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Backgrounds: There is growing evidence that autoimmune illnesses are
associated with the metabolome andmicrobiota. Because Behçet’s disease (BD)
is not often diagnosed as a systemic disorder, the aim of this research was to
investigate changes in gut flora and metabolites in BD patients.

Methods:We used 16S rRNA gut microbiota gene sequencing and UPLC-QTOF-
MS analysis to gather stool and serum samples from 12 age-matched healthy
controls and 17 BD patients. The correlation between changes in gut microbiota
and metabolites was then further analyzed.

Results: In contrast to healthy controls, our investigation revealed significant
changes in the makeup of gut flora in BD patients. In particular, we observed
that in the BD group, there was a large drop in clostridia but a noticeable
rise in γ-proteobacteria and betaproteobacteria. The serum metabolomics
profiles of BD patients and healthy controls may be reliably differentiated
using unsupervised principal component analysis (PCA). Several metabolites,
including L-phenylalaine, tricarballylic acid, beta-leucine, ketoleucine, ascorbic
acid, l-glutamic acid, l-malic acid, d-glucopyranuronic acid, and methyl
acetoacetate, were found to have differential expression between BD patients
and healthy controls. All of these metabolites were significantly lower in the BD
group. Furthermore, we discovered strong associations between the detected
metabolites such as tricarballylic acid, L-malic acid, D-glucopyranuronic acid
with certain microbial families, such Prevotellaceae and Alcaligenaceae.

Conclusion: Patients with BD were found to have significant changes in the
makeup of their gut flora and metabolites.
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Introduction

Behçet’s disease (BD) is a widespread systemic inflammatory disease that mostly affects
areas around the Mediterranean basins and the old Silk Road (Bulur and Onder, 2017).
Hulusi Behçet, a Turkish dermatologist, first reported it in 1937 (Tugal-Tutkun, 2023).
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It is characterised by a variety of clinical symptoms, such as
skin lesions, relapsing-remitting panuveitis with retinal vasculitis,
gastrointestinal manifestations, arthritis, and vaginal and oral
aphthous ulcers (Nieto and Alabau, 2020; Vaiopoulos et al., 2016;
Ksiaa et al., 2019). The gastrointestinal symptoms caused by BD are
very common in clinical practice (Emmi et al., 2024; Skef et al.,
2015). Any portion of the gastrointestinal system might be affected
by gastrointestinal symptoms, which are especially serious and entail
a high risk of morbidity and mortality (Skef et al., 2015). However,
the treatment effect is not good (Manuelyan et al., 2024).

The primary mechanical feature of BD is multi-organ
involvement in inflammation. In comparison to people with
recurrent aphthous stomatitis (RAS) and healthy controls,
patients with BD have higher periodontal scores, and these
values are connected with the severity of the disease (Ghate and
Jorizzo, 1999; Jorizzo et al., 1985). The pathophysiology of BD
is associated with infectious agents because to the molecular
mimicry that occurs between human proteins and microbial
antigens, specifically involving heat shock proteins (Gomes et al.,
2018; Pay et al., 2007). Immunopathogenesis centers around T
cells (Arayssi and Hamdan, 2004; Pineton de Chambrun et al.,
2012), neutrophils, and antigen-presenting cells, with elevated
levels of various inflammatory markers documented during active
disease phases, providing insights into potential therapeutic targets
(Musabak et al., 2006; Nuamah et al., 2023). As a result, it offers
guidance for the inflammatory damage process and potential
therapeutic targets.

The relationship between BD and gut microbiota has been
preliminarily studied in previous studies (Yasar Bilge et al., 2020).
The pathogenesis of BD may be due to a deficiency in immune
tolerance due to a decrease in Tregs, while an increase in Th17
cells triggers inflammation. Recent studies have confirmed that
changes in gut microbiota are involved in the development of BD by
regulating Th1, Th17, and Treg cells (Ma et al., 2021). Consolandi
and colleagues first reported the characterization of the gut
microbiota in BD. Patients with Behçet showed significant depletion
in Roseburia and Subdoligranulum spp., and the production levels
of butyrate were significantly reduced compared to healthy controls
(Consolandi et al., 2015). The intestinal flora of BD patients is
rich in lactic acid-producing bacteria, sulfate-reducing bacteria, and
some opportunistic pathogens, but lacks butyric acid-producing
bacteria and methanogens (Chen and Tang, 2023; Sun et al.,
2022). Alterations in microbial-derived metabolites represent an
important mechanism by which changes in gut microbiota affect
host health. For example, short-chain fatty acids (SCFAs), as a key
set of metabolites produced by the gut microbiota, play a crucial
role in bridging diet, gut microbiota, and host immune responses
(Dupraz et al., 2021; Fan et al., 2023;Oezguen et al., 2019;Wang et al.,
2023). Therefore, it may be of great significance to explore the
changes of intestinal microbiota composition and metabolites in BD
patients to explore the pathogenesis and treatment of BD diseases.

