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Mitochondrial dysfunction and
alveolar type II epithelial cell
senescence: The destroyer and
rescuer of idiopathic pulmonary
fibrosis
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Idiopathic pulmonary fibrosis (IPF) is a chronic respiratory disease with an
unknown origin and complex pathogenic mechanisms. A deeper understanding
of these mechanisms is essential for effective treatment. Pulmonary fibrosis
is associated with the senescence of alveolar type II epithelial (ATⅡ) cells.
Additionally, ATⅡ senescence can lead to a senescence-associated secretory
phenotype, which affects cellular communication and disrupts lung tissue repair,
contributing to the development of IPF. The role of mitochondrial dysfunction
in senescence-related diseases is increasingly recognized. It can induce ATⅡ
senescence through apoptosis, impaired autophagy, and disrupted energy
metabolism, potentially playing a key role in IPF progression. This article explores
the therapeutic potential of targeting cellular senescence and mitochondrial
dysfunction, emphasizing their significant roles in IPF pathogenesis.
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1 Introduction

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease of unknown etiology.
The disease is chronic, progressive, destructive, and irreversible. The hallmark feature
of IPF is the progressive formation and remodeling of lung scarring (Sui et al., 2023).
Although the exact course and primary cause of IPF remain unclear, it is now thought
that the pathogenesis of the disease may be related to genetic, environmental, viral, or
immune factors (Ellson et al., 2014).

Fibrosis is a class of diseases caused by chronic organ damage, characterized by
tissue hardening and scarring, and is generally described as excessive pathological
deposition of extracellular matrix (ECM) during wound healing (Hinz and Lagares,
2020). Collagen, fibronectin, laminin, and other substances make up the ECM,
an intercellular matrix that is essential for healthy tissue healing. Although ECM
deposition is an inevitable byproduct of wound healing, if tissue damage persists
or recurs, ECM synthesis and remodeling will become uncontrollable, resulting in
the formation of persistent fibrotic scars that impair organ function and normal
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structure (Fischer et al., 2024). Damaged epithelial cells, endothelial
cells, and innate fibroblasts are stimulated by injury and undergo
transdifferentiation into myofibroblasts, which are capable of
strong contraction and matrix formation (Hailiwu et al., 2023).
Excessive synthesis and deposition of ECM components lead to
tissue structural remodeling and dysfunction, which are caused by
myofibroblasts (Bhatt et al., 2024), which are important cellular
mediators in the development of fibrosis.

Notably, fibrosis may play a role in the occurrence and spread
of cancer. For example, it can improve the mechanical support
of tumors, protect tumor cells from immune system attacks,
and promote tumor growth by changing local hemodynamics
(Tomos et al., 2025). One study showed that the incidence of
lung cancer in patients with pulmonary fibrosis was 4.8%–48%,
while the incidence in the control group was only 2.0%–6.4%.
This difference may be related to the chronic inflammation
and lung tissue destruction experienced by patients with
pulmonary fibrosis (Kato et al., 2018).

The prognosis of IPF patients is poor, with an average
survival of only about 3–5 years after diagnosis (Raghu et al.,
2014). Epidemiological studies have shown that people aged
65 years and above have the highest incidence of IPF, and the
incidence increases with age (Maher et al., 2021). Compared
with people aged 40 years, people aged 70 years and above have
a 6.9-fold increased risk of developing the disease (Choi et al.,
2018). Therefore, IPF is considered an aging-related disease,
and aging is considered an important risk factor for IPF
(Wan et al., 2024). Cell growth arrest and reduced replication
capacity are hallmarks of aging, and aging makes the lungs
susceptible to fibrosis by preventing alveolar progenitor cells
from regenerating and cultivating a cellular environment that
is conducive to fibrosis (Smith et al., 2022). The primary
markers of the link between senescence and IPF include cellular
senescence, the senescence-associated secretory phenotype (SASP),
and immunosenescence (Salminen, 2025). Alveolar epithelial
type II (ATⅡ) cells in IPF patients exhibit pronounced signs
of senescence.

Cellular senescence is a key hallmark of aging (López-
Otín et al., 2023). In several interstitial fibrosis disorders,
senescence—an irreversible cell cycle arrest—is a defining
characteristic (Hernandez-Gonzalez et al., 2021). ATⅡ cells are
essential for maintaining lung homeostasis (K. Liu et al., 2024).
Growing evidence suggests that ATⅡ cell senescence plays a
crucial role in the remodeling process of aging-related pulmonary
fibrosis. Senescent ATⅡ cells communicate with surrounding
cells by secreting SASP factors, which propagate peripheral
cellular senescence, promote ECM deposition, disrupt lung
structure, impair lung function, and ultimately contribute to
the onset of IPF (Yao et al., 2021). In other words, senescent
ATⅡ cells activate fibroblasts and myofibroblasts, further
exacerbating fibrosis.

