaptability
of tumor cells may profoundly influence the efficacy of PDT.
Recent studies suggest that metabolic reprogramming can
not only affect the uptake and activation of photosensitizers
but may also contribute to tumor microenvironmental
hypoxia, limiting ROS generation. Therefore, exploring the
impact of tumor metabolic reprogramming on photodynamic
therapy can help provide new ideas and strategies to
improve the clinical outcomes of PDT. This section will
focus on recent metabolic reprogramming strategies closely
associated with PDT.

6.1 Modulating glycolysis to enhance
photodynamic therapy

Aerobic glycolysis stands as one of the most extensively
studied metabolic reprogramming phenomena within tumors. This
process was first identified by the German scientist Warburg, who
observed that tumor even in an environment rich in oxygen,
preferentially engage in aerobic glycolysis to sustain the rapid
proliferation (Ma and Zong, 2020). Glycolysis allows tumor cells to
competitively consume large amounts of glucose to fuel their growth
(Wu D. et al., 2024). As tumor cells enhance their aerobic glycolysis,
they produce substantial amounts of metabolic byproducts. This
results in an accumulation of lactate and exacerbates hypoxia
within the tumor microenvironment. Furthermore, photodynamic
therapy, which induces oxygen consumption and microvascular
damage, further contributes to the local hypoxia in the tumor
(Zhou Y. et al., 2022). This hypoxic condition drives additional
glycolytic activity, creating a vicious cycle. Therefore, targeting
tumor glycolysis to enhance the efficacy of PDT in treating hypoxic
tumors presents a highly feasible and promising approach (Figure 4).
For example, Zhao et al. developed a tumor-targeting nanomaterial
C&S/Fe@S-S-OSCLMs to enhance PDT efficacy by specifically
inhibiting glycolysis. The loaded Sal-B component selectively
suppresses cancer-specific HK2 andGLUT1, reducing normal tissue
damage while regulating tumor glucose metabolism. The Sal-
B and Fe3+ complex releases under high glutathione (GSH) in
tumors, simultaneously inhibiting aerobic glycolysis and decreasing
oxygen consumption. This dual action alleviates tumor hypoxia and
significantly improves PDT therapeutic outcomes (Su et al., 2023).
Lactate, an inevitable product of glycolysis, is both an important
metabolic energy source and a key gluconeogenic precursor and
signaling molecule. Lactic acid acts as both an energy donor and
signaling molecule, promoting tumor metastasis. Its extracellular
accumulation creates an acidic, hypoxic tumor microenvironment,
compromising therapeutic efficacy. The presence of lactate in the
tumor microenvironment is closely related to biological behaviors
such as tumor cell growth, metastasis, neovascularization, and
immune escape (Bogdanov et al., 2022). Therefore, targeted
inhibition of lactate metabolism may be an effective strategy to
enhance photodynamic antitumor therapy (Tian et al., 2022). The
nanomaterial Dc&Ce6@MBNP designed by Zhou et al. carries
the photosensitizer Ce6 and the lactate dehydrogenase inhibitor
diclofenac (Dc). This nanomaterial releases Dc during PDT for
tumor treatment, inhibiting the activity and expression of LDHA,

reducing lactate production, and further weakening tumor cell
glycolysis and angiogenesis, thus enhancing the therapeutic effect
of PDT (Zhou Y. et al., 2022). Zhao et al. introduced a novel self-
delivery ternary bioregulators (named TerBio). The construction
of TerBio is based on the self-assembly of a photosensitizer
(Ce6), a TGF-β antagonist SB505124 (SB), and the anti-tumor
drug lonidamine (Lon). The release of SB and Lon effectively
reprograms the tumor microenvironment (TME), inhibits the TGF-
β signaling pathway and lactate (LA) efflux, thereby reversing
the immunosuppressive microenvironment and enhancing the
photodynamic anti-tumor effect (Zhao et al., 2022b).

