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Particulate matter exposure is linked to numerous health issues, including
respiratory, cardiovascular, and neurodegenerative diseases. This review focuses
on the biological mechanisms through which air pollution influences the lung-
brain axis, highlighting the role of miRNAs in regulating gene pathways affected
by PM. Some microRNAs (miRNAs) are identified as key modulators of cellular
processes, including inflammation, epithelial-to-mesenchymal transition (EMT),
and blood-brain barrier integrity. Using mice models to study these effects
allows for controlled experimentation on the systemic distribution of PM
across biological barriers. Among the imaging technologies, Positron Emission
Tomography is the best approach to monitor the distribution and effects of PM
in vivo. The research underscores the importance of miRNA profiles as potential
markers for the health effects of PM exposure, suggesting that specific miRNAs
could serve as early indicators of damage to the lung-brain axis.
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1 Introduction

World Health Organization (WHO) states that air pollution refers to any harmful
chemical, physical, or biological agent substances in the air, such as pollutants from
vehicles, industrial processes, and natural sources referring to both the indoor and outdoor
environment contamination able to modify the natural characteristics of the atmosphere
(WHO, 2021). All these components are part of the general external exposome, the set of
all measurable exposures at the population level including air pollution or meteorological
factors. Outdoor air pollution consists of particulate matter (PM), ground-level ozone (O3),
sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and volatile organic
compounds (VOCs). Indoor or household air pollution arises from sources like cooking
stoves, heating appliances, tobacco smoke, and certain buildingmaterials (Tran et al., 2020).
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FIGURE 1
The main sources of particle matter.

Pollution can pass into the atmosphere in many ways, naturally,
such as from wildfires or volcanic ash, or anthropogenically,
by the emissions from factories, cars, planes, aerosol cans, and
cigarette smoke (Figure 1). Prolonged exposure to this kind of
pollutant can lead to various health issues, including brain,
respiratory, cardiovascular, and brain diseases (Giammona et al.,
2024; Manisalidis et al., 2020). Nowadays, outdoor and indoor
air pollution represent a global health crisis, causing over 4.2
million deaths annually, with rising morbidity and mortality
(Kelly and Fussell, 2015). The WHO declared that most of the
world’s habitats live where air quality exceeds limits concerning
the annual (Faridi et al., 2023). However, despite many studies
on air pollutant-associated adverse health effects, the underlying
molecular mechanisms by which air pollutants initiate disease
remain mainly unclear (Burkholder et al., 2017).

The most dangerous component among atmospheric pollutants
is particulate matter (PM), which refers to tiny particles or droplets
in the air that can be inhaled into the lungs. It is classified based
on aerodynamic diameters, namely PM2.5 (including particles with
a diameter of 2.5 μm or smaller), PM10 (including particles with a

diameter of 10 μmor smaller), and submicrometric PM0.1 (particles
with a diameter of less than 0.1 µm) (Burkholder et al., 2017;
Lara et al., 2023; Zhou et al., 2021).

PMs were recently included within the carcinogen
categories, (Harm to human health from air pollution in
Europe: burden of disease (Briefing, 2023; Thangavel et al.,
2022; Air quality in Europe Report, 2022; Lavigne et al.,
2019). Consequently, the monitoring and controlling
of PM levels are crucial for air quality management
(Air Quality in Europe Report, 2022; Yang et al., 2018) impacting
human and planetary health (Cena et al., 2024).

There is much evidence discussing the crucial role of microRNA
(miRNA) families in driving the biological responses to pollutant
exposure. miRNAs are endogenous non-coding single-stranded
small RNA family regulating huge gene pathways and the
complex regulatory network generated by miRNA interaction
with their target mRNAs plays a key role in regulating several
cellular processes. Considering that air pollutant exposure
has the potential to change the miRNA profiles, miRNA
expression deregulation may be considered as a marker of air
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FIGURE 2
Biological processes induced by air pollution exposure.

pollution effect on human health (Espín-Pérez et al., 2018;
Giammona et al., 2024; Krauskopf et al., 2017).

To understand the influence of PM exposure on diseases, also
mediated by altered miRNA expression, we have reviewed the main
papers discussing the connection between the effect of air pollution
and themiRNA involvement, highlighting the importance of animal
models to validate this connection. In particular, the use of animals is
indispensable to study the effect of air pollution in a complex system
to evaluate its in vivo distribution through the biological barriers,
particularly when we consider the effects on the lungs, brain, and
cardiovascular system (Ferreira et al., 2022).

The aim of this review focuses on the main biological
consequences of PM exposure reporting reliable research developed
in vivo models and imaging strategies to evaluate PM-related
disease, with particular interest in noninvasive Positron Emission
Tomography (PET) technique and ex vivo/in vitro studies, and the
related critical gene pathways involved in the control of the lung-
brain axis responsive to air pollution, to identify the non-coding
RNA families, and miRNAs in particular, responsible for their
modulation (Figure 2).

2 Methods

To find out a pool of microRNAs involved in the lung-brain
axis responding to air quality pollution and/or cause lung cancer,
we based on a PubMed search by the keywords “microRNA
and lung-brain axis.” The research updated on 23 September
2024 gave 37 papers on PubMed; reviews (Barangi et al., 2023;
Casciaro et al., 2020)were excluded, aswell as those papers regarding
the methylation process (Huang et al., 2023). Then we asked the
PubMed database to search for “microRNA and brain and air
particulate” (23 September 2024). We obtained 13 papers. From
those, reviews and articles not in English (Sagai, 2019) and English
regarding nano-drug delivery in Alzheimer’s disease were excluded

(Fu et al., 2022). Comparing the two groups of miRNAs along these
two metanalytic approaches, we selected common miRNAs that are
affected by air pollution exposure and that could be involved in the
control of the lung-brain axis. Moreover, by deeply discussing those
that exploit mice models, we could focus on PM exposure studies
that could be investigated by in vivo imaging tools to best highlight
the adverse health effects (Figure 3).

3 Animal models to study air pollution
effects

Animal testing has long been a cornerstone of toxicological
research, especially in the evaluation of air pollutant toxicity.
Rats and mice, due to their ease of handling and genetic
similarity to humans, are frequently chosen as models for
such studies (Zavala et al., 2020).

One significant advantage of animal testing is the control
of the whole experimental setup (mortality rates, gross
abnormalities, organ and tissue-level effects, and molecular-
level changes) (Costa et al., 2014). Additionally, animal
models can be tailored to specific research questions, such as
investigating disease mechanisms or susceptibility to certain
conditions or examining critical developmental stages, (i.e.,
in-utero exposure) (Yokota et al., 2013). According to this
study, maternal diesel exhaust particle (DEP) exposure may
lead to cognitive deficits, particularly in spatial memory,
emphasizing the need for further research to develop preventive
measures to mitigate the long-term effects of DEP exposure
on brain function. Other studies underlie that prenatal
exposure to UFPs may also affect fetal health causing asthma
in children (Wright et al., 2021).

Despite several advantages to using animal models, there
are notable limitations. Physiological and genetic differences
between animals and humans can affect how they respond to air
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FIGURE 3
Schematic view describing the selection of the literature strategy used for the review.

pollutants, potentially impacting the relevance of study findings
to human health. Moreover, conducting animal studies requires
substantial time, resources, and ethical considerations, which
have prompted efforts to reduce reliance on animal testing in
recent years.

The choice between in vivo, in vitro and ex vivo models in
air pollution research is crucial for accurately assessing human
health risks. While animal studies provide comprehensive insights
into systemic effects, physiological and genetic differences between
species (Rydell-Törmänen and Jhonson, 2019) may limit their
direct applicability to humans. Additionally, ethical and logistical
challenges have led to increased reliance on alternative models. In
vitro systems (Rothen-Rutishauser et al., 2008), including single-
cell cultures, co-cultures, and advanced 3D or organ-on-chip
models, offer controlled environments to study cellular responses to
pollutants. Ex vivomodels (Lakhdar et al., 2022), derived from intact
tissues, bridge the gap between in vitro and in vivo approaches by
preserving tissue architecture and physiological interactions. Each

model has its advantages and limitations, but when used together,
they enhance our understanding of pollution-induced toxicity and
disease mechanisms.