A well-established hallmark of cellular senescence is
mitochondrial dysfunction (Suryadevara et al., 2024). The term
“mitochondrial dysfunction” primarily refers to impaired energy
metabolism caused by mitochondrial DNA (mtDNA) damage,
disruption of the mitochondrial membrane, inhibition of the
respiratory chain, and decreased enzyme activity (Rangarajan et al.,

2017). These factors trigger several interconnected damage
processes. In addition to being crucial for cellular energy
production, apoptosis, and redox balance, mitochondria play a
significant role in cellular senescence. Senescence is characterized
by mitochondrial alterations, including reduced oxidative
phosphorylation (OXPHOS), decreased levels of adenosine 5′-
triphosphate (ATP) and nicotinamide adenine dinucleotide
(NAD+), and an accumulation of reactive oxygen species (ROS),
damage-associated molecular patterns (DAMPs), and metabolites
from the tricarboxylic acid (TCA) cycle (Martini and Passos,
2023). Many diseases are associated with its dysfunction. Hallmark
features of idiopathic pulmonary fibrosis include altered metabolic
processes, increased oxidative stress, and reduced cell survival,
all of which are caused by mitochondrial dysfunction (Larson-
Casey et al., 2020). More and more studies have recognized
the importance of mitochondrial dysfunction in aging. It can
mediate AT Ⅱ cell senescence, thereby impairing lung tissue
regeneration and AT Ⅱ cell differentiation capacity. This ultimately
increases the difficulty of maintaining the AT barrier over time
and leads to fibroblast barrier activation, which is crucial for
the development of fibrotic scars and idiopathic pulmonary
fibrosis (Perry et al., 2024).

Transforming growth factor β (TGF-β)/Smad signaling
pathway, Wnt/β-catenin signaling pathway, vascular endothelial
growth factor (VEGF), fibroblast growth factor (FGF) and
platelet-derived growth factor (PDGF) signaling pathways are
currently the main focus of research on the pathophysiology
and related treatment options of idiopathic pulmonary fibrosis
at home and abroad (Claudia et al., 2020). IPF is improved by
preventing fibroblast activation and excessive collagen production,
reducing cell proliferation and migration, and enhancing
blood vessels.

Pirfenidone and nintedanib, which also use this pathway, are
both approved by the U.S. Food and Drug Administration (FDA)
for the treatment of IPF (Claudia et al., 2020). These drugs do not
completely prevent the progressive loss of lung function; instead,
they are intended only as palliative therapies for pulmonary fibrosis.
They can also cause gastrointestinal problems, photosensitivity, and
abnormal laboratory results such as elevated aminotransferases.
Because of these negative consequences, IPF patients are less likely
to adhere to their medication regimen, which can lead to further
disease progression and loss of lung function (Gulati and Luckhardt,
2020). Lung transplantation is the only treatment that can potentially
cure IPF, but it is not suitable for most patients (Justice et al.,
2019). In addition, the pathophysiology of IPF involves complex
immune pathways, irreversible lung tissue fibrosis, and the effects
of antifibrotic drugs have their own limitations (Allanore et al.,
2024). All of these reasons lead to major challenges in the current
treatment of IPF.

Related research is ongoing, and it is crucial to understand
how mitochondrial dysfunction and AT II senescence lead to
IPF. In order to provide new perspectives for future IPF research
and treatment, we systematically summarized the mechanisms
of IPF induced by mitochondrial dysfunction in recent years,
summarized the pathways of ATII senescence involved in IPF, and
elaborated on IPF treatment targeting mitochondrial function and
ATII senescence (Figure 1).
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FIGURE 1
Senescent alveolar type 2 epithelial cells drive the development of IPE. Alveolar epithelial cells are divided into alveolar type 1 epithelial cells (ATI) and
alveolar type 2 epithelial cells (ATI2). ATI participates in gas exchange and is found on the alveolar surface. With the ability of develop into ATI in order to
restore the damaged ACE barrier, AT2 is a crucial component of the alveolar wall and the primary stem cell in the alveolar repair process. Its functions
include barrier protection and regeneration. In addition, AT2 lowers alveolar surface tension control lung immunological activity, secretes a range of
alveolar surfactants, and preserves lung function and alveolar structural stability, As people age, their capacity to generate the lung tissue is diminished,
their ability to proliferate and differentiate is diminished, their AT2 barrier function is compromised and their ability to replenish alveolar epithelial stem
cells is drastically diminished. By secreting SASP, senescent epithelial cells with AT2 cells as their primary constituent encourage the differentiation of
epithelial cells into mesenchymel cells (EMT) stimulate neighboring fibroblasts into myofibroblasts (FMT). These action result in extracellular matrix
secretion, collagen deposition, and lung tissue remodeling, all of which contribute to the pathological process of pulmonary fibrosis.

