Skip to main content

REVIEW article

Front. Cell Dev. Biol.
Sec. Cancer Cell Biology
Volume 13 - 2025 | doi: 10.3389/fcell.2025.1536320

Piezo1-Related Physiological and Pathological Processes in Glioblastoma

Provisionally accepted
  • 1 Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
  • 2 First Affiliated Hospital of Jilin University, Changchun, Jilin Province, China

The final, formatted version of the article will be published soon.

    Introduction: Glioblastoma (GBM) is the most malignant of the astrocytomas, primarily involving the cerebral hemispheres and cerebral cortex. It is one of the fatal refractory solid tumors with a 5-year survival rate of only 5% in adults.Cells in biological tissues are subjected to mechanical forces, including hydrostatic pressure, shear stress, compression and tension. Cells can convert mechanomechanical signals into biological or electrical signals, a process known as mechanical signaling. Piezo1 channels, members of the Piezo family of mechanosensitive ion channels, can be directly activated by mechanical stimuli alone, mediating mechanosensitive cation currents that activate subsequent signaling pathways. Studies have shown that Piezo1 is largely unexpressed in normal brain tissues but is expressed at high levels in glioblastoma and can significantly contribute to glioblastoma development and progression, but its role in the pathogenesis of glioblastoma remains unclear. Methods: We reviewed the relevant literature and data in six major databases including PubMed, EMBASE, CINAHL, Scopus, Web of Science and TCGA. Finally, a total of 126 papers were selected for review and analysis (Search terms include: glioblastoma, piezo1, biomechanical, targeted therapy, mechanomechanical, extracellular matrix, radiation therapy and more). The role of piezo1 in the development of glioblastoma was summarized. Results: Piezo1 affects several fundamental pathophysiological processes in glioblastoma, such as tissue sclerosis, angiogenesis, energy supply, and immune cell infiltration, and can be used as an indicator of malignancy and prognosis in patients with glioblastoma, as well as a therapeutic target to control tumor progression. Discussion: The pathological mechanism of piezo1 in glioblastoma is very complex, and the aberrant expression of piezo1 plays a very important role in the development of glioblastoma. Specific mechanistic studies focusing on Piezo1 will help us understand the mechanobiology of glioblastoma and help us develop new therapeutic approaches for glioblastoma patients.

    Keywords: Glioblastoma, Piezo1, Biomechanical, targeted therapy, mechanomechanical

    Received: 28 Nov 2024; Accepted: 30 Jan 2025.

    Copyright: © 2025 Fu, Hou, Ding, Wei and Hou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Wei Hou, First Affiliated Hospital of Jilin University, Changchun, 130012, Jilin Province, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.