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Ferroptosis is a novel form of cell death that uniquely requires iron and is
characterized by iron accumulation, the generation of free radicals leading
to oxidative stress, and the formation of lipid peroxides, which distinguish
it from other forms of cell death. The regulation of ferroptosis is extremely
complex and is closely associated with a spectrum of diseases. Sirtuin 1 (SIRT1),
a NAD + -dependent histone deacetylase, has emerged as a pivotal epigenetic
regulator with the potential to regulate ferroptosis through a wide array of
genes intricately associatedwith lipidmetabolism, iron homeostasis, glutathione
biosynthesis, and redox homeostasis. This review provides a comprehensive
overview of the specific mechanisms by which SIRT1 regulates ferroptosis
and explores its potential therapeutic value in the context of multiple disease
pathologies, highlighting the significance of SIRT1-mediated ferroptosis in
treatment strategies.
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1 Introduction

Ferroptosis, first identified in 2012, is a unique form of regulated cell death that is
distinct from traditional apoptosis, necroptosis, and senescence (Dixon et al., 2012). Cells
undergoing ferroptosis typically display shrunken mitochondria, increased mitochondrial
membrane density, loss of mitochondrial cristae, reduced mitochondrial membrane
potential, and rupture of the outer mitochondrial membrane (Li et al., 2024a; Shan et al.,
2024; Lin et al., 2024a). The occurrence of ferroptosis is intricately linked to several
critical biochemical processes, including the disruptions in iron homeostasis, limited
synthesis of glutathione (GSH), and the accumulation of lipid peroxides (Tian et al.,
2024; Cai et al., 2024; Li et al., 2024b; Yang et al., 2024). Excess iron is typically stored
in ferritin to prevent it from catalyzing the formation of hydroxyl radicals, which can
react with polyunsaturated fatty acids in the cell and plasma membranes. This reaction
leads to the generation of a significant amount of lipid reactive oxygen species (ROS),
contributing to the cellular demise that is characteristic of ferroptosis. The system
XC is pivotal in sustaining cellular GSH levels by mediating the cellular uptake of
cystine. GSH acts as a cofactor for antioxidant enzymes such as GPX4, which play a
role in the elimination of ROS. These pathways form an interconnected network that
safeguards cells against ferroptosis by maintaining a delicate balance between antioxidant
defense and the production of reactive species. Ferroptosis s closely related to the
occurrence and development of a variety of diseases, such as nervous system diseases,
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heart diseases, liver diseases, gastrointestinal diseases, lung diseases,
kidney diseases, pancreatic diseases tumors, kidney injury, tumor,
etc. By targeting the key components of ferroptosis, disease
progression can be slowed, offering promising treatment strategies
for many diseases.

Sirtuins (SIRTs), a subset of NAD + -dependent histone
deacetylases, are evolutionarily conserved and consist of seven
isoforms. Among these, SIRT1-3 have been implicated in the
regulation of ferroptosis, with SIRT1 being the most extensively
studied. SIRT1 is widely expressed across tissues and organs such as
the brain, heart, liver, kidneys, and skeletal muscle, with particularly
high expression in tissues vulnerable to oxidative stress and those
with high metabolic activity. SIRT1 exhibits diverse subcellular
localizations, being found in the nucleus, cytoplasm, or both,
depending on the cell type (Sgadari et al., 2023). Structurally, it
is composed of 747 amino acid (aa) residues, with both C- and
N-terminal domains contributing to its structure and function.
The C-terminal domain, comprising 25 aa residues, is crucial for
SIRT1’s catalytic activity. It forms a hairpin that interacts with
the β-sheet of the NAD + -binding domain, while the N-terminal
domain enhances the enzyme’s activity (Davenport et al., 2014). As
a central modulator of ferroptosis, SIRT1modulates key ferroptosis-
related proteins through deacetylation, thereby enhancing cellular
resilience against ferroptotic cell death. Its regulatory role has
significant implications for the treatment and management of
diseases associated with oxidative stress and ferroptosis. Recent
studies have highlighted SIRT1’s potential in inhibiting ferroptosis
by influencing pathways related to glutathione synthesis, antioxidant
mechanisms, and the metabolism of lipids and iron. Despite
the growing evidence of SIRT1’s involvement in ferroptosis, a
comprehensive understanding of the regulatory interplay between
SIRT1 and ferroptosis signaling pathways is yet to be fully elucidated
(Dang et al., 2022; Wang et al., 2021; Qiongyue et al., 2022). In
this review, we delve into the current evidence of the functions
of SIRT1 in regulating ferroptosis and therapeutic potential in
various diseases. We aim to consolidate current understanding and
explore the therapeutic implications of targeting SIRT1-mediated
ferroptosis, offering insights into its promise as an innovative
pathway for developing treatment strategies.

2 Regulation of SIRT1 on ferroptosis

2.1 Redox homeostasis

Reactive oxygen species (ROS) are central to the process of
ferroptosis, as they facilitate lipid peroxidation and damage cell
membranes. Therefore, regulating ROS levels may be an important
strategy for controlling ferroptosis and related diseases. The System
XC and GPX4 are vital in maintaining intracellular GSH levels,
which are essential for ROS removal. Notably, SIRT1 functions
as a sensor of redox changes and plays a critical protective role
against ferroptosis by regulating redox homeostasis via Nuclear
factor erythroid 2-related factor 2 (Nrf2) andp53 (Liang et al., 2023).