Nevertheless, animal models remain unique analogs of human
behavioral phenotypes that are risk markers for internalizing
and externalizing problems (behavioral inhibition, behavioral
exuberance, irritability), and to identify commonalities among
the neural mechanisms underlying these behavioral phenotypes
and the neural targets of air pollutants (polycyclic aromatic
hydrocarbons, traffic-related air pollutants, fine particulate
matter <2.5 µm) (Farina et al., 2013; Margolis et al., 2022).
Some common exposure approaches including intranasal or
intratracheal instillation, nose-only inhalation, whole-body
exposure, and intravenous injection have been reviewed
with a summary of their performance, merit, limitation, and
application. Each of these approaches has its own merits,
limitations, targeted organs and systems, and requirements for
study design (Shang and Sun, 2018).
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3.1 Exposure methods

There are several routes to expose animals to gaseous or
particulate matter-based pollutants; we have chosen to focus solely
on those that are physiologically relevant, particularly pulmonary
and oral exposures, excluding others such as injection-based
methods. These methods, indeed, replicate more realistically the
exposure scenarios that reflect how humans and animals naturally
encounter airborne pollutants. These routes include oral gavage,
aspiration, instillation, and inhalation (Zavala et al., 2020). Gavage
is an oral administration in which substances are conveyed to
the animals by inserting a small plastic feeding tube through the
nose or mouth and into the stomach. The gastrointestinal route of
exposure to particulate matter is relevant to explore the toxicity
of particles ingested through contaminated food (Danielsen et al.,
2008) and water.

Particles can be administered to the airway through nasal
or intra-tracheal instillation, and inhalation as airborne aerosol.
Pulmonary exposure is particularly relevant, as it directly mimics
the inhalation of particulate matter into the lungs, the primary
site of deposition for airborne particles. Instillation is a widely
used experimental method in toxicity studies, particularly for
investigating airborne PM. While the procedure is relatively
simple, it typically requires sedation to prevent coughing. The
particles are suspended in sterile saline or phosphate-buffered
saline (PBS) at the desired concentration before delivery. In nasal
instillation, the animal is lightly anesthetized and positioned
supine, with the particle suspension delivered dropwise into the
nasal cavity using a micropipette. For intratracheal instillation,
additional instruments and anesthesia are needed, with particles
suspended in saline or PBS and delivered via syringe, needle,
endotracheal tube, or catheter (Shang and Sun, 2018). Instillation
offers precise dosage but may result in uneven particle deposition
and require delivery vehicles (i.e., PBS or other saline solutions)
and anesthetization of animals. Inhalation exposure mimics real-
life exposure by introducing animals to aerosolized PM. It is
more physiologically relevant as it involves natural breathing
patterns. However, the setup is more complex and requires
controlled conditions (e.g., exposure chambers). Inhalation
exposure provides a more natural exposure route (air is the vehicle
of delivery) making this method closer to real-life exposure,
with direct effects on the respiratory system. However, it requires
specialized equipment and special setups to prevent contamination:
moreover, it is difficult to control the amount and size of particles
reaching the lungs.

It is important to mention that, despite these differences,
some studies suggest that exposure to poorly soluble particles
via instillation or inhalation yields similar levels for lung
toxicity (Møller et al., 2008). Inhalation exposure can be
performed through whole-body or nose-only chambers. Nose-
only exposure offers advantages such as higher exposure
concentration, reduced waste due to a smaller chamber
volume, and the ability to assess particle effects solely through
the nose route. However, it is necessary to keep animals
immobile and restrained in the chamber through rigid or soft
nets or tubes during nose-only exposure and this procedure
may induce mild stress. In contrast, whole-body exposure
minimizes stress other than exposure-related stress, making

TABLE 1 Summary of administration methods and particle
concentration.

Way of
administration

Concentration References

Oral gavage 0.64 mg/kg body weight
for 24h

Danielsen et al. (2008)

Nasal or intra-tracheal
instillation, and
inhalation

4.01 ± 1.11 mg/m3

3. dynamic inhalation
chamber with aerosol
20 mg/kg/day

1. Møller et al. (2008)
2. Oyabu et al. (2016)
3. Han et al. (2023)

Intratracheal
instillation

Not reported Shang and Sun (2018)

it suitable for prolonged and repeated inhalation studies.
Nevertheless, concerns persist regarding the potential contribution
of other exposure routes affecting particle deposition and
health outcomes (Oyabu et al., 2016).

The biodistribution of ultrafine particles (UFPs) varies
significantly depending on the route of administration. Inhalation
is the primary exposure pathway, leading to particle deposition
in different regions of the respiratory tract based on size, with
PM10 accumulating in the upper airways and smaller particles,
such as PM2.5 and UFPs, reaching the alveoli. Once in the
lungs, UFPs can translocate into the bloodstream, potentially
affecting distant organs like the liver, heart, and brain. In contrast,
particles administered via intratracheal instillation may exhibit a
different distribution pattern due to direct lung delivery, potentially
bypassing initial upper airway deposition. Additionally, nasal
exposure can facilitate direct translocation to the brain via the
olfactory nerve, whereas ingestion primarily directs particles
through the gastrointestinal system before systemic absorption.
These differences in biodistribution highlight the importance of
considering the exposure route when assessing the health risks
associated with particulate matter (Han et al., 2023). The summary
of all the methods described is in Table 1.

3.2 Time exposure

Animal studies typically employ different time exposures and
frequencies, ranging from acute to chronic designs, to assess
various toxicological outcomes. The duration and frequency of
exposure significantly influence the observed effects, as different
exposure designs—acute, subchronic, and chronic—provide distinct
insights into toxicity mechanisms. Acute exposures might last
for a single day or span up to 2 weeks, sub-chronic might last
for 1–3 months and chronic designs extend over longer periods,
up to 2 years. Acute exposures primarily reveal immediate
physiological or biochemical responses. In contrast, subchronic
exposure allows for a better understanding of cumulative toxicity
and adaptive biological responses. Chronic studies are essential
for assessing long-term health risks. Notably, toxicity resulting
from a single high-dose exposure may differ substantially from
low-dose repeated exposure, as chronic exposure can lead to
bioaccumulation, prolonged inflammation, or delayed onset

Frontiers in Cell and Developmental Biology 05 frontiersin.org

https://doi.org/10.3389/fcell.2025.1526424
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Giammona et al. 10.3389/fcell.2025.1526424

of adverse effects. Single-dose administration typically yields
acute effects, while chronic exposure is associated with long-
term effects (Mohammadpour et al., 2019). Thus, selecting
the appropriate exposure duration is critical for accurately
assessing potential health risks associated with environmental
particles.

3.3 Translational relevance to human
health

Rodent models are valuable tools for studying the effects
of air pollutants (for example, related to infectious and allergic
lung diseases), helping to establish cause-effect relationships
and exposure thresholds. However, extrapolating these findings
to human health is complex due to interspecies differences
in immune responses and pollutant sensitivity. Improving
risk assessment requires mechanistic insights and comparative
models to bridge the gap between animal data and human
health outcomes (Selgrade, 2000).

4 Noninvasive monitoring of air
pollution effects

In this section, we comprehensively explore the current imaging
strategies employed for monitoring ex vivo/in vivo pollutants
distribution and relative induced changes in the lung-brain axis,
highlighting their applications, limitations, and future directions,
with particular focus on Positron Emission Tomography (PET) and
Single Photon Emission Computed Tomography (SPECT) imaging.