Through metabolite analysis, the developing field of
metabolomics provides important insights into physiological and
pathological states (Joshi et al., 2021; Karahalil, 2016; Reel et al.,
2021). Metabolomic techniques have proven useful in the early
identification of disease-related changes and have contributed
to our knowledge of a number of disorders, such as diabetes,
cancer, and autoimmune diseases (Wu et al., 2010), including

cancer and diabetes (Xu et al., 2009). Although the metabolic
anomalies in BD are complicated, there is mounting evidence
linking the pathophysiology of non-communicable diseases (NCDs)
to the gut microbiota (Lian et al., 2015; Di Lauro et al., 2023;
Hamamah et al., 2022; Rinninella et al., 2020; Tan et al., 2023).
Indirect microbial metabolism, molecular mimicry as a possible
antigenic trigger, direct microbial translocation, or microbe-
associated molecular patterns may all be the source of host-
microbe crosstalk (Reinke et al., 2014; Zahoor et al., 2021).
Studies on the pathophysiology of autoimmune disorders benefit
greatly from the use of certain bacteria, and research on BD
requires the establishment of relationships between metabolites
and microorganisms (Guan et al., 2023; Belvoncikova et al., 2022;
Christovich and Luo, 2022; Haneishi et al., 2023).

In this work, we analyzed the gut microbial profiles of BD using
a variety of genomic techniques, such as 16S rRNA gut microbiota
gene sequencing and UPLC-QTOF-MS. Our primary goals were
to assess the relationships between microbial characteristics and
metabolites, discover BD-specific features based on microbial
metabolites, and examine microbial functions in BD patients.

Materials and methods

Patients

Between January 2010 and December 2023, the Xuzhou First
People’s Hospital served as the single-center study’s enrollment
site for 17 Behçet’s disease (BD) patients and 12 age- and
sex-matched healthy controls who had no family history of
autoimmune illnesses. Patients with BD fulfilled the revised
International Criteria for Behçet’s Disease (ICBD) or the 1990
International Study Group criteria (International Team for the
Revision of the International Criteria for Behçet's Disease, 2014;
Blake et al., 2017). Data on the duration of the condition, clinical
presentation, erythrocyte sedimentation rate (ESR), C-reactive
protein (CRP) levels, and treatment regimens were gathered by
clinical evaluations and a review of hospital records. Using the BD
Current Activity Form 2006 (BDCAF 2006) (Author Anonymous,
1990; Kaklamani et al., 1998; Wong et al., 1984), disease activity
was assessed. Patients were included when BD diagnosis was based
on clinical, endoscopic, radiologic, and histopathological criteria
established. Exclusion criteria were as follows: (i) Patients who were
treated or were being treated for IBD prior to the study period;
(ii) those who previously underwent gastrointestinal tract resection,
which could cause nutrient deficiencies; (iii) patients with a history
of cancer or with a stoma; (iv) patients lost to follow-up during the
study period; and (v) those with incomplete medical records.

The Xuzhou First People’s Hospital ethics committee approved
this research (Approval No.: XZFFD20180505, dated: 2018.10), and
it adhered to the Declaration of Helsinki’s tenets. Written informed
permission was acquired by each subject.

16s RNA sequence of gut microbiota

A faecal sample (1.0 g) was collected from each individual
immediately after production. Several patients prepared the samples
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in their preferred locations and stored them at 4°C until they
attended a hospital within 12 h of preparation. Each sample was
suspended in 20% glycerol (Wako Pure Chemical Industries, Tokyo,
Japan)/PBS and frozen in liquid nitrogen.