2 Senescent AT Ⅱ in IPF: Involvement
in cellular communication leads to
abnormal lung tissue repair

2.1 Senescent ATⅡ in IPF leads to abnormal
lung tissue repair

One of the fundamental characteristics of cellular senescence is
prolonged or permanent cell cycle arrest. Several factors, including
telomere shortening,DNAdamage, oxidative stress, senescence gene
regulation, and epigenetic alterations, can trigger this process in IPF,
ultimately limiting the regeneration of alveolar epithelial progenitor
cells (Suryadevara et al., 2024). Single-cell RNA sequencing studies
have shown that increased ATⅡ cell senescence in the lung tissues
of IPF patients accelerates pulmonary fibrosis by activating pro-
fibrotic myofibroblasts through multiple conventional mechanisms
(Rubio et al., 2020). The prevailing consensus is that IPF is driven
by ATⅡ senescence, which leads to myofibroblast activation and

ECM synthesis, resulting in fibrotic scarring and impaired lung
tissue repair (Figure 2).

ATⅡ cells play a crucial role in maintaining alveolar structure,
stabilizing intrapulmonary function, and serving as the primary
stem cells for alveolar repair. They can differentiate into ATⅠ
cells to restore the damaged alveolar barrier. According to
Witschi’s theory, lung fibrosis originates and progresses due to
epithelial damage microfoci. If these microfoci are not repaired
in a timely manner, the normal balance between fibroblasts
and epithelial cells is disrupted, promoting fibrosis development
(Haschek and Witschi, 1979).

When ATⅡ cells undergo senescence, several age-related
changes occur in lung tissue, including reduced alveolar epithelial
stem cell renewal, impaired ATⅡ function and differentiation
capacity, defective lung tissue regeneration, increased expression
of senescence markers such as p16 and p21, and altered
β-galactosidase activity (SA-β-gal). The failure of senescent
ATⅡ cells to maintain the alveolar barrier, coupled with cell
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FIGURE 2
Senescent AT2 contributes to cellular communication, which exacerbates IPF by casing aberrant lung tissue repair. Oxidative stress and DNA damage
are major contributions to AT2 cell cycle arrest (particularly G1 cycle) and regenerative failure during IPF. An imbalance between the production of free
radical and the cell’s capacity to scavenge them is known as oxidative stress, and its causes ROS buildup and P16 pathway activation. The continuous
interference of endogenous and external stressors during cell division and proliferation can cause DNA damage, which sets off DNA damage
responses, activates ATM/ATR and other DNA repair pathways, and ultimately influences P53 activation. The aforementioned two routes have the ability
to trigger the P21 pathway, impact AT2 cells’ autocrine and paracrine SASP, worsen AT2 cell senescence, and encourage peripheral fibroblasts to
become myofibroblasts, all of which have an impact on the onset and progression of IPF. A crucial component of IPF cell communication, SASP
contains growth factors, proteases, cytokines, chemokines, and more.

cycle arrest, leads to fibroblast activation, proliferation, and
collagen deposition, ultimately contributing to fibrotic scarring
(Liang et al., 2023).

In this study, we focused on the role of ATⅡ cells in the
development of IPF, their contribution to a pro-fibrotic cellular
environment, their predisposition to fibrosis, and their regulation
of cellular communication through SASP paracrine and autocrine
signaling pathways.

2.2 Senescent AT II plays a pro-fibrotic role
in accelerating IPF development through
the involvement of SASP in cellular
communication

Atypical lung tissue healing is triggered by the SASP, which
primarily consists of growth factors, chemokines, and pro-
inflammatory cytokines (Zeng et al., 2024a). Overexpression of
SASP has been shown to strongly induce cellular senescence
and promote epithelial-mesenchymal transition (EMT) through
autocrine secretion (Chilosi et al., 2013). Additionally, SASP
regulates the microenvironment in a paracrine manner, stimulating
neighboring fibroblasts and myofibroblasts to excessively ECM,
leading to lung tissue remodeling and, ultimately, the pathological

progression of pulmonary fibrosis. Furthermore, SASP accelerates
immune cell senescence and promotes chronic inflammation,
which weakens immune function and impairs the clearance of
inflammatory factors and senescent cells (Li et al., 2024). This
creates a vicious cycle of senescence and inflammation. The
immune system dysfunction caused by this cycle is referred to as
immunosenescence (Dasgupta et al., 2024).

On one hand, SASP contributes to the progression of IPF
through autocrine signaling. Yasunori Enomoto et al. demonstrated
that DNA damage induced by bleomycin (BLM) activated p53
signaling in ATⅡ cells, leading to TGF-β-mediated pro-fibrotic
gene expression. This initiated a positive feedback loop of TGF-
β signaling, which further exacerbated ATⅡ senescence and
contributed to IPF development (Enomoto et al., 2023).

On the other hand, SASP secreted by senescent ATⅡ cells can
induce senescence in nearby cells through paracrine signaling,
playing a crucial role in lung aging and the progression of pulmonary
fibrosis. Lehmann hypothesized that the reprogramming of
alveolar epithelial cells by SASP components—such as interleukin-
6 (IL-6), interleukin-1β (IL-1β), matrix metalloproteinase-12
(MMP-12), chemokine ligand 2 (CCL2), and keratinocyte growth
factor—plays a major role in the pathophysiology of IPF. Their
study also demonstrated that senescent ATⅡ cells in mice with
pulmonary fibrosis secrete higher levels of SASP, which in turn
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promotes fibroblast-to-myofibroblast transformation, thereby
exacerbating fibrosis (Lehmann et al., 2017).