PET and SPECTmolecular imaging are tomographic techniques
that, using specific radiopharmaceuticals, canmonitor physiological
functions, metabolisms and the expression of different markers as
neurotransmitters and receptors PET and SPECT have be used
to monitor the effect of pollutants on cardiac and respiratory
systems and on brain (Zaheer et al., 2018), and could provide
quantitative data on the exposure to labeled nanomaterials,
including PM, in living subjects. As an example (Nemmar et al.,
2002), ultrafine carbon particles (5–10 nm) have been labeled with
Tc-99m and administered by aerosol in healthy volunteers (3–5
breaths corresponding to 100 MBq). Images have been acquired
using a planar gamma camera, which can register single photon
emission deriving from labeled material within the body. In
parallel, blood samples were collected via a venous catheter at
different times and radioactivity was measured in a gamma counter.
Radioactivity analysis evidenced the accumulation of particulate
firstly in the lungs and thereafter in the other organs with a
mechanism mediated by blood translocation, validating the SPECT
as a useful tool to monitor particulate fate. Technological advances
led to the development of SPECT/CT hybrid tomographs with
improvement in spatial resolution and sensitivity (Ljungberg and
Pretorius, 2018). As for PET and PET/CT systems, the amount
of radioactivity can be expressed as counts per minute (CPM) or
converted to standardized uptake values (SUV), considering body
mass and administered radioactivity. Tissue radioactivity can be
measured and compared across different regions (Vaquero and
Kinahan, 2015).

4.1 Particulate matter biodistribution study
by in vivo imaging

A significant challenge in comparing health risks associatedwith
micro or nano-toxic particles lies in accurately measuring these
hazardous materials within biological tissues. Various methods,
including the use of fluorescent tags and mass analysis, have been
explored to investigate the biological uptake of PM in living subjects
(Jiang et al., 2021; Li et al., 2019). While these methods offer
valuable insights into the distribution and enable tissue analysis of
carbonaceous particles, they reported some important limitations.
Optical imaging and fluorescent labeling techniques, for instance,
often encounter difficulties in accurately measuring target analytes
in deep tissues due to limited signal penetration (Li et al., 2019;
Son et al., 2022). Additionally, mass analysis necessitates intricate
pretreatment steps, and it is ill-suited for quantitatively measuring
PM across a wide size range within biological tissue (Yuan et al.,
2020). An alternative approach for in vivo tracking of carbonaceous
matter involves the development of a radiotracer by radioisotope-
based labeling of PM (Figure 4). This method facilitates precise
determination of uptake and tissue distribution without the
need for pretreatment of tissue sections, as required in vitro/ex
vivo (Bartels et al., 2020). Furthermore, it enables noninvasive
imaging of PM in organs of interest using nuclear imaging tools
like PET or SPECT, allowing for direct quantification of the
molecule’s concentration in living biological systems (Im et al., 2022;
Lee et al., 2020). Therefore, the use of radiotracers helps overcome
the limitations of conventional analytical methods. Previous
studies have demonstrated the preparation of radioisotope-labeled
particulate matter with a sub-micrometer size distribution using
radioactive iodine (125I) (Lee et al., 2019), enabling visualization
of harmful carbonaceous matter via in tracheal instillation in
mice. Authors assessed that 125I particles retained their stability in
vivo, which allowed a reliable determination of the 125I particles
biodistribution, with little release of 125I fromparticles (Cavina et al.,
2017). In a recent study (Park et al., 2023), the authors employed
89Zr-tagged pyrene (Dilworth and Pascu, 2018; Lee et al., 2019) as a
radiotracer to prepare 89Zr radioisotope-incorporated PM, suitable
for PET imaging, which provides spatiotemporal information
over several days (van Dongen et al., 2021). The authors tested
three different routes of administration: intratracheal, oral, and
intravenous injection and results reported that PM was largely
distributed in the lungs and only slowly cleared after 7 days
in mice exposed via the intratracheal route. In addition, the
uptake of 89Zr-PM was visible also in other organs, such as
the heart, spleen, and liver. Uptake values in these organs were
also noticeable following exposure via the intravenous route. In
contrast, most of the orally administered PM was excreted quickly
within a day. These results suggest that continuous inhalation
exposure to PM causes serious lung damage and might cause
toxic effects in the extrapulmonary organs such as the brain
(Yuan et al., 2024). Furthermore, the authors developed a method
that can be used in future studies focused on the analysis of
the in vivo behavior of hazardous carbonaceous matter. In fact,
89Zirconium possesses unique physical and chemical properties
such as a long half-life that provides information on long-
circulating molecules and their pharmacokinetics, and a favorable
emission energy that is lower than some other PET isotopes
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FIGURE 4
Radioisotope labeled PM can be administered in mice via intratracheal, oral, or intravenous injection to monitor the biodistribution of PM using
preclinical PET/CT system.

(e.g., 18F) contributing to high-resolution imaging and improved
quantitative accuracy in PET scans.Moreover, 89Zr can be efficiently
conjugated to biomolecules by deferoxamine (DFO) as a chelator
that produces a stable complex, with low off-target radiation and
increases imaging specificity. Thus, PET/SPECT imaging could
represent a powerful tool for non-invasively monitoring the in
vivo distribution of PM with high-resolution and quantitative data
(Pan et al., 2023; Zaheer et al., 2018).

4.2 In vivo PET/SPECT molecular imaging
applications for monitoring air
pollution-induced neuropathological
alterations

Growing evidence suggests that exposure to air pollution is
linked to various central nervous system (CNS) disorders via the
lung-brain axis (Block et al., 2012; Block andCalderón-Garcidueñas,
2009). Living in areas with heightened urban air pollution levels has
been linked to reduced cognitive function in older individuals,
(Power et al., 2013, 2011; Wellenius et al., 2012), increased risk
of autism (Becerra et al., 2013; Roberts et al., 2013; Volk et al.,
2013, 2011), Alzheimer’s disease (AD) (Jung et al., 2015) and
Parkinson’s disease (PD) (Kirrane et al., 2015) hastened disease
progression leading to initial hospitalization in neurodegenerative
disorders (Kioumourtzoglou et al., 2016), such as AD-like
(Calderón-Garcidueñas et al., 2012; Calderón-Garcidueñas et al.,

2008; Calderón-Garcidueñas et al., 2004) and PD-like (Calderón-
Garcidueñas et al., 2013; Calderón-Garcidueñas et al., 2011)
neuropathology in humans, as well as greater incidence of stroke
(Bedada et al., 2012; Wellenius et al., 2012). While the specific
mechanisms remain unclear, there is growing support for the
theory that neuroinflammation and microglial activation with
the consequent hampering of neurovascular unit integrity, serve
as a common mechanism through which air pollution impacts
these various CNS conditions. Amyloid-β (Aβ) deposition is a
main feature of Alzheimer’s disease (AD) and may be promoted by
exogenous factors, such as ambient air quality. Both PM2.5 and O3
play significant roles in the global burden of disease and mortality
(Cohen et al., 2017; Landrigan et al., 2018), as evidenced by various
studies. They have been linked to an elevated risk of cognitive
decline, clinically diagnosed Alzheimer’s disease (AD), and all-
cause dementia in epidemiological investigations (Block et al., 2012;
Costa et al., 2020; Jayaraj et al., 2017; Paul et al., 2019; Peters et al.,
2019; Russ et al., 2019; Tsai et al., 2019). Recent updates from the
Lancet Commission in 2020 on dementia prevention, intervention,
and care have highlighted exposure to air pollution as a modifiable
risk factor for cognitive decline in later life (Bhatt et al., 2015;
Cacciottolo et al., 2020; Cacciottolo et al., 2017; Durga et al., 2015;
Hullmann et al., 2017; Jang et al., 2018; Levesque et al., 2011a;
Livingston et al., 2020). Human studies assessing neuropathological
or cerebrospinal fluid levels of Aβ1-42 have observed that
individuals residing in more polluted areas, including children,
young adults, and middle-aged adults, are more likely to exhibit
signs of altered Aβ processing and, in some cases, pathological
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amyloid deposition (Calderón-Garcidueñas et al., 2020; Calderón-
Garcidueñas et al., 2018; Calderón-Garcidueñas et al., 2016a;
Calderón-Garcidueñas et al., 2012; Calderón-Garcidueñas et al.,
2008; Calderón-Garcidueñas et al., 2004). Recently, in a cross-
sectional study of 178 individuals with cognitive impairment
(Iaccarino et al., 2021), it was observed that people residing in
regions with inferior air quality displayed a heightened likelihood of
exhibiting positive amyloid positron emission tomography scan
outcomes using 1 of 3 most common Aβ fluorine-18 labeled
tracers (18F-florbetapir, 18F-florbetaben, or 18F-flutemetamol)
(Iaccarino et al., 2021). Specifically, high levels of PM2.5
concentrations were linked to the presence of amyloid-β plaques
in the brain, which are indicative of AD. This correlation exhibited a
proportional relationship with the dosage of exposure and remained
statistically significant following adjustments for demographic,
lifestyle, socioeconomic factors, and medical comorbidities. The
conclusions drawn from this research indicate that exposure to air
pollution is correlated with the development of amyloid-β pathology
in older adults grappling with cognitive impairment (Iaccarino et al.,
2021). In addition, these results confirmed that PET imaging serves
as a fundamental technique for in vivo assessment of Aβ brain
accumulation (amyloid PET scan) even air pollution correlated.