6.2 Intervention with mitochondrial
OXPHOS to enhance photodynamic
therapy

Although tumor cells predominantly rely on glycolysis for
energy production, mitochondrial oxidative phosphorylation
(OXPHOS) also plays a crucial role. Numerous studies have
shown that mitochondria can adapt to the metabolic demands
of tumor cells, a phenomenon referred to as “mitochondrial
plasticity” (Ward and Thompson, 2012). The mitochondrial
OXPHOS, remains indispensable for tumor cell growth and
proliferation. While most tumor cells rely on aerobic glycolysis,
they also require OXPHOS to generate ATP. Some tumor cell
can even switch flexibly from aerobic glycolysis to OXPHOS to
meet energy demands (Smolkova et al., 2011). As the energy
hub of the cell, mitochondria are the site of cellular respiration.
Research has shown that mitochondrial-targeted PDT can
effectively inhibit tumor ATP synthesis and reduce oxygen
consumption, thereby reversing tumor hypoxia and accelerating
tumor cell apoptosis (Zhao et al., 2020). Therefore, inhibition of
mitochondrial OXPHOS could represent a promising strategy
to enhance the efficacy of PDT (Figure 5). Wu et al. proposed
a novel nanoparticle platform (TNPs/IA) designed to alleviate
the hypoxic environment of tumors by targeting OXPHOS,
which in turn enhances the efficacy of PDT. The nanomaterial
enhances PDT through encapsulated atovaquone by inhibiting
OXPHOS activity and reducing the oxygen consumption rate
to alleviate tumor hypoxia, thereby improving ROS generation
(Gao et al., 2024). Shen et al. developed MB@Bu@MnO2
nanoparticles to enhance PDT by targeting mitochondrial
oxidative phosphorylation. The butformin (Bu) component inhibits
tumor cell oxygen consumption, alleviating tumor hypoxia,
while methylene blue (MB) generates cytotoxic ROS under
laser irradiation to induce immunogenic cell death. This dual-
action system synergistically improves therapeutic outcomes
(Zhou Z. et al., 2022). Xu et al. proposed a multistage drug delivery
nano-system for synergistic photodynamic therapy of tumors
by sequential delivery of TPE-Py and RC. Mitochondria, the
target organelles of TPE-Py, mediated the efficient aggregation
of TPE-Py, and TPE-Py induced apoptosis and autophagy in
tumor cells under light conditions. Meanwhile, Rubioncolin
C, a natural naphthoquinone dimer, inhibited mitochondria-
associated OXPHOS, which enhanced the PDT effect of TPE-Py
by alleviating hypoxia (Wang J. et al., 2022).
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FIGURE 4
Salvianolic acid B (Sal-B) alleviate the tumor hypoxia through the inhibition of the aerobic glycolysis and improve the antitumor performance of PDT.
[Created with BioGDP.com (Jiang et al., 2025)].

FIGURE 5
Schematic diagram of the mitochondrial targeting nanoparticles for
efficient photodynamic therapy against the solid tumor. [Created with
BioGDP.com (Jiang et al., 2025)].

6.3 Intervention in glutamine metabolism
to enhance photodynamic therapy

Glutamine is a non-essential amino acid and a precursor of
many biomolecules, providing energy for cell growth, maintaining
cell redox homeostasis, and playing an important role in cell
growth and proliferation. Tumor cells have a significant increase
in the demand for glutamine to satisfy their energy needs for
rapid growth (Scalise et al., 2017). Glutamine is converted by
aminotransferase into α-ketoglutarate (α-KG), which enters the
tricarboxylic acid cycle (TCA) to provide energy and synthesize
precursors for tumor cells (Mates et al., 2020). In 2021, Rathmell
et al. reported that tumor cells even preferred glutamine to glucose
for energymetabolism (Reinfeld et al., 2021). In addition, glutamine
is a precursor of GSH, which helps tumor cells counteract oxidative