Samples were stored at −80°C until use. Deoxyribonucleic
acid (DNA)was extracted and purified from the samples based on
the literature with slight modifications (Liang et al., 2019).Briefly,
after thawing, we filter the samples using a 100 μm mesh
and wash them with PBS. Bacterial pellets were treated with
lysozyme (Sigma-Aldrich Japan, Tokyo, Japan). The samples were
then treated with achromatic peptidase (Wako Pure Chemical
Industries). DNA was purified by SDS (Wako Pure Chemical
Industries)/Proteinase K (Merck Japan, Tokyo, Japan) treatment,
followed by phenol/chloroform extraction. After incubation with
RNase A (Wako Pure Chemical Industries), sample DNA was
precipitated with a polyethylene glycol solution (Wako Pure
Chemical Industries). Samples are evaluated by measuring the ratio
of optical density at 260 nm to optical density at 280 nm, typically
1.66 to 2.1. We then confirm the amplicon library using agarose gel
electrophoresis (Shimizu et al., 2016).

After DNA extraction, the V4 region of the 16S
rRNA gene was amplified using specific barcoded primers
(V4F,5′-GTGTGYCAGCMGCCGCG GTAA-3′, and V4R, 5′-
CCGGACTACNVGGG TWTCTAAT-3′). The PCR amplification
product was mixed in equal amounts and measured by QuantiFluor.
All samples were duplexed on the Illumina Hiseq PE250
(San Diego, CA, USA) platform. High-throughput sequencing
analysis of bacterial rRNA genes using the Quantitative Insights
into Microbial Ecology (QIIME, version 1.9.1) software suite.
The calculated p-value is FDR corrected with FDR ≤0.05 as
the threshold.

Sample preparation for
metabolomics/lipidomics analysis

Serum samples were obtained from blood samples after
centrifugation at 1500 g for 10 min (4°C), alipacked, and stored at
−80 °C for subsequent analysis. The sample pretreatment process
is as follows: First, methanol (Fisher Scientific, Fair Lawn, USA) is
added to 100 μL of serum and vortex to mix for 180 s. A total of
900 μL of methyl tert-butyl ether (Sigma-Aldrich, St. Louis, USA)
and 250 μL ofMilli-Q (MerckKGaA,Darmstadt, Germany) purified
water were then added to the solution and vortex for 180 s. The
mixture was then incubated on a rolling mixer for 10 min and
kept at room temperature for 10 min before centrifugation at 13,000
× g for 10 min (4°C). A total of 700 μL of lipid extracts were
transferred from the upper layer and 400 μL of polar metabolite
extracts from the lower layer were transferred to two EP tubes,
where they were concentrated and dried by vacuum centrifugation.
The remaining samples were mixed and centrifuged, and the
upper and lower layers with a similar distribution were used as
quality control samples. Polar metabolite analysis was performed
using three different analytical methods, and polar metabolite
extracts were separated by reversed-phase chromatography to detect
positive and negative ionization, respectively. Chromatographic
separation of lipids is also performed in positive and negative
ionization modes (Liu et al., 2024).

UPLC-QTOF-MS analysis

Analysis of UPLC-QTOF-MSParameters formass spectrometry
and chromatography were established as previously mentioned
(Li et al., 2014). Positive and negative mode of an XEVO G2
QTOF was used for the mass spectrometry study. Accurate
mass was maintained by introduction of LockSpray interface of
sulfadimethoxine (311.0814 [M + H]+ or 309.0658 [M − H]−)
at a concentration of 250 pg/μL in 50% aqueous ACN and a rate
of 150 μL/min. The procedure included integration, normalization,
and peak intensity alignment. In the positive data set, a list of m/z
and retention time with corresponding intensities was provided
for all metabolites in every sample. Then, the processed data
set was then entered into the SIMCA‐P software package (v13.0,
Umetric, Umea, Sweden). The normalized data were then used
to perform principal component analysis (PCA) and orthogonal
to partial least squares‐discriminate analysis (OPLS‐DA) with VIP
>1 as a threshold. The chromatographic separation was performed
on the Thermo Scientific Prelude SPLC system, and detection
was performed on the Thermo TSQ Vantage triple quadrupole
mass spectrometer (Guan et al., 2023). Statistically significant
ions were putatively identified in MetaboLyzer, which utilizes the
Human Metabolome Database (HMDB), LipidMaps, and the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) database. while
accounting for possible adducts, H+, Na+, and NH4+ in the ESI +
mode, and H–and Cl–in the ESI–mode (Author Anonymous, 1990;
Kalra et al., 2014).