Similarly, a population-centric investigation carried out in
Canada reported that exposure to air pollutants, particularly
PM2.5, is associated with the onset of PD (Shin et al., 2018).
Further investigations also confirmed that prolonged exposure
to air pollution elevates the probability of PD (Hu et al., 2019).
Accordingly, a recent longitudinal cohort exploration by Liuhua
Shi et al. revealed that for every 5 mg/m3 rise in yearly PM2.5
concentration, the hazard ratio stood at 1.13 for the initial
hospitalization for PD, suggesting a significant correlation between
exposure to annual mean PM2.5 and heightened PD risk (Shi et al.,
2020). Studies from both animal experiments and humans have
supported the hypothesis that pathological α-syn can accumulate in
the gut, spread to the brainstem by the vagus nerve, and eventually
induce neuronal loss in the nervous system SN (Shannon et al.,
2012). Little direct evidence sustains air pollutants can induce α-syn
aggregates in the gut, which spread to the central nervous system
(CNS). There is an increasing body of publications demonstrating
that air pollutants can change the gut mucosa, which is thought
to promote α-syn pathology (Murata et al., 2022). In animal
studies, α-syn preformed fibrils injected into the duodenum
induce α-syn spread into brainstem nuclei and then to the SN
(Kim et al., 2019). Although PET imaging approach has not been
applied yet to investigate the α-syn accumulation in correlative
studies of air pollution and PD onset, the DaTscan PET imaging
technique is sensitive enough to detect presynaptic dopamine
neuronal dysfunction and could be considered as one of useful
in vivo diagnostic tools for the early detection of degenerative
Parkinsonism (Bega et al., 2021). Air pollution exposure has
been evidenced to induce inflammation and leakiness in the
gut which may be a trigger for α-syn aggregates and alter the
risk of inflammatory bowel disease (IBD) (Murata et al., 2022).
Indeed, most studies focusing on the mechanisms of air pollution-
induced adverse effects have predominantly investigated its role in
causing inflammation (Jayaraj et al., 2017). CNS inflammation and
oxidative stress are significant findings in the brains of individuals
with PD and AD, and air pollution seems to exacerbate these

conditions. Evidence from human autopsy studies and rodent
experiments supports that air pollution heightens inflammation
within the CNS (Calderón-Garcidueñas et al., 2008; Calderón-
Garcidueñas et al., 2004; Jayaraj et al., 2017). Air pollution consists
of a diverse blend of gases, PM, and smaller chemical entities.
Some of these substances can enter the brain either through
the bloodstream or by directly diffusing through the olfactory
system. In this pathological process the Neurovascular Unit (NVUs)
integrity seems to have played a pivotal role. The NVUs consist
of endothelial cells with tight junctions, a basement membrane,
and perivascular glial sheets. Maintaining the stability of NVUs
is crucial for brain health, and disruptions in these units are
associated with neurodegenerative diseases such as AD and PD
(Calderón-Garcidueñas et al., 2016b). Children who are exposed
to air pollution over their lifetime show notable increases in
serum of high-affinity antibodies targeting tight junctions and
neural proteins and possess cerebrospinal fluid (CSF) antibodies
against myelin basic protein (Calderón-Garcidueñas et al., 2014).
Additionally, the expression of cyclooxygenase-2 (COX2) and
interleukin-1B (IL-1B) is elevated in both the olfactory bulb
and frontal cortex (Calderón-Garcidueñas et al., 2007) with an
accumulation of beta-amyloid peptide (Aβ42) within the frontal
cortex (Calderón-Garcidueñas et al., 2007). Likewise, several studies
have indicated that central nervous system inflammation occurs in
rodent models, mirroring the inflammation observed in human
PD brains. Notably, it has been found that diesel exhaust (DE)
exposure elevates the expression of certain inflammatory genes
in the olfactory bulb (OB) of mice, an area of the brain where
PD pathology manifests early signs of disease (Levesque et al.,
2011a, 2011b; Yokota et al., 2013). Similarly, inflammatory
changes have been detected in the brains of dogs and humans
living in urban environments compared to those in rural areas,
with researchers attributing these changes to higher levels of
air pollution (Calderón-Garcidueñas et al., 2008; Calderón-
Garcidueñas et al., 2004; Calderón-Garcidueñas et al., 2003).
Although these studies have certain limitations, they collectively
suggest a causal relationship between air pollution and an
increased risk of neurodegeneration through mechanisms of direct
neurotoxicity and/or neuroinflammation. Therefore, for in vivo
neuroinflammation assessment, an important contribution should
be offered by the different advanced PET radiotracers targeting the
potential molecules in the neuroinflammation process (Choi et al.,
2009). Cyclooxygenase (COX) is crucial in the production of
prostaglandin H2, which serves as a precursor for prostaglandins
and thromboxane. There are two COX isoforms, COX-1 and
COX-2, which play significant roles in neuroinflammation and
are associated with various neurodegenerative diseases, particularly
AD. Immunochemical evidence has shown that both COX-1 and
COX-2 are present in microglia and neurons within the CNS
(Choi et al., 2009). Various radiotracers for COX-1 and COX-2
have been well established, such as 18FTMI, 18F-triacoxib, 11C-
rofecoxib, 11C-KTP-Me, 11C-PS13, and 11C-MC1. Among these, the
11C-KTP-Me showed the most promising results (Choi et al., 2009;
Horti et al., 2019; Kumar et al., 2018; Ohnishi et al., 2014; Zhou et al.,
2021). Several reports indicate that also the 18 kDa Translocator
Protein (TSPO), involved in a range of cellular activities such as
cholesterol transport and hormone synthesis, plays a fundamental
role in inflammatory response. However, its precise role in brain