stress, thus promoting their survival and proliferation (Bansal
and Simon, 2018). Blocking glutamine metabolism in tumor cells
reduces reductive substances and may enhance oxidative antitumor
effects of PDT (Byun et al., 2020). A variety of mechanisms
associated with glutathione metabolism inhibition in tumors can
enhanced the antitumor effect of PDT (Figure 6). In light of this,
Zhao and colleagues developed a nanomaterial, CeV, to enhance
the antitumor efficacy of PDT (Zhao et al., 2022c). CeV utilizes
a self-assembly technique to combine chlorine e6 (Ce6) with
V9302, creating a novel nanomedicine platform. V9302 inhibits the
alanine-serine-cysteine transporter of type-2, which significantly
reduces glutamine uptake in tumor cells. This mechanism decreases
intracellular GSH levels, leading to increased oxidative stress,
which further amplifies the antitumor effects of PDT. In another
study, BVC nanoparticles enhanced photodynamic therapy by
targeting glutamine metabolism, inhibiting glutamine transport
and glutathione synthesis, and inducing tumor immunogenic
cell death (Zhao et al., 2023).

6.4 Intervention in cholesterol metabolism
to enhance photodynamic therapy

Cholesterol is one of the essential molecules for eukaryotic cell
survival and a key component of intracellular membrane structures.
Cholesterol-derived metabolites also serve as important signaling
molecules. Aberrant activation of the cholesterol biosynthetic
pathway is a hallmark of many tumor, as it supports the rapid
growth of tumor cells by providing the lipids required for cell
membrane synthesis and facilitating the transmission of critical
signaling pathways (Xue et al., 2020). Abnormal cholesterol
metabolism in tumor cells is primarily characterized by increased
cholesterol biosynthesis, enhanced exogenous cholesterol uptake,
elevated cholesterol esterification and derivative production, as
well as alterations in the tumor immune microenvironment
(Chimento et al., 2018). In addition to directly influencing
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FIGURE 6
Strategies of intervention in glutamine metabolism for cancer photodynamic therapy. [Created with BioGDP.com (Jiang et al., 2025)].

the biological behavior of tumor cells, cholesterol metabolism
reprogramming also modulates the antitumor activity of immune
cells within the tumor microenvironment. Cholesterol and its
derivatives play a crucial role in the regulation of both innate
and adaptive immunity, including processes such as monocyte
expansion, neutrophil activation, NK cell activation, and T
lymphocyte proliferation (Huang et al., 2020). Thus reprogramming
cholesterol metabolism may enhance the therapeutic effect of PDT
(Liu et al., 2023). H/S@hNP is a dual-drug-loaded nanoparticle that
combines the photosensitizer hematoporphyrin monomethyl ether
(HMME) and cholesterol synthesis inhibitor simvastatin (Figure 7).
By depleting cholesterol, H/S@hNP blocks mechanical signaling
between tumor cells and the ECM, thereby reducing the stiffness
of the tumor stroma, facilitating drug penetration, and enhancing
the efficacy of PDT (Peng et al., 2024). Zhang et al. designed a
biological modulator, HN@CaCL-R, which successfully reversed
the immunosuppressive state of the tumor microenvironment by
regulating cholesterol metabolism, thereby enhancing the efficacy
of PDT. HN@CaCL-R catalyzes the conversion of cholesterol to
hydrogen peroxide (H2O2) within the tumor microenvironment,
which enhances the luminescence of chemiluminescent reagent,
further improving the effectiveness of PDT (Yin et al., 2023).

7 Limitations and clinical challenges
of PDT

The limited tissue penetration of activating light remains
a fundamental challenge in PDT. Traditional PDT relies on

ultraviolet-visible (UV-Vis) light (400–700 nm), which is strongly
absorbed by hemoglobin and melanin, restricting penetration
to superficial tissues (Fan et al., 2016). Although near-infrared
(NIR) light (700–1,100 nm) offers deeper penetration, its
lower energy reduces reactive oxygen species (ROS) generation
efficiency (Ethirajan et al., 2011). Strategies like upconversion
nanoparticles (UCNPs) and X-ray-activated scintillators have been
explored to enable indirect excitation of photosensitizers (PSs) in
deep tissues (Chen et al., 2014).