Statistical analyses

Software called SPSS 17.0 was used to analyses the data,
which were shown as mean ± standard error of the mean
(SEM). The independent samples t-test, Wilcoxon rank sum
test, or Mann-Whitney U test were used to evaluate group
differences, and Spearman’s rank correlation coefficient was used
to find correlations. For data analysis and visualization, GraphPad
Prism v8.0 and R were used, with a statistical significance
threshold of p < 0.05.

Results

Baseline

Our study included a total of 17 BD patients and 12 healthy
volunteers.Themean age of BDpatientswas 34.25± 5.69 years, while
that of the healthy volunteers was 35.91 ± 6.48 years (p = 0.36). The
mean BMI of BD patients was 22.32 ± 3.62, while that of the healthy
volunteers was 21.95 ± 2.25 (p = 0.158).

Among the BD patients, eight were males (47.06%), while there
were five males in the healthy volunteer group (41.67%, p = 0.44).
There were no statistically significant differences between the two
groups in demographical and clinical characteristics such as smoker
(p = 0.31), alcohol (p = 0.22), Type 2 DM(p = 0.12), hypertension
(p = 0.06) and hyperlipidemia (p = 0.08). Detailed morbidity of BD
patients is presented in Table 1.
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TABLE 1 Demographical and clinical characteristics of patients with Behcet’s disease and normal individuals.

Characteristics at the time of sample collection Behcet’s disease (BD, n = 17) Normal individuals (NI, n = 12)

Age, mean years (range) 34.25 ± 5.69 35.91 ± 6.48

Men 8 (47.06) 5 (41.67)

BMI (Kg/m2) 22.32 ± 3.62 21.95 ± 2.25

Family history of BD 2 NA

smoker 8 3

Alcohol (Current) 3 2

Type 2 DM 5 2

Hypertension 4 1

Hyperlipidemia 3 1

Medication

5-ASA 10 NA

Steroid 2 NA

Immunomodulators 5 NA

Biologics 4 NA

Disease activity parameters

Oral aphthosis, % 17 0

Skin involvement, % 15 0

Genital ulcers, % 8 0

Uveitis, % 5 0

Gastrointestinal system involvement, % 4 0

Central nervous system involvement, % 2 0

Vascular involvement, % 2 0

Arthritis, % 2 0

Leucocyte 8.12 ± 0.89 NA

Neutrophil 5.44 ± 1.05 NA

IgG 11.84 ± 0.85 NA

IgA 2.61 ± 0.85 NA

IgM 1.31 ± 0.58 NA

IgE 68.25 ± 6.24 NA

Complement C3 1.09 ± 0.25 NA

CRP, mean ± SD, mg/dL 0.26 ± 0.11 NA
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FIGURE 1
Cluster analysis of intestinal flora.∗p < 0.05;∗∗p < 0.01. (A) Intestinal microbiota analysis heat map; (B) Intestinal microbiota analysis dendrogram.

Altered intestinal flora in patients with BD

To investigate the impact of changes in intestinal flora and
potential metabolites in Behçet’s disease (BD), we collected fecal

samples from 17 BD patients and 12 healthy subjects. The samples
underwent macro-genome sequencing, resulting in an average
length of 6.23 ± 1.26 Gb per sample. We compared the obtained
data with reference genomes available in the National Center for
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FIGURE 2
PCA analysis, taxa and species analysis of intestinal flora.∗p < 0.05;∗∗p < 0.01. (A) Principal Cause Analysis; (B) Caldogram map; (C) Distribution map of
the main differential flora; (D) Distribution of phylum microflora.

Biological Information (NCBI) and Human Microbiome Project
(HMP) catalogs. Our findings revealed a significant increase in
anamorphic and thick-walled bacilli, as well as a notable decrease
in synergistetes and cyanobacteria. Heat map analysis and cluster
analysis are presented in Figure 1.

In Figure 2A, we conducted a comprehensive causal analysis to
identify significant alterations in gut flora between the two groups.
A dendrogram illustrating the relationship between intestinal
flora is presented in Figure 2B. Furthermore, we observed a
significant decrease in clostridia but a significant increase in
gammaproteobacteria and betaproteobacteria in the BD group
compared to the control group (Figures 2C,D).