Furthermore, aging ATⅡ cells have been found to
promote massive proliferation and activation of fibroblasts and
myofibroblasts through the expression of SASP factors such as
PDGF, tumor necrosis factor (TNF), endothelin-1, connective
tissue growth factor (CTGF), chemokine (C-X-C motif) ligand
12 (CXCL12), and plasminogen activator inhibitor-1 (PAI-1)
(Rana et al., 2020). In vitro studies by Rana T demonstrated
that PAI-1 serves as both a marker and mediator of cellular
senescence. Notably, PAI-1 knockdown almost completely
reversed bleomycin-induced ATⅡ senescence and pulmonary
fibrosis in mice (Li et al., 2023).

In conclusion, the autocrine and paracrine involvement of
SASP in cellular communication disrupts lung tissue repair, leading
senescent ATⅡ cells to drive the development of IPF.

2.3 Other pathways

In addition, telomere dysfunction plays a crucial role in the
involvement of senescent ATⅡ cells in the development of IPF. A
recent study demonstrated that telomerase inactivation due toTERC
gene deletion not only accelerated ATⅡ cell senescence but also
promoted apoptosis and differentiation of ATⅡ cells through both
p53-dependent and p53-independent mechanisms (Zhang et al.,
2021a). Other studies have shown that telomere dysfunction
mediated by TRF1 deletion can lead to mitochondrial damage and
pulmonary remodeling via the ECM, with increased expression of
senescence markers observed in ATⅡ cells (Naikawadi et al., 2016).

Notably, the accumulation of DNA damage is one of the
primary drivers of aging and age-related disorders. Studies have
shown that YTHDC1 expression is reduced in both IPF patients
and mouse models of pulmonary fibrosis, whereas YTHDC1
overexpression inhibits senescence and mitigates IPF in vitro and
in vivo (Zhang et al., 2024).

These findings suggest that ATⅡ cell senescence disrupts lung
tissue repair, thereby accelerating the onset of IPF. They also
highlight a promising avenue for further research into the role of
ATⅡ senescence in IPF progression. Targeting SASP secretion and
intervening in ATⅡ cell senescence could be valuable therapeutic
strategies for pulmonary fibrosis, as these approaches may help slow
or prevent IPF progression at an early stage.

3 The role of mitochondrial
dysfunction in alveolar type Ⅱ cell
senescence and IPF progression

Mitochondrial dysfunction is a well-established hallmark of
cellular aging (Suryadevara et al., 2024). Energy metabolism is one
of the key functions of mitochondria. Most of the intracellular
ATP is produced by mitochondria, which are also called the
“powerhouses of the cell” because they help cells maintain a high
ATP/ADP ratio, which is required to thermodynamically drivemany
metabolic events.

Many conditions, such as oxidative phosphorylation disorders,
mtDNA mutations, and abnormal mitochondrial shape and

number, can be signs of mitochondrial dysfunction. All of these
impairments exacerbate the process of cellular aging and may
affect mitochondrial function, including energy production, redox
balance, and calcium regulation (Van et al., 2020). In addition,
mitochondrial dysfunction disrupts redox homeostasis (Seo et al.,
2008), leading to accumulation of cytoplasmic NADH, and a
decrease in the NAD/NADH ratio can lead to ATP depletion and
cell cycle arrest (Wu et al., 2022).

The mitochondrial respiratory chain is essential for maintaining
redox balance and intracellular signaling and is the main generator
of intracellular ROS (Guan et al., 2024). Mitochondrial dysfunction
is the root cause of excessive intracellular oxidative stress and can
also affect the functioning of lysosomes, endoplasmic reticulum, and
other organelles, promote autophagy, accelerate cell apoptosis, and
ultimately lead to cell aging and death (Niforou et al., 2014; Zuk and
Bonventre, 2016; Zhou et al., 2022). Additionally, elevated ROS act
as endogenous DNA-damaging agents, inducing genetic instability
and senescence-related gene alterations (Baranski et al., 2015),
which in turn damage alveolar epithelial cells and compromise the
epithelial barrier (Figure 3).

In IPF patients, abnormally enlarged and swollen mitochondria
have been observed in ATⅡ cells. This is attributed to the
disruption ofmitochondrialmassmaintenancemechanisms, such as
mitochondrial biogenesis and mitophagy, which can drive ATⅡ cell
senescence. Given their high metabolic demand due to surfactant
production, ATⅡ cells are particularly susceptible to mitochondrial
dysfunction.

3.1 Decreased PINK1-mediated classical
autophagy and energy metabolism

ATP production during aerobic respiration is closely linked
to the structural and functional integrity of mitochondria. Cells
utilize autophagy to remove dysfunctional mitochondria, thereby
maintaining mitochondrial homeostasis and normal function
(Boyman et al., 2020). However, autophagic activity declines with
age (Harrington et al., 2023). Notably, 50% of lung mitochondria
are found in ATⅡ cells, making them particularly susceptible to
age-related changes such as mitochondrial enlargement, cristae
loss, endosome degradation, and reduced respiratory capacity
(Sreedhar et al., 2020). Using TEM, Xia observed a significant
increase in mitochondrial vacuolization and membrane rupture in
senescent ATⅡ cells (Ning et al., 2019), indicating mitochondrial
dysfunction and impaired energy metabolism.