Tumor hypoxia severely limits PDT efficacy, as oxygen
is essential for ROS generation via Type II photochemical
reactions (Li M. L. et al., 2020). Hypoxia not only reduces ROS
production but also upregulates hypoxia-inducible factor 1α (HIF-
1α), promoting tumor survival and angiogenesis (Cheng et al.,
2016). To address this, self-oxygenating nanosystems and
Type I PSs have been developed (Cheng et al., 2015). Despite
promising preclinical results, clinical translation remains hindered
by inconsistent oxygenation effects and potential off-target
metabolic disruptions.

Compared to anti-angiogenic agents (e.g., bevacizumab), PDT
shows unique advantages but faces distinct challenges. Bevacizumab
(anti-VEGF) normalizes tumor vasculature, enhancing drug
delivery but exacerbating hypoxia (Willett et al., 2004). In contrast,
PDT transiently disrupts vasculature while inducing immunogenic
cell death (ICD), potentially synergizing with checkpoint inhibitors
(Zheng X. et al., 2023). Clinical trials combining PDT with
bevacizumab demonstrated improved outcomes in colorectal cancer
but highlighted risks of systemic toxicity (Peng et al., 2018).
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FIGURE 7
Scheme illustration of H/S@hNP-mediated cholesterol depletion strategy reduces tumor physical stiffness for enhanced photodynamic
antitumor therapy (Peng et al., 2024).

8 Discussion

Malignant tumors are a leading global cause of death. While
surgery remains primary treatment, current therapies for inoperable
patients (e.g., organ dysfunction or advanced cases) often cause
severe toxicities, highlighting the need for safer, more effective
therapies. PDT shows promise but remains underdeveloped,
hindered by tumor hypoxia, metabolic reprogramming, and
abnormal vasculature. We review strategies targeting tumor
vasculature and metabolism to enhance PDT efficacy and overcome
clinical limitations.

The rationale for using nanomedicine in PDT lies in its
ability to overcome critical limitations of traditional PDT while
amplifying therapeutic efficacy through multifunctional design.
First, nanocarriers enhance the delivery and bioavailability of
hydrophobic PS, thereby improving solubility and prolonging
circulation time for targeted accumulation in tumors
(Rodrigues et al., 2020). Second, nanomedicine enables precise
modulation of the tumor microenvironment, alleviating hypoxia
and boosting ROS production during PDT (Di et al., 2023).

Third, nanoplatforms facilitate combinatorial therapies, enabling
organelle targeting to disrupt cancer cell metabolism and
amplify ROS-induced apoptosis (Wu et al., 2023). Collectively,
these strategies highlight pivotal role nanomedicine in
optimizing PDT.

The concept of the tumor vascular normalization window—a
transient phase post-anti-angiogenic therapy during which aberrant
tumor vasculature acquires structural and functional stability—has
emerged as a promising strategy to potentiate PDT.While preclinical
studies demonstrate that synchronizing PDT with this window
enhances therapeutic outcomes (Li Q. et al., 2020), its clinical
translation remains hampered by the window’s elusive and transient
nature. Current approaches rely on low-dose anti-angiogenic
regimens to induce normalization, yet precise spatiotemporal
control over drug delivery remains a critical unmet challenge
(Shen et al., 2022). To address this, next-generation photosensitive
nanomedicines are being engineered with three key features: (1)
precision drug release to maintain tumor-localized, low-dose anti-
angiogenic activity, thereby stabilizing vascular normalization; (2)
sustained-release kinetics to prolong the therapeutic window; and
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(3) dose-tunablemodulation to convert the indiscriminate “scissors”
effect of anti-angiogenics into a “glue” effect that enhances pericyte
coverage and vessel maturation (Shen et al., 2023).