Serum metabolomics

To explore the metabolic profiles associated with BD, we
performed metabolomics analysis on BD patients and healthy
controls using the UPLC-QTOF-MS method. Unsupervised PCA
plots were generated using SIMCA-P software, and differential
analysis was conducted using Metabolic Analyzer. Volcano plots
highlighting variations in ion levels between healthy controls and
BD patients are depicted in Figure 3. In the volcano plot, red
dots represent ions with significant differences (p-value <0.05) in

levels between BD patients and healthy controls. Putative molecules
for these differential ions were identified by cross-referencing
metabolite databases based on precise mass numbers, as described
in the Methods section.

Figures 3E,F illustrate the results of KEGG signaling pathway
analysis, revealing a positive correlation between metabolic
pathways associated with pyrimidine metabolism and cysteine
and methionine metabolism, and a negative correlation with the
aminoacyl-tRNA biosynthetic signaling pathway and arginine
and proline metabolism. Noteworthy pathways with a false
discovery rate (FDR)-corrected p-value <0.25 are highlighted.
Supplementary Figure S1 displays heatmap results presenting the
most significant alterations in nine metabolites. L-phenylalanine,
tricarballylic acid, beta-leucine, ketoleucine, ascorbic acid, L-
glutamic acid, L-malic acid, D-glucopyranuronic acid, and methyl
acetoacetate exhibited a substantial decrease in the BD group
compared to the control group (Figure 4).

Metabolic pathways related with gut
microbiota in BD

Subsequently, we analyzed the signaling pathways for
the expression of all cations and anions, summarized
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FIGURE 3
Negative- and positive-related volcano maps and signaling pathway analysis.∗p < 0.05;∗∗p < 0.01. (A) Positive molecular distribution map of metabolites
in intestinal microbiota; (B) Distribution of negative metabolite molecules in intestinal microbiota; (C) Volcanograph of positive metabolite molecules;
(D) Volcano map of metabolite-negative molecules, (E) Enrichment analysis of positive molecular signaling pathway; (F) Enrichment analysis of
negative molecular signaling pathway.
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FIGURE 4
Top nine major gut flora metabolites sorted.∗p < 0.05;∗∗p < 0.01. (A–L) Phenylalanine abundance; (B) Tricarballylic acid abundance; (C) Beta-Leucine
abundance; (D) Ketoleucine abundance; (E) Ascorbic acid abundance; (F) L-glutamic acid abundance; (G) L-malic acid; (H) D-glucopyranucronic acid
abundance; (I) Methyl acetoacetate abundance.

their effects on the host, classified and annotated the
identified differential metabolites using the KEGG database,
elucidated their functional characteristics, and identified
major biochemical metabolic pathways and signaling pathways
(Figures 5A–C).

To further explore the correlations between differentially
expressed metabolites and the gut microbiota, correlation analyses
were performed at the family level. Figure 5D demonstrates the
sample categorization effects of the differential metabolites, as well
as the correlation between the first component of the differential
metabolites and the first component of the microorganisms.
Strong Pearson correlation coefficients (R = 0.01) indicate a robust
correlation between microbial taxa and the first component of
the differential metabolites. The top 20 relationship pairs with
the strongest ranked correlations and the top 20 relationship
pairs with the strongest canonical correlations were combined
and presented in a network diagram (Figure 5E), illustrating
significant correlations of Prevotellaceae and Alcaligenaceae
with the metabolites with tricarballylic acid, L-malic acid,
D-glucopyranuronic acid.

Discussion

Given the importance of maintaining microbiota balance for
host health and the changes in gut microbiota observed during
disease states, we investigated how microbial communities respond
to disease perturbations.Thismakes sense. In our study, we observed
significant changes in the intestinal microbiota and metabolites of
patients with BD, especially those associated with changes in the
families Prevotellaceae and Alcaligeneaceae.