2.1.1 Role of SIRT1- Nrf2 in ferroptosis
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key

transcription factor that maintains redox balance and protects cells

from oxidative damage. Accumulating evidence points that Nrf2
upregulation can suppress the initiation of ferroptosis (Bellezza et al.,
2012; Sun et al., 2016; Wang et al., 2023a; Lv et al., 2021). SIRT1
modulates various components within the antioxidant system, such
as Heme Oxygenase-1(HO-1), glutathione (GSH), catalase (CAT),
superoxide dismutase 1(SOD1) and SOD2 through deacetylation
of Nrf2 (Zhang et al., 2018; Abukhalil et al., 2025; Xia et al.,
2023). Recent studies have illustrated the role of the SIRT1-Nrf2-
HO-1 pathway in the regulation of ferroptosis. Wang et al. have
shown that SIRT1-Nrf2-HO-1 activation attenuated lipid peroxide
accumulation and inhibited ferroptosis (Wang et al., 2023a).
Another study demonstrated that SIRT1 activation positively
regulates the Nrf2/HO-1 pathway, reducing mitochondrial damage
and ferroptosis. Furthermore, HO-1 may play a role in modulating
GPX4 levels (Xie et al., 2022). Dang et al. pointed that SIRT1
activation may mediate the upregulation of GPX4 levels by Nrf2-
HO-1 axis in the alleviation of neuronal injury. Significant strides
have been made in recent years to elucidate the protective effects of
SIRT1-Nrf2 activation against ferroptosis (Xia et al., 2023; Xie et al.,
2022), and further exploration of the underlying regulatory
mechanisms is warranted.

2.1.2 Role of SIRT1-p53 in ferroptosis
p53 is a multifunctional protein that plays a crucial role in

regulating intracellular levels of reactive oxygen species (ROS) and
modulating ferroptosis through targeting downstream molecules
(Latunde-Dada, 2017). The complex interplay between SIRT1 and
p53 is crucial in managing ferroptosis activation, primarily through
inhibition of p53’s pro-ferroptotic activity and promotion of p21 and
GSH synthesis. First, overexpression of SIRT1 has been shown to
repress p53 transcriptional activity, increasing SLC7A11 levels and
inhibiting ferroptosis (Ma et al., 2020). Zhao et al. reported that
SIRT1 participates in the development of gastric cancer by targeting
p53 to regulate ferroptosis (Zhao et al., 2023a). In gastric cancer cells,
silencing SIRT1 leads to upregulation of p53 and downregulation of
SLC7A11, indicating that SIRT1 suppression promotes ferroptosis.
Second, p21, a downstream target of p53, can form a complex
with p53 and influence its transcriptional activity. SIRT1 enhances
p21 expression by modulating p53 activity, which may contribute
to cellular redox balance and ferroptosis resistance by mitigating
oxidative stress. Through this pathway, SIRT1 indirectly supports
antioxidant defenses, including GSH synthesis, further reducing
ferroptosis susceptibility (Gu et al., 2022; Wang et al., 2025).
While these findings highlight SIRT1’s protective role in ferroptosis
regulation via the p53/p21 axis, further research is needed to
elucidate its context-specific effects across different disease models.

2.2 Iron homeostasis

Iron homeostasis is crucial for maintaining normal cellular
and physiological metabolism. When iron supply is abundant, iron
storage protein ferritin synthesis increases to store the excess. Iron
(Fe2+) can be oxidized to Fe3+ by the ferroxidase hephaestin (Heph)
and bind to transferrin (TF) on cell membranes, forming the
TF-Fe3+ complex, which is facilitated by the presence of apo-Tf.
Apo-Tf acts as an iron acceptor molecule, enhancing iron (Fe2+)
efflux from cells via ferroportin (FPN1), and thus enhancing iron
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export and absorption (Weichhart, 2024). Most intracellular iron
is either found in heme-containing and mitochondrial proteins
or stored by ferritin as Fe3+, preventing iron overload that could
lead to oxidative stress. Ferritin plays a vital role in preserving
iron balance by storing and releasing iron. However, excessive iron
levels can increase the labile iron pool (LIP), elevate intracellular
reactive oxygen species (ROS), and lead to the accumulation of
lipid peroxides, ultimately promoting ferroptosis. SIRT1 has been
shown to influence ferroptosis by regulating iron metabolism.
Activation of the SIRT1/Nrf2 pathway, such as by alpha lipoic acid,
can modulate iron metabolism and mitigate ferroptosis by up-
regulating ferritin and ferritin heavy chain 1 (FTH1), and down-
regulating the iron import protein divalent metal transporter 1
(DMT1) (Zheng et al., 2023). Lv et al. demonstrated that suppression
of the SIRT1/Nrf2/HO-1/GPX4 pathway and FTH1 protein can
exacerbate ferroptosis, underscoring the significance of the SIRT1-
Nrf2 signaling pathway in ironmetabolism and ferroptosis (Lv et al.,
2024). Additionally, SIRT1 activation is linked to altered hepcidin
production and increased ferritinophagy, which can suppress
ferroptosis and prevent the detrimental effects of elevated cytosolic
iron (Su et al., 2021; Tziastoudi et al., 2023). However, Zhou et al.
noted an exception to the inhibitory effect of SIRT1 on ferroptosis,
where intestinal SIRT1 deficiency improves iron metabolism in
ethanol-induced hepatic injury in mice by ameliorating iron
dysfunction and alleviating ferroptosis in hepatocytes.This suggests
that the role of SIRT1 can be context-dependent (Zhou et al.,
2020). In summary, SIRT1 plays a multifaceted role in regulating
iron metabolism and influencing ferroptosis. Modulating SIRT1
can protect against ferroptosis by influencing key iron-related
proteins and pathways. However, the specific outcomes of SIRT1’s
actions can vary depending on the cellular context and the type
of stress involved. Further research is needed to fully understand
the complex interactions between SIRT1, iron metabolism, and
ferroptosis, which could potentially lead to the development of novel
therapeutic strategies for iron-related diseases.