Mitochondrial dysfunction has been linked to decreased
expression of PTEN-induced putative kinase 1 (PINK1), the primary
regulator of mitochondrial homeostasis in vivo. Mitochondrial
damage disrupts PINK1 translocation, leading to its activation
on the outer mitochondrial membrane via autophosphorylation.
Activated PINK1 recruits and activates the downstream autophagy
protein E3 ubiquitin ligase Parkin, which enhances mitochondrial
autophagy and mitigates epithelial cell senescence—an essential
mechanism for limiting fibrosis (Sosulski et al., 2015). However,
maintaining the PINK1-mediated autophagy pathway in senescent
ATⅡ cells is challenging (Bueno et al., 2015).

Mitochondrial autophagy reduces SASP factor release and
alleviates cellular senescence (Chu et al., 2024). PINK1-mediated
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FIGURE 3
Mitochondrial dysfunction induces idiopathic pulmonary fibrosis through alveolar type II epithelial cell senescence. Mitochondrial dysfunction leads to
IPF through apoptosis and senescence. Mitochondrial dysfunction leads to abnormal energy metabolism, decreased mitochondrial ATP production,
ROS accumulation, damage to mtDNA, and disruption of PINK1-mediated mitophagy. This process damages chromosomal DNA and activates the p53
pathways, which determines cell fates between apoptosis and senescence, but the specific mechanism is still unclear and may be related to stress. In
apoptotic cells, p53 induces mitochondrial outer membrane permeabilization by regulating apoptotic pore formation, which allows cytochrome c
release and caspase activation, leading to cell death. Chromosomal DNA damage activates the p53/p21 and p61/pRb pathways, induces cell cycle
arrest and exacerbates cells senescence. The upregulation of the pro-survival pathway in senescent cells inhibits the formation of apoptotic pores,
resulting in the release of miMOMP, sublethal apoptosis and mtDNA into cytoplasm, and mtDNA fragments are sensed by the cGAS-STING pathway,
up-regulating the expression of inflammatory mediators, promoting cell senescence and exacerbating pulmonary fibrosis.

mitochondrial autophagy has been identified as a key factor
in the pathophysiology of age-related lung diseases such as
COPD and IPF (Bueno et al., 2015). Increasing evidence
links mitochondrial autophagy and cellular senescence to
the progression of IPF in the elderly (Wei et al., 2023a). In
mouse lung tissue, PINK1 knockdown in ATⅡ cells resulted
in mitochondrial enlargement and dysfunction, impairing
mitochondrial autophagy and increasing susceptibility to
lung fibrosis (Chu et al., 2024).Thus, the regulation ofmitochondrial
autophagy plays a critical role inmitigating ATⅡ cell senescence and
preventing senescence-associated IPF by preserving mitochondrial
homeostasis.

3.2 The role of cell apoptosis in alveolar
type Ⅱ cell senescence and IPF progression

Groundbreaking research in mitochondrial genetics has
demonstrated that mitochondria release cytochrome C, a key
component of the electron transport chain (ETC.), to induce
apoptosis—a programmed cell death pathway distinct from cellular

senescence (Victorelli et al., 2023). Mitochondria play a critical
role in apoptosis regulation. Moreover, p53 activation is a pivotal
step in aging. In response to various stimuli, p53 upregulates p21
to arrest the cell cycle and subsequently regulates transcriptional
programs leading to apoptosis or cellular senescence (Huang et al.,
2011). Senescent cells activate the p53/p21 and p16/pRb pathways,
characterized by a prolonged DNA damage response (DDR).
Additionally, apoptosis is primarily regulated by the Bcl-2 (B-cell
lymphoma-2) protein family (Tian et al., 2024). In normal cells,
Bcl-2 proteins localize to membrane structures such as the outer
mitochondrial membrane (Rasmussen and Gama, 2020), where
they interact with Bak and Bax (Bcl-2 Associated X protein) to
prevent oligomer formation, maintain mitochondrial membrane
integrity, and inhibit cytochrome C release, exerting anti-apoptotic
effects (Samuel et al., 2010; Cao et al., 2023).

Mitochondrial dysfunction is a key driver of apoptosis in
ATⅡ cells with IPF. The ATM/ATR or AMPK pathway, activated
by mitochondrial failure (Anand et al., 2020), phosphorylates
p53, stabilizing it and enhancing its transcriptional activity. p53
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disrupts the balance of Bcl-2 family proteins by activating pro-
apoptotic factors and inhibiting anti-apoptotic proteins, leading
to cytochrome C release and the extrusion of mtDNA into
the cytoplasm through BAX/BAK pores (Schubert et al., 2024).
mtDNA, as a damage-associated molecular pattern, binds to
DNA pattern-recognition receptors, triggering the innate immune
response via the cGAS-STING pathway (Li and Chen, 2018). In
vivo studies have shown that cGAS-STING activation exacerbates
apoptosis in alveolar epithelial cells (Huang et al., 2022). Moreover,
persistent mitochondrial damage in IPF may exceed endogenous
compensatory mechanisms, leading to chronic accumulation of
dysfunctional mitochondria (Kapetanovic et al., 2015).