Notably, the efficacy of PDT nanomedicines is further
constrained by the tumor ECM, a dense physicochemical barrier
that impedes nanoparticle penetration. While enzymatic ECM
degradation, pharmacological inhibition, and hyperthermia-
mediated ECM remodeling are under investigation, current
strategies lack mechanistic depth. Most studies focus narrowly on
collagen and hyaluronic acid, leaving other ECM components (e.g.,
fibrinogen, fibronectin) underexplored. Critically, no consensus
exists on dominant signaling pathways governing ECM-PDT
interactions, underscoring the need for multi-omics-driven target
discovery and novel combinatorial approaches to modulate the
tumor ECM-immune-metabolic axis.

Metabolic reprogramming, a hallmark of malignancy, presents
another strategic lever to amplify PDT. While targeting tumor-
specific metabolic vulnerabilities (e.g., dysregulated enzymes,
nutrient transporters) holds potential, three key limitations persist:
(1) incomplete mapping of tumor-specific metabolic networks
due to gaps in single-cell metabolomics; (2) metabolic plasticity
enabling therapeutic escape; and (3) off-target effects frommetabolic
inhibitors that disrupt normal cell physiology. To overcome these,
next-generation PDT platforms must integrate dual/multi-pathway
metabolic targeting—for instance, simultaneously inhibiting
glycolysis and glutamine metabolism—to minimize compensatory
adaptation. Furthermore, emerging “smart” nanomedicines with
tumor microenvironment-responsive drug release could achieve
selectivemetabolic targeting while sparing normal tissues. However,
the interplay between tumor metabolism and immune cell
function adds complexity: overzealous metabolic suppression may
inadvertently cripple anti-tumor immunity. Thus, future designs
must balance metabolic intervention with immune preservation,
potentially through spatiotemporally controlled nano-delivery or
orthogonal targeting of immune-metabolic checkpoints.

Despite these advances, clinical translation faces three major
hurdles. First, the biocompatibility and long-term toxicity of
multifunctional nanomaterials require rigorous evaluation using
physiologically relevant models (e.g., orthotopic or patient-
derived xenografts) rather than conventional subcutaneous
tumors. Non-degradable nanoparticles (e.g., silica-based carriers)
may accumulate in the liver/spleen, potentially causing chronic
inflammation (Wei et al., 2024). Cationic lipid-based formulations
can trigger complement-related hypersensitivity, as observed in
failed Phase I trials of cationic porphyrin liposomes (Obaid et al.,
2019). Second, the lack of standardized protocols for monitoring
vascular normalization windows in humans necessitates innovative
imaging biomarkers or liquid biopsy-based tools. Third, deeper
mechanistic studies are needed to unravel how nanomaterials
interact with tumor stroma, metabolism, and immune cells at
single-cell resolution.

9 Conclusion and perspectives

The integration of photodynamic therapy (PDT) with
nanotechnology has unlocked unprecedented opportunities
for precision oncology. To inspire future developments, we

outline key directions to expand the horizons of photodynamic
nanomedicine in targeting tumor angiogenesis and metabolism.
Develop stimuli-responsive nanocarriers that sequentially release
anti-angiogenic drugs and activate photosensitizers under tumor-
specific conditions (e.g., hypoxia, pH). Design “metabolic traps”
that simultaneously achieve selective metabolic targeting while
sparing normal tissues and enhance ROS generation through
Fenton-like reactions. Integrate real-time oxygen sensors (e.g.,
phosphorescent porphyrins) into nanoplatforms to dynamically
monitor and modulate TME oxygenation during treatment. The
next-generation of photodynamic nanomedicine must embrace
complexity—targeting angiogenesis andmetabolism. By converging
advances in materials science and systems biology, we can design
multifunctional, patient-specific therapies that transcend traditional
monotherapy limitations. Prioritizing translational studies and
clinical-grade manufacturing will accelerate the transition from
bench to bedside.

In conclusion, the convergence of vascular normalization,
ECM remodeling, and metabolic reprogramming within PDT
nanoplatforms represents a paradigm shift in oncology. By
prioritizing tumor-selective multi-targeting, microenvironment-
responsive drug release, and systems-level mechanistic validation,
this strategy could transcend current limitations, ushering in a new
era of precision photodynamic therapy.
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