2.3 Lipid peroxidation metabolism

Iron can exacerbate the accumulation of lipid peroxides by
catalyzing Fenton reaction, which in turn disrupts the intracellular
redox balance, leading to an attack on biomolecules and ultimately
culminating in ferroptosis. SIRT1, a key metabolic factor in energy
regulation, can stimulate various endocrine signals related to lipid
metabolism. and an increasing number of studies have shown that
SIRT1 is involved in endocrine and metabolic diseases (Lu et al.,
2023). The long-chain fatty acyl CoA synthetase (ACSLs) family
of enzymes, which significantly contributes to lipid metabolism,
has been recognized as a crucial regulator in the process of
ferroptosis (Dixon et al., 2015). Emerging research suggests that
SIRT1 activation may reduce ACSL4 expression levels, potentially
alleviating the effects of ferroptosis (Majeed et al., 2021; Wang et al.,
2020; Yu et al., 2023a). The work by Chen et al. provides compelling
evidence that overexpression of SIRT1 can inhibit lipid peroxidation
and decrease malondialdehyde (MDA) levels, a marker of lipid
peroxidation. Furthermore, SIRT1 overexpression can reverse
the typical upregulation of ACSL4 and acetylated p53, and the
downregulation of SLC7A11 andGPX4 observed in ferroptosis, thus

FIGURE 1
The specific mechanism of SIRT1 in regulating ferroptosis.

inhibiting ferroptotic cell death (Chen et al., 2022a). These findings
underscore SIRT1’s potential inmodulating lipidmetabolism and its
protective role against ferroptosis. However, the precisemechanisms
by which SIRT1 interacts with ACSL4 to regulate ferroptosis remain
to be fully understood, indicating a need for further research in
this area. This research could pave the way for developing novel
therapeutic strategies that target the SIRT1-ACSL4 axis to combat
diseases associated with ferroptosis (Figure 1).

2.4 Inflammation

Inflammation and ferroptosis are closely interconnected, with
inflammation often promoting ferroptosis through the release of
pro-inflammatory cytokines and the induction of oxidative stress.
Nuclear Factor kappa B (NF-κB), a key transcription factor, is
involved in the regulation of both inflammation and oxidative
stress. Upon activation, NF-κB translocates to the nucleus, where
it induces the expression of pro-inflammatory and pro-ferroptotic
genes, promote iron accumulation and reactive ROS production,
leading to lipid peroxidation and ferroptosis (Chen et al., 2024a).
By deacetylating the p65 subunit of NF-κB at lysine 310, SIRT1
inhibits its nuclear translocation and transcriptional activity, thereby
reducing inflammation, decreasing ROS production and lipid
peroxidation, ultimately inhibiting ferroptosis and alleviating cell
injury (Min et al., 2025). Conversely, the downregulation of SIRT1
has been shown to activate the NLRP3 inflammasome, leading
to the release of pro-inflammatory cytokines like IL-1β and the
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subsequent disruption of iron homeostasis. This disruption is
characterized by increased lipid peroxidation, and the depletion
of key antioxidants such as GPX4 and GSH, further weakening
the cellular defense against oxidative stress and rendering cells
more susceptible to ferroptosis (Hacioglu, 2024). Additionally,
under pathological conditions, SIRT1 activation by adenosine
5′-monophosphate (AMP)-activated protein kinase (AMPK), a
key energy sensor that regulates cellular metabolism and stress
responses, further attenuates inflammatory signaling. Activation
of the AMPK/SIRT1 signaling pathway alleviates the degradation
of GSH, thus inhibiting ferroptosis. Selective inhibition of SIRT1
weakens the protective effect of the AMPK/SIRT1 signaling
pathway against endoplasmic reticulum stress and ferroptosis
(Xu et al., 2023). Restoring the activity of AMPK and SIRT1 can
effectively inhibit ferroptosis, providing a potential therapeutic
strategy for treating related diseases. Interestingly, SIRT1 inhibition
subsequently affects the phosphorylation of AMPK, leading to
downstream activation of acetyl-CoA carboxylase, promotes the
synthesis of polyunsaturated fatty acids, which serve as substrates for
lipid peroxidation and ferroptosis induction (Zhang et al., 2023a).
Taken together, these findings underscore the critical role of SIRT1
in modulating inflammation-driven ferroptosis through NF-κB,
NLRP3 and AMPK signaling. Enhancing SIRT1 activity could
serve as a potential therapeutic strategy for mitigating ferroptosis-
associated diseases by reducing inflammation, preserving
antioxidant defenses, and regulating lipid metabolism. Further
studies are warranted to fully elucidate the therapeutic potential
of targeting the SIRT-mediated inflammation in ferroptosis-
related pathologies.