When ATⅡ cells undergo apoptosis, pro-apoptotic proteins
Bak and Bax, initially inhibited by Bcl-2, become activated,
undergo conformational changes, and oligomerize on the
outer mitochondrial membrane, increasing mitochondrial outer
membrane permeability (MOMP) (Subas satish et al., 2024).
Excessive MOMP promotes cellular senescence, triggering
inflammation and SASP molecule secretion, including IL-6 and
IL-8 (Victorelli et al., 2023; Garciaz et al., 2022).

ATⅡ cells from IPF patients exhibit mitochondrial dysfunction
and impaired autophagy (Bueno et al., 2015). In vivo studies have
shown that PINK1-deficient mice develop similar mitochondrial
abnormalities in ATⅡ cells, leading to apoptosis and lung fibrosis
(Bueno et al., 2015). Additionally, persistent stress can amplify
mitochondrial damage (Schuliga et al., 2021). Mitochondrial
dysfunction has been reported in IPF, connective tissue disease-
associated interstitial lung disease (ILD), and experimental
ILD models (Pokharel et al., 2024).

4 Targeting cellular senescence and
mitochondrial dysfunction in IPF: A
promising therapeutic approach

4.1 Targeting senescent AT II cells for the
treatment of IPF

Senotherapeutics aim to address aging-related health issues
by eliminating or suppressing senescent cells. This approach
includes twomain strategies: senolytics and senomorphics (Table 1).
Senolytics induce apoptosis in senescent cells by targeting anti-
apoptotic pathways. For example, ABT-263 (Zhu et al., 2016)
and ABT-737 (Yosef et al., 2016) bind to BCL-2, BCL-XL, and
BCL-W, triggering apoptosis in senescent cells. Another senolytic,
ABT-263, specifically inhibits BCL-2 and BCL-XL, effectively
eliminating senescent cells. In vitro and in vivo studies confirm
its anti-aging and anti-fibrotic properties, suggesting potential for
treating age-related fibrotic diseases. Dasatinib (D) and quercetin
(Q), when combined (D + Q), selectively induce apoptosis in
senescent human cells without affecting non-senescent cells. This
combination was the first identified anti-aging drug and has shown
promise in improving age-related conditions in mice and in limited
human trials (Justice et al., 2019).

Recent studies suggest that roxithromycin inhibits senescence
through a NOX4-dependent mechanism, making it a potential
treatment for IPF (Zhang et al., 2021b). However, researchers
caution against its immediate use as a senolytic due to concerns

TABLE 1 Strategies targeting senescent AT II cells for the
treatment of IPF.

Targets of
Action

Drug name Verified
path

PubMed ID

Senescent cells

ABT-263
vitro 26,711,051

vivo and vitro 34,318,888

ABT-737 vivo and vitro 27,048,913

Dasatinib
clinical trials 30,616,998

Quercetin

Roxithromycin vivo and vitro 33,654,217

SSK1 vivo and vitro 32,341,413

Procyanidin C1 vivo and vitro 34,873,338

SASP

Rapamycin vivo and vitro 28,371,119

Resveratrol vitro 28,329,136

Metformin
vivo and vitro

26,990,999
clinical trials

Aspirin vitro 16,039,999

Rutin vivo and vitro 37,475,161

about antimicrobial resistance. Instead, its properties could
inform the development of future senolytic drugs. Another
promising compound, senescence-specific killing compound 1
(SSK1), is activated by β-gal and removes senescent cells via
p38/MAPK signaling. In vivo and ex vivo studies demonstrate
its ability to alleviate IPF, reduce inflammation, and decrease
senescence-related gene expression (Cai et al., 2020). Additionally,
research on grape seed extract led to the successful isolation of
proanthocyanidin C1, which has been shown in cellular and animal
studies to effectively eliminate senescent cells and potentially
extend lifespan.

Senomorphics, a newer anti-aging approach, mitigate the
harmful effects of senescence by inhibiting SASPs rather than
directly eliminating senescent cells. Representative senomorphics
include metformin, rapamycin, and resveratrol (Wang et al., 2017;
Menicacci et al., 2017; Noren hooten et al., 2016). Other potential
senomorphics include aspirin, NF-κB inhibitors, p38 MAPK
inhibitors, JAK/STAT inhibitors, ATM inhibitors, and statins (Bode-
Böger et al., 2005). Unlike senolytics, senomorphics primarily target
SASP to prevent the paracrine/autocrine spread of senescence to
neighboring and distant cells.