Frontiers in Cell and Developmental Biology 08 frontiersin.org

https://doi.org/10.3389/fcell.2025.1526424
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Giammona et al. 10.3389/fcell.2025.1526424

inflammation remains unclear. Under normal conditions, TSPO
expression is low in CNS microglia, but it significantly increases
following neuroinflammation, correlating with the abnormal
activation of microglia (Li et al., 2016). Immunohistochemistry
staining has shown that TSPOupregulation andmicroglia activation
spatially coincide post-neurotoxic intervention, implying that TSPO
can serve as amarker for activatedmicroglia and a potential method
to assess neuroinflammation (Cosenza-Nashat et al., 2009). Thus,
imaging agents targeting TSPO represent in vivo biomarkers for
microglia activation and neuroinflammation. Furthermore, in a
preclinical study by Toby B. Cole et al., acute exposure of C57BL/6
mice to diesel exhaust (DE) caused significant increases in lipid
peroxidation and pro-inflammatory cytokines (TNF-α, IL-1β, IL-
3, IL-6, IL-1α) in various brain areas (particularly olfactory bulb
and hippocampus) (Cole et al., 2016). DE exposure also caused
activation of microglia, as measured by increased Iba1 (ionized
calcium-binding adaptor molecule 1) and TSPO (translocator
protein) expression, which correlated with increased uptake of [3H]-
DPA_713 as a radiolabeled ligand to quantify TSPO levels ex vivo
by autoradiography. The 11C-PK11195 radioligand, a high-affinity
TSPO ligand, was the first probe developed for PET imaging of
neuroinflammation (Cagnin et al., 2001). The inherent properties of
the compound and the complexity of carbon-11 radiolabelingwithin
a brief 20-minute timeframe hindered the advancement of this
technique for investigating neuroinflammation. Additionally, due to
inadequate blood-brain barrier (BBB) penetration and minimal
brain uptake, 11C-PK11195 exhibits a low signal-to-noise ratio
(Ching et al., 2012; Lockhart et al., 2003). These shortcomings
have led to the development of advanced-generation of TSPO
radiotracers, such as 18FGE-180 (R, S)-18F-GE-387, 11C-PBR28, 18F-
DPA-714, 18F-VC701 to improve the bioavailability, an enhanced
signal-to-noise ratio with higher binding affinity compared to 11C-
PK11195 (Belloli et al., 2018; Di Grigoli et al., 2015; Hamelin et al.,
2018, 2016; Kreisl et al., 2010).

Overall, PET/SPECT imaging provides real-time in vivo
distribution data of radiolabeled-PM and simultaneously represents
an investigation tool for the PM-induced alterations in the lung-
brain axis. By elucidating the mechanisms underlying these
effects, PET imaging could contribute to the understanding of
air pollution-related health risks and facilitate the development
of targeted interventions. Nonetheless, PET/SPECT application
requires specific radiolabeled PM tracers which are expensive,
and require specialized equipment, trained personnel, and access
to radiopharmaceuticals (Zaheer et al., 2018). The selection of
a tracer significantly affects detection sensitivity and specificity,
meaning that not all types of PM can be efficiently labeled and
monitored. Additionally, some radioisotopes, such as 18F and 64Cu,
have a short half-life, requiring immediate use post-synthesis, which
complicates large-scale or longitudinal studies. While PET imaging
offers excellent sensitivity, its spatial resolution (around 1 mm)
is lower compared to techniques like MRI or CT. Furthermore,
SPECT generally has an even lower resolution than PET, making
it more challenging to accurately assess PM accumulation in
small anatomical regions. Although dynamic imaging is feasible,
the time resolution is influenced by the tracer’s decay and
the imaging protocol, potentially limiting real-time tracking
(Meikle et al., 2006).

5 PM-respondent non-coding RNA
along the lung-brain axis

This review by literature query explores key miRNAs in lung
cancer and brain metastases, highlighting their role in tumor
progression, metastasis, metabolism, immune modulation, and
vascular remodeling (Figures 3, 5).

5.1 miRNAs are involved in cell growth and
metastasis control

Our research reports as main molecular regulators of the lung-
brain axis, the miR-200c and miR-149.

5.1.1 miR200c
It regulates the epithelial-mesenchymal transition (EMT)

process and controls brain metastasis formation from primary
tumors of the breast, melanoma, and the gastrointestinal tract.
In addition, it is responsible for the regulation of EpCam
adhesion molecules in glioma cells where highly expressed
promoting proliferation and tumorigenesis (Cavallari et al.,
2021; Fotakopoulos et al., 2023; Xue et al., 2021). This
miRNA also belongs to the miR-200c/AUF1/SOX2/miR-
137 axis: under the control of JUN transcription factor
and the lncRNA MEG3 regulation, it promotes the
transformation of malignant bronchial epithelial cells after
nickel exposure (Yang et al., 2024).

5.1.2 miR-149
It controls the expression of lncRNA BCYRN1 and

acts as an oncogene in NSCLC regulating the aerobic
glycolysis targeting pyruvate kinase M1/2 (PKM2).
Inhibition of miR-149 enhanced PKM2, modulating glucose
consumption, while the silence of BCYRN1 affected lactate
production (Lang et al., 2020).

Regarding brain metastases, other miRNAs could be involved,
such as miR-522-3p, which can regulate Tensin-1 expression,
helping tumoral cell invasion by altering BBB permeability
through ZO-1 and OCLN expression (Liu et al., 2024). MiR-
30a-5p promotes proliferation in lung adenoma by regulating
ABL2 expression and activating the PI3K/AKT pathway (Miao
and Liu, 2023; Yang et al., 2021). In NSCLC, miR-199a-3p/5p,
regulates mTOR signaling promoting cell migration and invasion
(Liu et al., 2022; Song et al., 2022), and miR-107 and miR-595,
control the metastasis and cell proliferation modulating the brain-
derived neurotrophic factor (BDNF) expression and E2F7 axis
(Bai et al., 2020; Hong et al., 2020).

In the human pulmonary adenocarcinoma brain metastasis
cellular model, two miRNAs can be considered: miR-217
act as metastasis suppressor targeting the expression of
sirtuin 1, reducing the proliferation, migration, and invasion
(Jiang et al., 2021); miR-574-5p, which is under the control
of lncRNA LM2-4175 and linc-ZNF469-3, targets ZEB1
expression (Wang et al., 2018).

All these miRNAs are potentially involved in the control of lung
cancer cell proliferation and invasion, two processes that could be
monitored by PET imaging.
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FIGURE 5
Lung-brain axis and the miRNAs discussed and related biological processes when exposed to airborne pollutants.

5.2 miRNAs involved in stemness control in
the lung-brain axis

MiR-1237 controls both myocyte enhancer factor-
2A (MEF2A) and the pluripotency transcription factor
OCT4 and SOX2 (Channakkar et al., 2020).

miR-4466 is found in chronic nicotine exposure activated
STAT3-driven N2 neutrophils, where it induces secretion to
promote stemness via the SKI/SOX2/CPT1A axis (Tyagi et al., 2022).
In these cases, these two miRNAs could be initially responsive to
smoking-derived PM, and then, once released in the blood, alter
functional pathways in the brain.

5.3 miRNAs controlling inflammation in the
lung-brain axis

In this group, there are multiple miRNAs modulating
inflammatory responses. miR-21a, miR-146a, miR-181, miR-
223, miR-222-3p, miR-155 and miR-143 emerged even as
regulators of immune response pathways and are all decreased by
positive Lactobacilli and Bifidobacteria exposure (Casciaro et al.,
2020; Li et al., 2024). miR-142-3p was described as a
TGF-β1 regulator by driving microglial M2 polarization
and its suppression leads to brain metastasis of NSCLC
(Xu et al., 2023).
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Among the other inflammatory miRNAs, miR-1253 regulates
IL-6 expression and cisplatin resistance in NSCLC, while acting
as a tumor suppressor in medulloblastoma and neurological
disorders (He and Li, 2024). The same miRNA shows tumor
suppressor activity in medulloblastoma by regulating ferroptosis,
and cisplatin response, but also neurological disorders, such as
Alzheimer’s disease (Kanchan et al., 2018; Kavoosi et al., 2024).
mir-301 could be a target of inflammatory pathways activation
by multiple inflammatory stimuli, such as TGFb stimulus and
IL-6, which controls fibrosis through the mammalian target of
rapamycin (mTOR) signaling pathway and consequently might
serve as a potential therapeutic target (Wang et al., 2020). miR-
596-3p is reported to be upregulated in primary metastatic
tumors from NSCLC, while RNA-Seq data of brain metastasis
cells revealed its downregulation (Li et al., 2022). This miRNA
seems to be involved in the regulation of two key genes for
brain metastasis formation, YAP1, and IL-8, able also to restrain
the permeability of the BBB. This lncRNA acts as a sponge
for miR-1207-5p, leading to the expression of EPB41L5 mRNA
(Wu et al., 2021; Li et al., 2022).