3 SIRT1-mediated ferroptosis and
disease

3.1 Neuro diseases

Studies have delineated the neuroprotective role of SIRT1
in various pathological conditions, including early brain injury
following subarachnoid hemorrhage. SIRT1’s role in ferroptosis
within brain injury is primarily through the regulation of cellular
oxidative stress and iron metabolic balance. By deacetylating a
variety of key proteins, SIRT1 enhances the antioxidant capacity
of cells, reduces the production of ROS, and inhibits lipid
peroxidation, thus alleviating the damage caused by ferroptosis
to nerve cells (Hao et al., 2022; Conde et al., 2023; Xie et al.,
2022; Liang et al., 2023; Guo et al., 2022). SIRT1 activation
also helps to maintain homeostasis of intracellular iron ions,
prevent Fenton reaction induced by excess iron ions, and reduce
oxidative DNA damage and protein degeneration. Furthermore,
SIRT1 inhibits ferroptosis and protects nerve cells from oxidative
stress by promoting the expression of antioxidant enzymes like
glutathione peroxidase 4 (GPX4) and activating pathways such as
Nrf2/HO-1 and ferroptosis suppressor protein 1 (FSP1), playing
a vital role in neuroprotection and repair post-brain injury
(Liu et al., 2023; Yuan et al., 2022; Chen et al., 2024b; Zhang et al.,
2024a). Additionally, SIRT1-mediated ferroptosis is significant in
neurodegenerative diseases and cognitive disorders, with activation
of the SIRT1/Nrf2 pathway shown to inhibit oxidative stress and

ferroptosis, improving cognitive function (Chen et al., 2023a).
Treatments such as propofol, ketogenic diets, mesenchymal stem
cell-derived exosomes, and components like ferulate acid from
traditional Chinese medicine have demonstrated potential in
reducing hippocampal neuron ferroptosis and improving cognitive
function by enhancing the SIRT1/Nrf2/GPX4 pathway (Wen et al.,
2024; Yang et al., 2022; Liu et al., 2022; Wang et al., 2023b;
Yan et al., 2024). miR-30a-5p also regulates ferroptosis by targeting
SIRT1, affecting cognitive dysfunction in conditions like chronic
cerebral hypoperfusion (Wang et al., 2024a). In neurodegenerative
diseases such as Friedreich’s ataxia and Parkinson’s disease, SIRT1
activation helps maintain cellular iron balance, reducing oxidative
stress and lipid peroxidation via Nrf2, GPX4 and FTH1, thereby
protecting neurons from damage caused by ferroptosis (Lv et al.,
2024; Zheng et al., 2023; Sanz-Alcázar et al., 2024). The therapeutic
potential of targeting the SIRT1/Nrf2/HO-1/GPX4 pathway is
further supported by research indicating that edaravone, a widely
used anesthetic, mitigates depression and anxiety by inhibiting
ferroptosis through this pathway (Dang et al., 2022; Shen et al.,
1826). In gliomas, SIRT1-mediated ferroptosis plays a key role
by finely regulating intracellular iron metabolism, redox balance,
and autophagy processes. Activation of SIRT1 can enhance the
antioxidant capacity of cells by deacetylating key proteins such
as Nrf2 and p53, reduce the production of ROS, and inhibit
lipid peroxidation, protecting nerve cells from the damage caused
by ferroptosis by regulating proteins related to iron metabolism
and antioxidant defense mechanisms such as Nrf2, GPX4, and
FTH1. Moreover, SIRT1 activates transcription factor activating
transcription factor 3 (ATF3) through its interaction with active
regulator and regulation of NAD + levels, thereby inhibiting the
expression of SLC7A11 and GPX4, promoting the accumulation of
iron ions and lipid peroxides in cells, and aggravating ferroptosis
(Chen et al., 2024c; Sun et al., 2022). Collectively, targeting SIRT1
in neuro diseases offers promising therapeutic avenues. SIRT1
activators such as resveratrol, SRT1720, and SRT2104 have been
shown to alleviate neurodegenerative disease symptoms by reducing
oxidative stress, enhancing autophagy flux, and promoting neuronal
survival (Su et al., 2021; Zhu et al., 2022; Bai et al., 2023;
Rao et al., 2024). In addition, propofol, ketogenic diet, mesenchymal
stem cell-derived exosomes, and the traditional Chinese medicine
were able to reduce ferroptosis in hippocampal neurons and
improve cognitive function (Wen et al., 2024; Yang et al., 2022;
Liu et al., 2022; Wang et al., 2023b; Yan et al., 2024). These
findings underscore the multifaceted role of SIRT1 in the regulation
of ferroptosis and highlight its therapeutic potential value in
the treatment of neuro diseases, providing a scientific basis
for the development of new therapies targeting SIRT1-mediated
ferroptosis (Figure 2).

3.2 Liver diseases

SIRT1 is a pivotal regulator of ferroptosis in liver disease,
playing a crucial role in maintaining hepatic health. In human
acute liver failure tissue, SIRT1 levels are diminished, however, its
activation can mitigate cell damage by modulating the ferroptosis
and pyroptosis processes in hepatocytes through the regulation of
the p53/GPX4/GSDMD and Nrf2/p53 signaling pathway, thereby
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FIGURE 2
The potential of SIRT1-mediated ferroptosis in neuroprotection and
disease treatment.