Rapamycin, for example, has demonstrated therapeutic effects
on IPF in both in vivo and ex vivo studies by inhibiting the mTOR
pathway, thereby reducing SASP production and inflammation
while slowing cellular senescence (Chrienova et al., 2022). Similarly,
rutin, a natural compound, has been identified as a potential
senomorphic that suppresses SASP expression and may be used to
treat aging-related diseases (H. Liu et al., 2024).
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By targeting the initial senescent cells, senomorphics not only
prevent senescence from spreading but also disrupt the cycle
that promotes further accumulation of senescent cells. While
generally less potent than senolytics, natural polyphenols are gaining
popularity due to their low toxicity and availability.

4.2 Targeting dysfunctional mitochondria
for the treatment of IPF

The complex nature of mitochondrial dysfunction and its elusive
phenotypic thresholds make it challenging to fully understand
its role in disease. However, mitochondria remain key targets
for therapeutic intervention. Mitochondrial failure contributes to
pulmonary fibrosis by driving ATⅡ cell senescence. Given this,
targeting mitochondrial dysfunction offers a promising strategy to
treat or delay IPF progression. Advances in mitochondrial biology
have led to new therapeutic approaches, though human clinical trials
remain limited, highlighting the need for further research. Potential
treatments includeantioxidantsanddrugs thatenhancemitochondrial
ATP production, reduce oxidative stress, and improve mitochondrial
function (Wal et al., 2024). These strategies range from dietary
interventions addressing nutritional deficiencies to pharmacological
therapies that modulate mitochondrial dynamics, boost biogenesis,
and mitigate oxidative damage (Table 2).

Reducing mitochondrial oxidative stress is a critical therapeutic
goal. Inhibitors of mitochondrial fission play a key role in
achieving this (Qi et al., 2013; Yang et al., 2024; Ko et al.,
2021). Mdivi-1, for example, counteracts excess ROS by blocking
Dynamin-Related Protein 1 (DRP1) GTPase activity, improving
endothelial function and reducing inflammation in animal models
(Qi et al., 2013). Similarly, the peptide P110 enhancesmitochondrial
function by inhibiting DRP1 (Qi et al., 2013). Senegenin has been
shown in vivo to prevent oxidative stress-induced epithelial cell
senescence and reduce lung fibrosis by modulating the Sirt1/Pgc-
1α pathway (Zeng et al., 2024b). In BLM-induced lung fibrosis
models, TH5487 reduced oxidative stress, promoted PINK1/Parkin-
mediated mitophagy, and alleviated mitochondrial dysfunction.
Additionally, clinical research indicates that MitoQ scavenges free
radicals, protecting cells from oxidative stress and enhancing
cellular function.

Mitochondrial autophagy (mitophagy) plays a vital role in
mitigating pulmonary fibrosis caused by ATⅡ cell senescence.
Tetrandrine (TET) has been shown to reduce lung inflammation
and fibrosis by regulating mitophagy through the PINK1-Parkin
signaling pathway (Chu et al., 2024). In MLE-12 cells, TET
rescued impaired BLM-induced mitophagy by preventing the
reduction of autophagy-related protein expression, while PINK1
gene knockdown abolished its effects (Chu et al., 2024). Naringenin
has also been found to regulate mitophagy and alleviate pulmonary
fibrosis via the ATF3/PINK1 pathway (Wei et al., 2023b). Several
natural compounds, including spermidine, resveratrol, and urushiol
A, support mitochondrial integrity by stimulating mitophagy and
promoting biogenesis (Palikaras et al., 2018).

The cGAS/STING pathway is closely linked to aging and
lung fibrosis, though its precise role remains unclear. Recent
studies indicate that urushiol A-induced mitophagy reduces
free cytoplasmic mtDNA activation of cGAS/STING, improving

TABLE 2 Strategies targeting mitochondrial dysfunction for the
treatment of IPF.

Targets of
Action

Drug name Verified
path

PubMed ID

oxidative stress

Mdivi 1 vivo 23,239,023

P110 vivo 23,239,023

Senegenin vivo 38,929,114

TH5487 vivo 38,929,114

MitoQ vivo 16,829,229

Mitophagy

TET vivo and vitro 38,438,063

Tetrandrine vitro 38,438,063

Naringin vivo 36,688,958

Spermidine vivo and vitro 30,154,567

Resveratrol

vivo and vitro 38,865,904Urolithin A

Magnokiol

cGAS/STING

Urolithin A vivo and vitro 30,154,567

Przewalskin vivo 38,237,513

Harmine vivo 38,924,867

BAI 1 vivo 38,168,624

MitoTam clinical trials 29,786,070

mitochondrial function. Additionally, homopalol enhances SIRT3
deacetylation activity, activating SOD2’s antioxidant function and
OGG1-mediated DNA repair. This modulation of the cGAS/STING
pathway helps prevent fibrosis and cellular senescence (Wu et al.,
2024). Other compounds, such as purple salvia terpene ether
and salvia divinorum extract, have been shown to reduce
BLM-induced lung fibrosis by inhibiting TGF-β1 signaling,
oxidative stress, and collagen deposition (M. Zeng et al., 2024).
Harmine has been confirmed in vitro to prevent pulmonary
fibrosis by regulating DDR-associated genes and activating the
TP53-Gadd45α pathway (Gong et al., 2024).