In glioma, stem cells communicate with microglia via
miRNA in extracellular vesicles, with miR-129-3p regulating
IL-6, IL-8, and TNFα. mir-301 could be activated as targets
of inflammatory pathways activation by multiple inflammatory
stimuli such as TGFβ stimulus and IL-6, which controls fibrosis
through the mammalian target of rapamycin (mTOR) signaling
pathway and consequently might serve as a potential therapeutic
target (Wang et al., 2020). In glioma, stem cells communicate
with microglia via miRNA in extracellular vesicles, with miR-
129-3p regulating IL-6, IL-8, and TNFα (Yang et al., 2020).
miRNAs regulate the inflammatory response to viral infections.
In EV71 infection, miR-155-5p is upregulated, influencing
EV71 titers, IFN1 production, and mouse survival via the
FOXO3/miR-155-5p/IRF7 axis (Yang et al., 2020). miRNAs
regulate the inflammatory response to viral infections. In EV71
infection, miR-155-5p is upregulated, influencing EV71 titers,
IFN1 production, and mouse survival via the FOXO3/miR-155-
5p/IRF7 axis (Yang et al., 2020).

5.4 MiRNA with a role in brain metastases
and angiogenesis

Lung carcinoma expresses miR-21, regulating macrophage
polarization and EMT via ERK/STAT3, and miR-218-5p, targeting
TRIM9, influence vascular permeability, synapse organization, and
neuron development (Yoshino et al., 2022; Tiong et al., 2023;
Barangi et al., 2023; Dai et al., 2017).

miR-506 downregulation increases the expression of STAT3,
leading to VEGFα induction, thus contributing to angiogenesis
(Wang et al., 2021). VEGF and vascular permeability are also target
of miR-424/322, which modulates the hypoxia response in high-
altitude pulmonary edema. Hypoxia disrupts endothelial junctions
via HIF1a, increasing cerebral edema risk. MiR-424/322 counteracts
this, reducing vascular leakage (Tsai et al., 2019).

Regarding vascular remodeling, PDGFBB promotes the
proliferation and migration of human pulmonary arterial smooth
muscle cells via regulating the expression of miR-1181; the

PDGF receptor/PKCa was found to silence miR-1181, influencing
proliferation and causing vascular remodeling (Qian et al., 2018).

Therefore, the effect of miRNA modulation, due to PM
exposition, at the brain level may even not be direct with their target
within the tissue; indeed, the release of lung and gut miRNAs into
the blood and their modulation by lnc-RNAs and pro-inflammatory
molecules leads to a distal modulation of microglia at the CNS level.

All the discussed miRNAs with their described biological
functions are described in Table 2 and illustrated in Figure 5.

5.5 Brain miRNA linked to PM exposure

To find out miRNAs involved in the response of the
brain to PM, the PubMed research (23rd September 2024)
for the terms “microRNA and brain and particulate matter”;
indicates 9 main articles [reviews were excluded (Patsouras and
Vlachoyiannopoulos, 2019)].

Cigarette chemicals cause damage to nervous cells leading to
the activation of miR-153-3p, targeting the PI3K/GSK3b pathway,
or miR-143-3p, controlling insulin sensitivity (Sun et al., 2023).
In a rat model of cerebral ischemia, gallic acid reduced cognitive
impairment and neuronal cell death by loweringmiR-124 expression
after particulate exposure (Bavarsad et al., 2023). In a rat model
of cerebral ischemia, gallic acid reduced cognitive impairment
and neuronal cell death by lowering miR-124 expression after
particulate exposure (Bavarsad et al., 2023).

PM2.5 exposure increases Alzheimer’s risk, worsening brain
damage in Amyloid-β Transgenic Mouse Models (APP) mice
compared to filtered air. It elevates IL-6, TNFα, Aβ-42, and AChE
levels while altering multiple miRNAs, such as miR-193b-5p, 122b-
5p, -466h-3p, -10b-5p, -1895, -394-5p, and -6412. Among all, the
axis miR-125b/Pcdhgb8 and miR-466h-3p/IL-17Ra/TGFbR2/A 1-
42/AChE were related to PM2.5 exposure (Fu et al., 2022). In
bronchial epithelial cells, PM2.5, diesel-exhausted particles PM2.5,
and diesel-exhausted particles exposure silenced the miR-345-5p
by the overexpression of lncRNA SOX2 overlapping transcript
(SOX2-OT) and finally targeting the EGFR pathway in lung cancer
development (Fu et al., 2021).

In a mouse model of atherosclerosis, the exposure to
particulate induced inflammation and nitrate stress, increasing
both protein expression (IL-6, MCP-1, p47phox, and 3-NT
levels) in serum and circulating miRNAs (miR-301b-3p, let-7c-1-
3p) (Sanchez et al., 2020).

A mouse model that mimics neurovascular conditions using
uranium mining dust combined to AirCARE1 mobile inhalation
laboratory (Sanchez et al., 2020) found twenty-sevenmiRNAs linked
to altered cellular functions. Nine of these were also present in the
serum of the same mice: let-7a-5p, miR-143-3p, miR-151-5p, miR-
28a-3p, miR-322-3p, miR-378c, miR-425-5p, miR-7a-5p, and miR-
874-5p. These miRNAs target key pathways related to signaling, cell
guidance and endothelial electrical resistance (Sanchez et al., 2020).

Chronic prenatal exposure to PM2.5 high dosage increased
apoptosis in neurons and astrocytes of the hippocampal and cortex
regions (Yao et al., 2014). Lifelong exposure to PM0.2 reduced the
number of newborn neurons in adult male rats, showing contextual
memory defects and depressive behavior. Neuroinflammation was
observed mainly in males upon prenatal and neonatal PM exposure,
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TABLE 2 Lung-brain axismiRNAs.

Function Tissue miRNA Axis or target References

Cell growth and proliferation

Glioma cells

miR-149 miR-149/PKM2 and BCYRN1 Lang et al. (2020)

miR-200c lncRNATCF7/miR-200c/EpCam Zhao et al. (2018)

miR-4731-5p FLVCR1/miR-4731-5p/E2F2 Yan et al. (2020)

Human pulmonary
adenocarcinoma brain metastasis

miR-217 miR-217/sirtuin 1/p53/KA1 Jiang et al. (2021)

Lung

miR-200c, miR-137 miR-200c/AUF1/SOX2/miR-137 Cavallari et al. (2021),
Fotakopoulos et al. (2023),

Xue et al. (2021)

miR-30a-5p miR-30a-5p/ABL/PI3K/AKT Miao and Liu (2023)

Lung fibrosis miR-301a TGFb/IL6/STAT3/miR-
301a/TSC1/mTOR

Wang et al. (2020)

NSCLC

miR-30a-5p circRNA_102481/miR-30a-
5p/ROR1

Yang et al. (2021)

miR-199a-3p/5p Rheb Xu et al. (2023)

miR-107 circHIPK3/miR-107/BDNF Hong et al. (2020)

miR-595 RNA circ_0109320/miR-595/E2F7 Bai et al. (2020)

EMT, migration and metastasis

Brain metastasis of NSCLC miR-21 Mir_21/ERK/STAT3 Tiong et al. (2023)

Human pulmonary
adenocarcinoma brain metastasis

miR-217 miR-217/sirtuin 1/p53/KA1 Jiang et al. (2021)

Lung miR-200c, miR-137 miR-200c/AUF1/SOX2/miR-137 Cavallari et al. (2021),
Fotakopoulos et al. (2023),

Xue et al. (2021)

NSCLC

miR-199a-3p/5p Rheb Xu et al. (2023)

miR-30b-3p ROCK1 Song et al. (2022)

miR-218-5p miR-218-5p/TRIM9 Barangi et al. (2023), Wang et al.
(2018)

Triple negative breast cancer miR-574-5p LM2-4175 and
linc-ZNF469-3/miR-574-5p/ZEB1

Wang et al. (2018)

Pulmonary artery smooth muscle
cells

miR-1181

PDGFR/PKCb/miR-1181/STAT3
Channakkar et al. (2020),

Qian et al. (2018)PDGFBB/miR-1181/PDGF
receptor/PKCb

Stemness
Neuronal cells miR-137 miR-137/MEF2A/OCT4/SOX2 Channakkar et al. (2020)

Brain metastasis miR-4466 miR-4466/SKI/SOX2/CPT1A Tyagi et al. (2022)

Apoptosis

Glioma tissue miR-4731-5p FLVCR1/miR-4731-5p/E2F2 Yan et al. (2020)

Pulmonary artery smooth muscle
cells

miR-1181 PDGFR/PKCb/miR-1181/STAT3 Qian et al. (2018)

NSCLC miR-595 RNA circ_0109320/miR-595/E2F7 Bai et al. (2020), Yang et al. (2020)

(Continued on the following page)
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TABLE 2 (Continued) Lung-brain axismiRNAs.