exerting a protective effect on the liver (Zhou et al., 2024a). In
a mouse model of sepsis-induced liver failure, the upregulation
of SIRT1 indicates a potential role in safeguarding hepatocytes
from ferroptosis, lessening liver damage, and enhancing the clinical
prognosis for liver failure (Chen et al., 2022b). Furthermore,
SIRT1 activators such as salidroside and ulinastatin, as well
as therapeutic agents like rosa rugosa and dihydroquercetin,
have been shown to significantly ameliorate liver pathological
changes associated with ferroptosis by reducing oxidative stress and
inflammatory responses, thus safeguarding liver cells (Wang et al.,
2021; Xu et al., 2023; Lei et al., 2023; Zeng et al., 2024a). In
the pathogenesis of non-alcoholic steatohepatitis (NASH), SIRT1
expression levels inversely correlate with disease progression,
hinting at a significant regulatory function in ferroptosis. Activation
of SIRT1 has been shown to boost the expression of antioxidant
genes by deacetylating and activating Nrf2, subsequently mitigates
cell damage caused by oxidative stress and dysregulated iron
metabolism. SIRT1 may also curb ferroptosis in NASH by
modulating other molecular pathways associated with ferroptosis,
such as inhibiting lipid peroxidation and fostering iron metabolic
equilibrium, offering new potential targets for NASH treatment
(He et al., 2023; Yang et al., 2023). Interestingly, contrary to the
hepatoprotective effects of SIRT1 activation, the loss of intestinal
SIRT1 in mice shields them from ethanol-induced inflammation
and liver damage by reducing liver ferroptosis. Targeting intestinal
SIRT1 or alleviating ferroptosis signals in the liver may offer
promising avenues for the treatment of human alcoholic liver
disease (Zhou et al., 2020). Collectively, SIRT1 activation has
emerged as a key therapeutic strategy. SIRT1 activators such as
salidroside, ulinastatin, rosa rugosa and dihydroquercetin, have
been shown to significantly improve liver pathological changes
associated with ferroptosis by reducing oxidative stress and
inflammatory responses (Wang et al., 2021; Xu et al., 2023;
Lei et al., 2023; Zeng et al., 2024a). Interestingly, targeting
intestinal SIRT1 has also been proposed as a novel approach for
treating alcoholic liver disease by reducing liver ferroptosis. The
findings above indicate that SIRT1-targeted therapies could serve
as innovative approaches for treating various liver diseases by
modulating ferroptosis pathways.

3.3 Lung diseases

Studies have shown that SIRT1-mediated ferroptosis plays a key
role in lung injury. In acute lung injury (ALI) caused by heat attack,
activation of SIRT1 has been shown to ameliorate ferroptosis in
alveolar epithelial cells under heat stress. This activation alleviates
the damage to the alveolar capillary barrier and maintains the
barrier function of pulmonary microvascular endothelial cells,
suggesting that the SIRT1/p53 axis plays a crucial role in regulating
ferroptosis in ALI (Chen et al., 2022a). In lipopolysaccharide (LPS)
-induced ALI, activation of SIRT1 by Meteorin-like/Meteorin-β
and fibroblast growth factor (FGF) reduces ferroptosis and protects
lung tissue by inhibiting p53 acetylation and Nrf2 (Chen et al.,
2023b; Lin et al., 2024b). In ALI induced by sepsis, SIRT1 plays
a role in inhibiting ferroptosis by activating the NADPH oxidase
4 signaling pathway, which reduces the production of ROS and
the level of lipid peroxidation, and maintains the balance of iron
metabolism in cells. The overexpression of growth differentiation
factor 11 (GDF11) further inhibits ferroptosis by promoting the
activity of SIRT1, providing a new molecular target and therapeutic
strategy for treating sepsis related ALI (Wu et al., 2024). Moreover,
quercetin has shown the potential to inhibit ferroptosis and alleviate
ALI by activating SIRT1/Nrf2/GPX4 signaling pathway, providing
a new strategy for the treatment of ALI (Deng et al., 2023). The
role of SIRT1 in ALI is mainly realized by regulating oxidative
stress and iron metabolism balance. By activating SIRT1, iron death
can be effectively inhibited, inflammatory response and lung tissue
injury can be alleviated. In addition, activation of SIRT1 by small
molecule compounds, natural products, Meteorin-like/Meteorin-
β, or upregulation of GDF11 may be potential strategies for the
treatment of ALI.These studies provide an important scientific basis
for the development of novel therapies for ALI.