Due to the absence of particular serologic markers, BD is a
chronic autoimmune disorder with a variety of clinical presentations
that may mimic other diseases. This makes it difficult to diagnose
and treat the condition quickly. This study is the first attempt to
identify putative biomarkers for BD diagnosis using metabolomics
and intestinal microbiota techniques. Individuals with BD exhibited
unique dysregulation of the gut flora, which included a notable
decrease in butyric acid synthesis. Moreover, there was a notable
decrease in Rhodobacter sphaeroides and Rose Bengal in the gut
flora. A helpful metabolite of short-chain fatty acids, butyric acid
influences immunomodulation and the mucosal immune response
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FIGURE 5
(A) KEGG pathway function annotation bar graph of positive ion compounds: the X-axis represents the number of metabolite annotations, and the
Y-axis represents the annotated KEGG pathway. (B) Statistical upregulation and downregulation of pathway classification of differential metabolites. (C)
Bubble plots for metabolic pathway enrichment analysis: X-axis enrichment factor (RichFactor) is the number of differential metabolites annotated to
the pathway divided by identified metabolites annotated to the pathway. The larger the value, the greater the proportion of differential metabolites
annotated to the pathway. The dot size represents the number of differential metabolites annotated to this pathway. (D) Scatter plot of correlation
between differential metabolites and microbial groups: (1) The component scatter plot of microbial group; (2) The component scatter diagram of
differential metabolite; (3) Pearson orrelation scatter diagram of the differential metabolite and the first component of microorganism group. The
greater R is, the higher the degree of correlation between microorganism group and the first component of the metabolic pathway is. The color and
ellipse represent sample groups. The greater the degree of sample dispersion in different groups, the better the classification effect of the component
value. (E) Network diagram of correlation between differential metabolites and microbial groups at family level: the circle is the metabolite, the triangle
is the microbial group; “−” represents negative correlation, “+” represents positive correlation.
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by promoting the growth of Tregs (Consolandi et al., 2015),
and it is essential for maintaining the integrity of the intestinal
epithelial barrier. Patients with BD had lower concentrations of
the bacteria that produces short-chain fatty acids, Clostridium
difficile, which led to lower levels of SCFAs and consequent
immunological dysfunction (Shimizu et al., 2016). The abundance
of Lachnospira and Barnesiellaceae was also found to be declining.
While modulating the reduction in butyric acid production by
influencing T cell differentiation and inflammation, Barnesiellaceae
may have an anti-inflammatory effect by lowering Tumor necrosis
factor alpha (TNF-α)levels, a critical cytokine in BD. On the
other hand, Eggerthella levels were higher in BD patients, whereas
Megamonas and Prevotella (van der Houwen et al., 2020) were
less common. Lactobacilli were important for the BD microbiota,
however Bacillus was consistently linked to increasing systemic
inflammation (Shimizu et al., 2019). Our study also identified a
range of changed gut flora in individuals with BD, including a
significant drop in Synergistetes and Cyanobacteria and an increase
in anamorphic and thick-walled bacilli.

Due to the absence of particular molecular indicators, early
diagnosis and treatment of BD, a chronic autoimmune illness
with a variety of clinical manifestations, are difficult. For this
reason, identifying biological markers is essential to the diagnosis
of BD. Based on prior study, L-phenylalanine, tricarballylic acid,
beta-leucine, ketoleucine, ascorbic acid, L-glutamic acid, L-malic
acid, D-glucopyranuronic acid, and methyl acetoacetate were
shown to be important contributors in our inquiry. By boosting
BH4 biosynthesis and decreasing superoxide generation by NO
synthase, for example, L-phenylalanine’s antihypertensive actions
may maintain renal and vascular function by lowering high ROS
and NO levels (Wang et al., 2021). Notably, L-phenylalanine
has promise in regulating inflammatory response and apoptotic
signalling pathways, indicating that it may be a viable treatment
option for prostate cancer (Zhang D. et al., 2023).The overexpressed
LAT1 system absorbs L-phenylalanine quickly and with a high
tumour selectivity. L-phenylalanine is a potential technique for
oncologic SPECT imaging due to the availability of a kit and the
tracer’s specificity (Kersemans et al., 2005). Since the 1960s, trans-
aconitic acid has been associated with magnesium insufficiency in
ruminants; new research indicates that rumen bacteria may be able
to convert it into tricarballylic acid (Schwartz et al., 1988). According
to research by Russell et al., rumen microbes produce tricarballylic
acid, which may be harmful to ruminant tissue metabolism (Russell
and Forsberg, 1986). A symmetric solid-state tricarballylic acid that
is flexible and demonstrates optical transmittance and scalable areal
capacitance (Choi et al., 2019). A flexible symmetric solid-state
version of tricarballylic acid demonstrates optical transmittance
and scalable areal capacitance. Additionally, tricarballylic acid has
been tested for binding to the h-NK2 receptor and functional
antagonist action on the bladder of rabbits (Harmat et al., 2002).
Modifications to beta-leucine (homovaline) result in decreased
hemolytic/cytotoxic effects, improved serum protease stability, and
a little reduction in size (Verma et al., 2023). While leucine 2,3-
aminomutase is known to occur inmammalian tissues, the presence
of beta-leucine in human blood is not (Stabler et al., 1988). When
compared to untreated denervated controls, animals treated with
ketoleucine did not exhibit a statistically significant decrease in
muscle wasting. Furthermore, animals given ketoleucine did not