Function Tissue miRNA Axis or target References

Inflammatory pathway

Glioma miR-129-3p MALAT1/miR-129-3p/IL-
6/IL-8/TNFa

Yang et al. (2020)

Stroke miR-181-5p MALAT1/miR-181c-5p Cao et al. (2020)

NSCLC brain metastasis miR-142-3p miR-142-3p/TGFb Xu et al. (2023)

NSCLC; medulloblastoma miR-1253 has_circ_0000190/miR-
1253/IL-6

He and Li (2024),
Kanchan et al. (2018)

Gut tissue/microbiota miR-21a, miR-146a, miR-181,
miR-223; miR-155, miR-143

Th1/TH2 modulators Casciaro et al. (2020)

Viral infection miR-155-5p miR-155-5p/INF1;
FOXO3/miR-155-
5p/IRF7/INFa-b

Yang et al. (2020)

BBB permeability, reperfusion
and angiogenesis

Brain metastasis of lung cancer miR-424
miR-322

miR-424/-322/HIF1a/VEGF Tsai et al. (2019)

NSCLC brain metastasis miR-596-3p YAP/IL-8 Li et al. (2022)

NSCLC brain metastasis
NSCLC

miR-1207-5p MMP2-2/miR-1207-
5p/EPB41L5

Wu et al. (2021)

miR-506 miR-506/STAT3/VEGFa Wang et al. (2021)

with microglia activation and astrogliosis; these effects are possibly
linked to the miR-9 release, also in the microenvironment and the
extracellular vesicles, as well as by the expression of miR-128, miR-
302, let-7 and miR-9, involved in the regulation of neural precursor
proliferation and neurogenesis (Yao et al., 2014), or miR-21, miR-9,
miR-200, miR-17, miR-7, miR-302c, limiting differentiation process
of oligodendrocytes.

Studies on rat embryos exposed to particulate PM2.5 matter in
utero (Li et al., 2019) revealed three main circRNAs (circ_015003,
circRNA_030724, circ_127215) that participate in the development
of the congenital defect in the segmentation process. In particular,
the indicated circRNAs sponge the expression of a main group of
miRNAs (miR-214-3p, miR-6334, miR-1839, miR-149-5p, miR-667,
miR-3548, miR-139-5p, miR-6324, miR-541-5p, miR-26b, miR-449c,
miR-6332, miR-134-3p, miR-3065-3p, miR-105, miR-133c, miR-448-
5p, miR-3072, miR-7a-2-3p) (Li et al., 2019). All the described
miRNAs revealed that the brain, as well as the lung, could respond to
PM exposure by modulating several classes of lncRNA and miRNAs
in particulate, healthy, and pathological subjects, altering specific
pathways summarized in Table 3 and Figure 6.

5.6 The lung-brain axis miRNAs altered by
PM exposure

As is now known in recent literature, the exposome conditions
the genetic makeup, including miRNAs, inducing response
processes, primarily inflammation and oxidative stress, which,
in a cascade, modulate gene expression. Therefore, at the end of
our bibliographic analyses regarding both the miRNAs associated
to the lung-brain axis, and the miRNAs linked to air pollution

exposure, we can conclude by crossing the two article databases
that just 6 miRNAs resulted affected by PM exposure and
being involved in lung-brain axis regulation: miR-21, miR-
143, miR-322, miR-149, miR-200, and miR-301. Therefore, we
speculated that those miRNAs should be deeply investigated by
further analysis, by in vivo techniques in mice models. MiR-
21 represents a crucial miRNA involved in the regulation of
EMT, migration, and neuroinflammation by regulating ERK
and STAT3 pathways (Tiong et al., 2023). Both miR-143 and
miR-322 have been described as important regulators of the
immune response and the permeability of the BBB (Sanchez et al.,
2020). These miRNAs were observed to drive the expression
of HIF1a, VEGF, and RAF/MAP kinase pathways. The last
three miRNAs, miR-149, miR-200, and miR-301, have been
described as significant regulators of cell proliferative activity
(Cavallari et al., 2021; Fotakopoulos et al., 2023; Xue et al.,
2021). They regulate both neuronal or astrocytic differentiation
and proliferation rather than the proliferation of glioma cells
or regulating lung fibrosis. Those miRNAs regulate PKM2 and
BCYRN1 pathway (miR-149) (Lang et al., 2020), the TGFβ or
STAT3/IL6 pathway (miR-301), and the EpCAM or SOX2 signaling
pathways (miR-200c) (Zhao et al., 2018).

5.7 lncRNAs controlling lung brain axis
linked to PM exposure

LncRNAs modulate miRNAs, playing crucial roles in cancer
progression. They often regulate genes involved in tumor
suppression and immune defense. Using a similar approach
to identifying lung-brain axis miRNAs responsive to PM
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TABLE 3 Lung-Brain miRNAs regulated by particulate exposure.

Function Type of
exposure

Tissue miRNA Axis or target References

Insulin resistance and
neurotoxicity

0–100–200–300 ng/m3

from cigarette smoke
Chronic exposure via
whole body system

Brain tissue in C57BL/6
mice model

miR-153-3p PI3K/GSK3b and p-Tau Sun et al. (2023)

Neuronal inflammation

2000–8000 g/m3 from
dust storm

60’/day for 10 days in a
dust storm chamber

Brain tissue in Wistar
rats

miR-124 Gallic acid/miR-124 Bavarsad et al. (2023)

61 μg/m3 of PM2.5
8 weeks via real world

exposure system

Wild type and APP/PS1
transgenic mice

miR-125b, 466h-3p,
193b-5p, 122b-5p,

-10b-5p, -1895, -394-5p,
and -6412

miR-125b/pcdhgb8 and
miR-466h-3p/IL-

17Ra/TGFbR2/Ab-
42/AChE

Fu et al. (2022)

93,22 μg/m3 of PM2.5
Acute exposure for 6
days via inhalable

intratracheal instillation

Atherosclerosis model in
Kunming mice and Apoe

deficient mice

miR-301b-3p, let-7c-1-3p miR-301b-3p,
let-7c-1-3p/Smad2/3 and

TGFβ

Li et al. (2021)

Migration capability of
the cells

500 μg/mL PM2.5
mixture, 50 μg/mL

Diesel exhaust particles,
and 100 μg/mL Al2O3

NPs for 24 

Human bronchial
epithelial (HBE) cells

miR-345-5p SOX2-OT lncRNA/miR-
345-5p/EGFR pathway

Fu et al. (2021)

BBB permeability 96.6 ± 60.4 μg/m3

whole-body exposure
chambers 4 h per day for

15 days

C57BL/6 mice to study
the effect of uranium
mining dusts effect

let-7a-5p, miR-143-3p,
miR-151-5p, miR-28a-3p,
miR-322-3p, miR-378c,
miR-425-5p, miR-7a-5p,

miR-874-5p

RAF/MAP kinases,
signaling by tyrosine

kinases, NTRK
(neurotrophin
receptors), axon

guidance and CRMPs
(collapsin response
mediator protein) in
Sema3A signaling

Sanchez et al. (2020)

Regulation of neural
proliferation and
differentiation

PM2.5 > 200 μg/m3 via
whole body system

Pregnant Sprague
Dawley rats to study the
effect of particulate on

embryos neuronal
development

miR-214-3p, miR-6334,
miR-1839, miR-149-5p,
miR-667, miR-3548,

miR-139-5p, miR-6324,
miR-541-5p, miR-26b,
miR-449c, miR-6332,

miR-134-3p,
miR-3065-3p, miR-105,
miR-133c, miR-448-5p,
miR-3072, miR-7a-2-3p

Brain and somite
development

Li et al. (2019)

exposure, we selected seven lncRNAs: Metastasis Associated Lung
Adenocarcinoma Transcript 1 (MALAT1), Brain Cytoplasmic
RNA 1 (BCYRN1), Long Intergenic Non-Coding RNA 922
(LINC00922), linc-ZNF469-3, lnc-MMP2-2, FLVCR1-AS1
and lncTCF7.