3.4 Heart diseases

Bioinformatics analysis has identified SIRT1 as a key gene
associated with myocardial infarction, with its role in ferroptosis
being particularly significant (Jiang et al., 2022). During myocardial
ischemia-reperfusion, SIRT1 activation can inhibit ferroptosis and
reduce cardiac cell death, thereby protecting cardiac function.
SIRT1 also interacts with Nicotinamide phosphoribosyltransferase
(NAMPT) andPTEN-induced putative kinase 1 (PINK1)/Parkinson
disease protein 2 (Parkin) signaling pathways to maintain
mitochondrial homeostasis and promote mitochondrial autophagy,
which is critical for preventing ferroptosis and myocardial damage
(Ma et al., 2020; Liao et al., 2023; Ju et al., 2023). In patients
with sepsis-induced cardiomyopathy (SIC), lower serum levels of
GPX4 and SIRT1, along with higher levels of Creatine Kinase-
Muscle/Brain (CK-MB), cardiac troponin I (cTnI), tumor necrosis
factor-alpha (TNF-α), and interleukin-6 (IL-6), have been observed.
Experiments showed that quercetin can reduce intracellular
Fe2+ and prostaglandin-endoperoxide synthase 2 (PTGS2) levels,
decrease the apoptosis rate, and upregulate GPX4 and ferritin
levels by activating the SIRT1/p53/SLC7A11 signaling pathway.This
action inhibits ferroptosis in H9C2 cells in vitro and alleviates SIC in
vivo in a dose-dependent manner, suggesting a potential treatment
strategy for SIC (Lin et al., 2023). In doxorubicin (DOX)-induced
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cardiomyopathy models, SIRT1 downregulation exacerbates
ferroptosis in cardiomyocytes, while its activation reduces oxidative
stress and inhibits ferroptosis by increasing the expression of
antioxidant enzymes such as GPX4. Furthermore, SIRT1 enhances
cellular antioxidant response through activation of Nrf2/Kelch-
like ECH-associated protein 1(Keap1) signaling pathway, thus
protecting cardiomyocytes fromDOX-induced damage (Wang et al.,
2023a; Abdel-Rahman et al., 2022; Yarmohammadi et al., 2024).
SIRT1 also inhibits ferroptosis through p53-SLC7A11/GPX4
pathway, protects cardiomyocytes, and improves cardiac function
in Type 1 Diabetes Mellitus (Tang et al., 2024). Icariin has been
shown to protect against ethanol-induced atrial remodeling by
activating the SIRT1 signaling pathway, reducing atrial ferroptosis,
and inhibiting atrial fibrosis and oxidative stress. However, the
protective effect of icariin is countered by the ferroptosis activator
erastin and the SIRT1 inhibitor EX527 (Yu et al., 2023a). In heart
failure models, SIRT1-mediated ferroptosis plays a crucial role in
the pathogenesis, with AKG improving cardiac dysfunction through
mitochondrial autophagy and ferroptosis inhibitionmediated by the
NAD + -SIRT1 signaling pathway (Yu et al., 2024). SIRT1 activation
has been shown to inhibit ferroptosis in cardiomyocytes by reducing
the acetylation of p53 protein, maintaining the stability of SLC7A11
protein, and increasing intracellular GSH and GPX4 levels, thereby
reducing oxidative stress and lipid peroxidation (Tang et al., 2024).
Natural compounds such as resveratrol and pterostilbene have
shown inhibition of ferroptosis in cardiomyocytes via the SIRT1/p53
and SIRT1/Glycogen Synthase Kinase-3β (GSK-3β)/GPX4 signaling
pathways, improving cardiac function and reducing cardiac
remodeling in heart failuremodels (Zhang et al., 2023b; Zhang et al.,
2024b). Natural compounds such as quercetin, icariin, resveratrol
and pterostilbene reduce oxidative stress, inhibit ferroptosis of
cardiomyocytes, and improve heart function by activating the SIRT1
signaling pathway (Lin et al., 2023; Yu et al., 2023a; Zhang et al.,
2023b; Zhang et al., 2024b). Therefore, the regulation of SIRT1
and its associated signaling pathways not only provides insight
into the molecular mechanisms of various heart diseases, but also
provides potential targets for the development of new therapeutic
strategies (Figure 3).

3.5 Kidney disease

Recent studies have highlighted the key role of SIRT1-
mediated ferroptosis in multiple kidney diseases. In contrast
induced nephropathy (CIN), SIRT1 activated by calorie restriction
was able to reduce kidney damage via the modulation GPX4
(Fang et al., 2021). In sepsis associated acute kidney injury (SA-
AKI), the exercise hormone irisin mitigates ferroptosis and kidney
damage through the SIRT1/Nrf2 signaling pathway (Qiongyue et al.,
2022). In Polymyxin B (PMB) -induced acute kidney injury,
baicalein activated SIRT1 by reducing p53 acetylation level,
thereby inhibiting ferroptosis (Yu et al., 2023b). In cisplatin-
induced renal toxicity, gastrodin inhibits ferroptosis through
SIRT1/FOXO3A/GPX4 signaling pathway and protects the kidney
from damage (Qiu et al., 2024). The water extract of earthworms
alleviates oxidative stress-induced renal cell death by enhancing
SIRT1/Nrf2 signaling pathways and improving mitochondrial
function (Shu et al., 2024). Baicalein, gastrodin and extract of

earthworms alleviates renal cell ferroptosis induced by oxidative
stress by enhancing SIRT1/Nrf2 signaling pathway and improving
mitochondrial function (Yu et al., 2023b; Qiu et al., 2024; Shu et al.,
2024). These researches suggest that ferroptosis can be effectively
inhibited by regulating SIRT1 and its associated signaling pathways,
providing a new therapeutic strategy for the treatment of kidney
diseases caused by different causes.

3.6 Bone health

SIRT1 plays an important role in maintaining bone health by
regulating ferroptosis. In disc degeneration, the SIRT1-autophagy
axis may protect disc cells by inhibiting ferroptosis caused by
oxidative stress (Zhou and Ruan, 2022). Moreover, in primary
osteoporosis, SIRT1 is recognized as a pivotal gene linked to
ferroptosis, with its expression levels potentially influencing bone
metabolism and the viability of bone cells (Xia et al., 2022).
Consequently, SIRT1’s role extends to Type 2 diabetic osteoporosis,
where vitamin K2 promotes bone mass by activating the adenosine
monophosphate-activated protein kinase (AMPK)/SIRT1 signaling
pathway to suppress ferroptosis. Similarly, in postmenopausal
osteoporosis, the Chinese herbal ingredient icariin is believed to
have therapeutic benefits by targeting multiple ferroptosis-related
pathways, including the modulation of SIRT1 (Huang et al., 2024;
Wang et al., 2024b; Jin et al., 2023; Jing et al., 2019; Schluesener and
Schluesener, 2014). In osteoarthritis, by deacetylating key proteins,
SIRT1 activates the antioxidant response element (ARE), thereby
upregulating the expression of antioxidant genes such as Nrf2,
HO-1, and GPX4. This activation enhances the cellular defense
against oxidative stress and suppresses the iron-mediated ROS
production, which are pivotal in the pathogenesis of osteoarthritis.
Consequently, the SIRT1/Nrf2 signaling axis emerges as a critical
pathway in maintaining chondrocyte integrity and attenuating the
degenerative processes in the joint, offering a potential therapeutic
strategy for managing osteoarthritis (Zhan et al., 2023; Zhang et al.,
2024c; Sun et al., 2023; Ruan et al., 2023). Together, SIRT1 activation
has shown potential in maintaining bone health by inhibiting
ferroptosis. Vitamin K2 and icariin have been demonstrated to
promote bonemass and protect bone cells from oxidative damage by
activating the AMPK/SIRT1 and SIRT1/Nrf2 pathways, respectively
(Jin et al., 2023; Jing et al., 2019; Schluesener and Schluesener,
2014). These findings highlight SIRT1’s central role in regulating
ferroptosis, protecting bone cells from oxidative damage, and
maintaining bone health.