see a reduction in the excretion of 3-methylhistidine in their urine,
which might be a sign of muscle breakdown (Yee et al., 1988).
Biocompatible polymeric nanoparticles of glutamic acid may find
use as a medication delivery system (Bakan et al., 2023). In a
SOCS2-dependent way, L-malic acid polarisesM2macrophages and
raises interleukin-10 levels (Zhang FL. et al., 2023). Alone or in
combination, L-malic acidmay reduce and inhibit oxidative damage
brought on by CPF (Salyha and Salyha, 2018).

Our study also found that gut microbiota and metabolite
correlation play an important role in metabolic diseases.
Gut microbiota, including Prevotellaceae, Rikenellaceae and
Ruminococcaceae and their metabolites SCFAs play important
roles in intestinal barrier integrity and intestinal homeostasis
(Wang et al., 2020). The gut microbiota Prevotellaceae family
is capable of producing butyrate, and long-term treatment
with nicotinamide mononucleotide (NMN) helps maintain gut
homeostasis by modulating the gut microbiota (Huang et al.,
2021). Prevotellaceae produces butyrate to alleviate PD-1/PD-
L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in
colonic macrophages (Chen et al., 2022). Maternal l-malic acid
consumption reshapes the colonic microbiota of its offspring. In
short, the abundance of Colidextribacter, Romboutsia, and Family_
XIII_AD3011_group increased, which was positively correlated
with antioxidant capacity and glucose metabolism in skeletal
muscle. Decreased abundance of Prevotella, Blautia, Prevotellaceae_
NK3B31_group, and Collinsella were also detected, which were
associated with lower insulin sensitivity (Zhang P. et al., 2023).
We hypothesize that specific gut microbiota may play a key role
in the pathogenesis of BD through its associated metabolites. We
hypothesize that specific gut microbiota may play a key role in the
pathogenesis of BD through its associated metabolites. However,
there are still few studies on the association between other specific
gut microbiota and metabolites, and further analysis is needed in
future studies.

Limitations

From the discussion above, it is clear that BD may affect gut
flora and metabolites in a number of ways, including changes in
the ratios of gut flora that are mediated by the neurological and
psychological systems. By controlling metabolism and hormones,
BD modifies alterations in gut flora and metabolites. It also
mediates immune system and host inflammatory responses. Our
research does, however, have certain shortcomings. Considering the
complexity of the composition of the intestinal microbiota and the
diversity of the composition of metabolites, although a variety of
statistical methods were used for data analysis in our study, there
were still many factors such as small sample size and short study
time, so it is necessary to supplement the sample size and increase
the long-term follow-up time in future studies to further clarify
the impact of intestinal microbiota and metabolites on BD disease.
Although we limited the type of treatment received to patients with
BD in the inclusion and exclusion criteria, and the baseline data also
included this part of the data, there may still be some impact on
the results, and the sample size may need to be further expanded in
future studies to ensure that patients with BDwho received the same
treatment are statistically analyzed. Moreover, BD has a number
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of side effects, including metabolic syndrome, which has been
connected to gut flora. Consequently, further research is needed to
examine these correlations. Further clinical research is necessary to
confirm and build upon these results. Further investigation into the
precise processes by which BD affects intestinal flora and maybe
causes pathological alterations in other systems is necessary, and this
will be the main goal of our next studies.

Conclusion

Our research sheds light on the altered variety and abundance
of gut metabolites and gut flora in BD patients, offering more
understanding of the illness. It is still unknown, nevertheless, how
gut flora and BD are causally related. Thus, further study is needed
to look at possible processes and causal relationships between gut
flora and BD.
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