MALAT1 is linked to cancer, poor prognosis, and brain/lung
injuries. It modulates oxidative stress by regulating miR-140-5p,
enhancing Nrf2 activity and reducing ROS (Qin and Xu, 2024). In
cerebral ischemia-reperfusion injury, MALAT1 controls the miR-
142-3p/SIRT1 axis, reducing TNF-α, IL-6, IL-1β, and increasing
detoxifying enzymes like SOD and Catalase (Meng et al., 2023).

In Subarachnoid Hemorrhage (SAH) models, MALAT1
overexpression increases apoptosis and oxidative stress in neurons,
possibly via miR-499-5p (Zhou et al., 2022). It also activates

microglia, promoting inflammation, and is upregulated in glioma
stem cells and their extracellular vesicles, which drive IL-6, IL-8,
and TNF-α secretion (Yang et al., 2020). BCYRN1 is overexpressed
in NSCLC, promoting cell motility and lymph node metastasis.
Its silencing reduces A549 lung cancer growth. It enhances
glycolysis, proliferation, and invasion viamiR-149/PKM2 regulation
(Song et al., 2022; Lang et al., 2020). Linc-ZNF469-3 is upregulated
in lung-metastatic triple-negative breast cancer (TNBC), increasing
EMTmarkers andmetastasis by interactingwithmiR-574-5p, which
suppresses ZEB1 (Wang et al., 2018).

As already reported, in some tumors lncRNAs exert their
function by being transported by EVs and therefore influencing
the behavior and responses of the tumor microenvironment. For
instance, LINC00482 expression was found in the serum of NSCLC
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FIGURE 6
The miRNAs induced by particulate exposure in the lung-brain axis model.

patients. In this case, it is associated with miR-142-3p expression,
which in turn controls the expression of TGFb1 (Xu et al., 2023).
In addition, the lnc-MMP2-2 served as a miRNA sponge or a
competing endogenous RNA for miR-1207-5p and consequently
modulated the repression of EPB41L5. In conclusion, TGF-β1-
mediated exosomal lnc-MMP2-2 increases BBB permeability to
promote NSCLC brain metastasis. Thus, exosomal lnc-MMP2-2
may be a potential biomarker and therapeutic target against lung
cancer brain metastasis (Wu et al., 2021). Moreover, the rarely
investigated lncRNA FLVCR1-AS1 is involved in various human
cancers, including glioma where it is highly expressed and regulates
miR-4731-5p upregulating E2F2 expression (Yan et al., 2020).

lncTCF7 is highly expressed in glioma tissues and cell lines
which encourages the proliferation and migration of those cells,
whereas its downregulation of lncTCF7 significantly suppresses
the tumorigenesis of glioma. Mechanistically, lncTCF7 enhances
the self-renewal of glioma cells by increasing the expression of
epithelial cell adhesionmolecules (EpCAM).The detailedmolecular
mechanism revealed that lncTCF7 binds to miR-200c and reduces
the amount of miR-200c, which consequently weakens the negative
regulation of miR-200c on EpCAM (Wang et al., 2018) (Table 4).

6 Conclusion

Nowadays ambient air pollution is a worldwide public health
emergency. Despite many studies on air pollutant-associated

health effects, the underlying molecular mechanisms of non-
communicable disease (i.e., neurological, oncological, and non-
hereditary disease) remain mainly unclear.

Toxicological studies showed that exposure to PM is
directly associated with impairment of the respiratory, intestinal,
cardiovascular, and nervous systems functions. Animal models
can be tailored to specific research questions, such as investigating
disease mechanisms or susceptibility to certain conditions. To
study the health adverse effects induced by PM exposure, several
models have been discussed, both for chronic, sub-chronic, or
acute exposure.

PET imaging represents a powerful tool for non-invasively
monitoring the in vivo PM-induced alterations in the lung-brain
axis (tissue inflammation; tumor proliferation and invasion; amyloid
deposition; neurotoxicity, neuroinflammation) using specific
radiotracers. By elucidating the mechanisms underlying these
effects, PET imaging could contribute to the understanding of
air pollution-related health risks and facilitate the development
of targeted interventions.

Considering that air pollutant exposure has the potential to
change the miRNA profiles, and that miRNAs have a main role
in the control of non-communicable diseases (NCDs), such as
neurodegenerative and oncological diseases, miRNA deregulation
may be considered as an early marker of PM effect on human health.
In particular, by a metanalytic approach, we found 6 miRNAs (miR-
21, miR-143, miR-322, miR-149, miR-200, and miR-301) involved
in the lung-brain axis being linked to PM exposure. Some of
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TABLE 4 LncRNA controlling lung brain axis.

lncRNA miRNA Axis or target Function Tissue Ref.

MALAT1

miR-140-5p MALAT1/miR-140-
5p/Nrf2

Oxidative stress

Ischemia/reperfusion Rat model, neuronal injury
model

Qin and Xu (2024)

miR-142-3p miR-142-3p/SIRT1 axis Cell proliferation Mouse brain tissue cerebral
ischemia-reperfusion injury

Meng et al. (2023)

miR-499-5p miR-499-5p/SOX6 axis Apoptosis Mouse model of
subarachnoid hemorrhage

Zhou et al. (2022)

miR-129-5p miR-129-5p/HMGB-1 Axis inflammatory response Glioma stem cell Yang et al. (2020)

BCYRN1
miR-30b-3p miR-30b-3p/ROCK1 axis Metastasis

NSCLC
Song et al. (2022)

miR-149 miR-149/PKM2 axis Glycolysis cell proliferation and invasion Song et al. (2022)

linc-ZNF469-3 miR-574-5p miR-574-5p-ZEB1 axis Metastasis Triple-negative breast
cancer

Wang et al. (2018)

LINC00482 miR-142-3p miR-142-3p/TGF-β1 axis Metastasis NSCLC Xu et al. (2023)

lnc-MMP2-2 miR-1207-5p miR-1207-5p/EPB41L5 axis Migration, BBB permeability Endothelial monolayers and
mouse models

Wu et al. (2021)

FLVCR1-AS1 miR-4731-5p LVCR1-AS1/miR-4731-
5p/E2F2 axis

Metastasis Glioma tissues and cell lines Yan et al. (2020)

lncRNATCF7 miR-200c miR-200c-EpCAM axis Tumorigenesis Glioma tissues and cell lines Zhao et al. (2018)

these miRNAs could be also controlled by specific lncRNA (i.e.,
LINC00482 for miR-21), but none of the seven PM-respondent
lncRNAs (MALAT1, BCYRN1, LINC00922, linc-ZNF469-3, lnc-
MMP2-2, FLVCR1-AS1, and lncTCF7) selected by the metanalytic
approach is a known regulator of this group of miRNAs; this result
suggests that other miRNA could emerge as PM responders in
the lung-brain axis. The six miRNAs associated with the lung-
brain axis affected by PM could have a main role in the regulation
of BBB integrity and functions, neuronal cell proliferation and
differentiation, and neuroinflammation. Further studies are needed
to elucidate this network in NCDs.
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