3.7 Cancer

SIRT1-mediated ferroptosis is increasingly recognized as a
pivotal factor in diverse cancer treatment strategies. Bioinformatics
analysis has revealed a significant association between SIRT1 and
ferroptosis in both hepatocellular carcinoma (HCC), gastric cancer
and Ewing’s sarcoma, highlighting its potential as a therapeutic
target in these diseases (Sui et al., 2019; Niu et al., 2023; Jiao et al.,
2023). In HCC, SIRT1 inhibition by protocadherin 20 promotes
ferroptosis via reducing the expression of SLC7A11, GPX4 and
GSH, while increasing MDA, ROS and intracellular iron levels,
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FIGURE 3
Mechanistic insights and therapeutic implications of SIRT1-mediated ferroptosis in cardiac diseases.

resulting in a significant decrease in cell viability, colony-forming
ability, and the growth and size of tumor (Jun et al., 2023). In
the context of gastric cancer, SIRT1 collaborates with APE1 to
stimulate cancer cell ferroptosis by repressing p53, thereby curbing
cancer cell proliferation (Zhao et al., 2023a). Furthermore, the
loss of long non-coding RNA DACT3-AS1 in exosomes derived
from cancer-associated fibroblasts (CAFs) promotes gastric tumor
malignant transformation and oxaliplatin resistance by affecting
the miR-181a-5p/SIRT1 axis, a process involved in the regulation
of ferroptosis (Qu et al., 2023). In addition, in colorectal cancer,
ropivacaine enhances cisplatin sensitivity by inhibiting SIRT1
expression, an effect achieved in part by promoting ferroptosis
(Zeng et al., 2024b). In melanoma studies, ubiquitin specific
peptidase 22 controls melanoma metastasis and sensitivity to
ferroptosis through the SIRT1/phosphatase and tensin homolog
deleted on chromosome 10 (PTEN)/phosphoinositol-3 kinase
(PI3K) signaling pathway, suggesting that activation of the SIRT1
pathway may enhance melanoma cells’ sensitivity to ferroptosis
(Sun et al., 2024). In the study of lung adenocarcinoma, high
doses of β-nicotinamide mononucleotide promote ferroptosis and
inhibit lung cancer cell growth through the excess nicotinamide-
mediated SIRT1/AMPK/acetyl-coA carboxylase (ACC) signaling
pathway (Zhang et al., 2023a). In head and neck cancer, the
activation of SIRT1 facilitates the epithelial-mesenchymal transition
(EMT), thereby enhancing cancer cells’ susceptibility to ferroptosis.

Conversely, the inhibition of SIRT1 diminishes ferroptosis.
Additionally, SIRT1 plays a role in governing ferroptosis by
modulating the expression of GPX4, SLC7A11, and SLC3A2
(Lee et al., 2020). In paclitaxel-tolerant persister head and neck
cancer (HNC) cell lines, SIRT1 activation promotes ferroptosis
by increasing mitochondrial fatty acid oxidation via facilitating
the dispersion and localization of lipid droplets on mitochondria
(You et al., 2021). In addition, in studies of chronic lymphocytic
leukemia (CLL), activation or inhibition of SIRT1 influenced
the sensitivity of CLL cells to ferroptosis, suggesting a potential
role for SIRT1 in regulating ferroptosis in CLL cells (Pan et al.,
2022). These results underscore the potential of SIRT1 modulators
(activators or inhibitors) and the ferroptosis pathway it regulates,
as a novel therapeutic strategy for cancer treatment. Future
research will further explore the specific mechanisms of action
of SIRT1 modulators in different types of cancer, providing a
scientific basis for the development of more effective cancer
therapies.

3.8 Inflammatory disease

SIRT1-mediated ferroptosis plays an important role in the
pathological process of mastitis. The activation of SIRT1 can inhibit
the activation of inflammasome and the release of inflammatory
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cytokines, and reduce the inflammatory response. At the same
time, SIRT1 deacetylates multiple transcription factors, such
as Nrf2, promotes its entry into the nucleus and activates
the expression of antioxidant stress genes, such as HO-1 and
GPX4, the activation of which helps mitigate cell damage caused
by ferroptosis. In mastitis, SIRT1 activation helps to reduce
intracellular iron content and inhibit lipid peroxidation, thereby
reducing ferroptosis and protecting breast tissue from damage
(Zhou et al., 2024b; Zhao et al., 2023b; Zhao et al., 2023c). Natural
compounds and small-molecule activators that enhance SIRT1
activity could be developed as novel therapeutics for mitigating
inflammatory responses and protecting tissue from ferroptosis-
induced damage.