Targeting inflammation linked to mitochondrial outer
membrane permeabilization (miMOMP) may also be beneficial.
For example, BAX inhibitor BAI-1 reduces mitochondrial BAX and
BAK nanopores, lowering systemic inflammation and extending
healthy lifespan in aged mice (Victorelli et al., 2023). Additionally,
MitoTam, a mitochondria-targeted tamoxifen currently in clinical
trials, has been shown to induce apoptosis in senescent cells and
reduce senescence markers (p21 and p16) in the kidneys and lungs
of aged mice (Hubackova et al., 2019).

Gene replacement therapy and gene editing technologies
offer potential solutions for inherited mitochondrial disorders,
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though a deeper understanding of the mitochondrial
genome is required. Combination therapies have also gained
attention; for instance, combining MitoQ with senolytics may
enhance mitochondrial function while reducing senescent
cell burden.

5 Conclusions and prospects

Although aging and IPF—a disease primarily affecting
the elderly—are closely linked, cellular senescence in IPF
differs significantly from normal physiological aging (Hagood,
2014). Normal senescence is a gradual, systemic decline,
whereas in IPF, cellular senescence is rapid, localized, and
pathologically driven, leading to alveolar epithelial failure and
fibrosis (Confalonieri et al., 2022). In IPF, ATⅡ cells are the
primary targets of senescence, with mutation-driven, SASP-
mediated, and microenvironmental consequences that disrupt
the alveolar barrier and activate fibroblasts, ultimately causing
irreversible fibrosis (Confalonieri et al., 2022; Lei et al., 2024).
In contrast, normal aging results in a slow decline in organ
function and increased susceptibility to age-related diseases but
is not inherently fatal. Therapeutic strategies for aging include
mTOR inhibitors, antioxidants, anti-aging therapies, and calorie
restriction, whereas IPF-specific treatments focus on antifibrotic
agents and telomerase activation (Cătană et al., 2018). While
approved antifibrotic drugs like pirfenidone and nintedanib slow
IPF progression, they have side effects and cannot reverse lung
function decline. Therefore, research on IPF aging could enhance
pulmonary fibrosis management while offering new insights into
anti-aging therapies.

Senolytic drugs targeting tumorigenic pathways have emerged
as a promising class of therapies, though their long-term
optimization remains challenging. Additionally, the chronic lung
damage and inflammation in IPF may share mechanistic links
with cancer, offering potential directions for anti-aging drug
development. Targeting the “two-way vicious cycle” between
mitochondrial dysfunction and ATⅡ senescence may provide
precision therapies for IPF. This cycle involves mitochondrial
damage triggering senescence via ROS and energy depletion,
while senescent cells further impair mitochondria and activate
fibroblasts through SASP. While most evidence suggests ATⅡ
senescence promotes fibrosis, some SASP factors may inhibit
collagen production, highlighting a complex, microenvironment-
dependent effect.

Future research should explore novel drugs targeting this
pathway to treat pulmonary fibrosis. Investigating the clinical
potential of compounds that have shown efficacy in animal and
cellular models could accelerate the development of effective IPF
therapies. Mitochondria-targeted approaches align with precision
medicine, offering tailored treatments that mitigate ATII cell
senescence while minimizing adverse effects. However, the roles of
many naturally occurring compounds in modulating mitochondrial
autophagy, ATP production, and oxidative stress remain unclear.
By targeting multiple pathways associated with mitochondrial
dysfunction, these treatments could help counteract fibrosis
progression.

Implementing a personalized medical approach requires
clinically relevant biomarkers. A robust biomarker panel, monitored
longitudinally, could facilitate early detection of treatment responses
in clinical trials. However, challenges remain, including variability in
staining techniques, sensitivity issues due to small sample sizes, and
the need for independent validation. Most research is still limited
to preclinical models, necessitating further human trials to assess
the efficacy of senescence-targeting and mitochondrial therapies in
IPF. Additionally, substances that show promise in treating fibrosis-
like conditions in other organs may not necessarily be effective
against pulmonary fibrosis. Variability in experimental methods,
reagents, and models further complicates research outcomes.
The interactions between cellular senescence, mitochondrial
dysfunction, and other disease factors remain poorly understood,
and a major hurdle in IPF treatment is the lack of therapies that
simultaneously target both ATⅡ cell senescence and mitochondrial
dysfunction.

Advancements in technology are deepening our understanding
of IPF pathogenesis, which could optimize therapeutic strategies.
As research progresses, new treatments targeting key molecular
pathways are being developed, and clinical trials are gradually
advancing. Gene therapies related to aging and pulmonary fibrosis
are also emerging, propelled by advances in genetics and gene
editing. Ultimately, IPF treatment is evolving toward greater
precision and personalization, aiming to minimize side effects and
improve patients’ quality of life. With continued drug development
and ongoing clinical trials, there is reason to be optimistic about the
future of IPF treatment.
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