3.9 Diabetes

In diabetes mellitus, SIRT1-mediated ferroptosis plays an
important role in islet β-cell dysfunction. Research has shown
that hyperglycemia inhibits the expression of SIRT1 in islet β-
cells, leading to decreased levels of the antioxidant enzyme GPX4
and increased expression of the ferroptosis-related protein TFR1.
This weakens the cells’ antioxidant capacity, making them more
susceptible to oxidative stress and ultimately resulting in ferroptosis.
Stabilizing SIRT1 activity alleviates ferroptosis in islet β-cells,
improves insulin secretion, and mitigates hyperglycemia symptoms
(Zhang et al., 2022). SIRT1 is also involved in the development
of diabetic complications through its regulation of ferroptosis.
Under high-glucose conditions, SIRT1 activity is reduced, leading
to increased ferroptosis. Activating SIRT1 can inhibit ferroptosis and
reduce pathological damage in diabetic complications. For example,
in diabetic retinopathy (DR), SIRT1 suppresses inflammation and
retinal vascular damage by regulating HMGB1 deacetylation and
inhibiting ferroptosis (Peng et al., 2025). Inhibition of SIRT1
reduces Nrf2 activity, decreases the expression of antioxidant-
related molecules, and exacerbates ferroptosis. Astragaloside-IV
can enhance SIRT1 and Nrf2 activity, boost cellular antioxidant
capacity, reduce hyperglycemia-induced ferroptosis, and protect
retinal pigment epithelial (RPE) cells from damage, offering
a potential therapeutic strategy for DR (Tang et al., 2022).
Flavanones can increase SIRT1 activity, inhibit ferroptosis through
the FOXO3a and Nrf2 signaling pathways, and alleviate renal
tubular epithelial cell injury induced by high glucose (Zhou et al.,
2025). Additionally, activating the SIRT1/Nrf2/p62 pathway can
promote the healing of diabetic foot ulcers, possibly mediated by
autophagy-dependent ferroptosis (Han et al., 2024). In diabetic
peripheral neuropathy (DPN), inactivation of SIRT1 promotes the
production of mitochondrial ROS, leading to dysfunction and
ferroptosis in Schwann cells. Activation of the AMPK/SIRT1/PGC-
1α signaling pathway by honokiol alleviates hyperglycemia-induced
oxidative stress and ferroptosis, thereby improving cell function
(Liang et al., 2023; Hu et al., 2023). These findings suggest that
SIRT1 and its regulation of ferroptosis are crucial in diabetic
complications andmay represent a novel therapeutic target for these
conditions.

Together, the diverse roles of SIRT1 across multiple disease
types underscore its significance as a promising therapeutic
target. A variety of therapeutic agents have been explored

for modulating SIRT1 in ferroptosis-related diseases. Table 1
summarizes key SIRT1-targeted interventions, their mechanisms,
and potential clinical applications across various pathological
conditions. This consolidated information provides a reference
for ongoing research and potential translational applications in
ferroptosis-associated diseases (Table 1).

4 Future research directions and
prospects

The role of SIRT1 in the regulation of ferroptosis has emerged as
a promising area of research with significant therapeutic potential
in a multiple of diseases. While significant progress has been
made in understanding the role of SIRT1 in ferroptosis, there
are still many challenges to overcome. The integration of new
technologies and the pursuit of innovative research directions will
be instrumental in advancing the field and unlocking the therapeutic
potential of targeting SIRT1 and ferroptosis. Future research should
focus on elucidating the precise molecular mechanisms by which
SIRT1 regulates ferroptosis. This includes investigating the full
spectrum of SIRT1 targets, the epigenetic changes it induces,
and how these contribute to the susceptibility of target cells to
ferroptosis. Research could focus on identifying SIRT1-dependent
gene regulatory networks that modulate ferroptosis. Investigating
the interplay between SIRT1 and other cellular pathways, such
as autophagy and the unfolded protein response, will also be
crucial for a comprehensive understanding of ferroptosis regulation.
What’s more, the development of small molecules that specifically
target SIRT1 or its regulatory pathway is a promising avenue.
This includes the design of more potent and selective SIRT1
modulators and the evaluation of their efficacy in preclinical
models of diseases characterized by ferroptosis, such as kidney
diseases, neurodegenerative disorders, and cancer. Moreover, the
development of predictive biomarkers for ferroptosis sensitivity
is crucial. Future studies should aim to identify and validate
biomarkers that can predict a patient’s response to ferroptosis-
inducing therapies, allowing for personalized treatment strategies.
Translational research efforts should be directed towards the design
of clinical trials assessing the safety and efficacy of SIRT1-targeted
ferroptosis induction in patients. Notably, long-term studies are
needed to assess the safety and efficacy of SIRT1 modulation in
inducing ferroptosis.

Through the diligent exploration of these research avenues,
the scientific community can potentially unlock the therapeutic
potential of SIRT1 and ferroptosis as novel strategies in human
disease. This advancement may provide renewed hope for patients
who have exhausted conventional treatment options and are in dire
need of innovative therapeutic interventions.

5 Discussion

Our review underscores the multifaceted role of SIRT1 in
modulating ferroptosis, highlighting its potential as a therapeutic
target. The intricate interplay between SIRT1 and the molecular
machinery governing ferroptosis offers a rich avenue for therapeutic
intervention. SIRT1’s ability to deacetylate and thereby activate
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TABLE 1 Therapeutic strategies targeting SIRT1 in ferroptosis-associated diseases.

Disease type SIRT1 regulation Therapeutic
strategies

Mechanism Clinical potential Ref

Neurological Diseases Activation Resveratrol, SRT1720,
SRT2104, Propofol,
Ketogenic diet, Ferulic
acid

Enhance Nrf2/GPX4,
reduces oxidative stress,
mitigates lipid
peroxidation

Protect neurons from
ferroptosis in
neurodegenerative
disorders and cognitive
decline

Wen et al. (2024),
Yang et al. (2022),
Liu et al. (2022),
Wang et al. (2023b), and
Yan et al. (2024)

Liver Diseases Activation Salidroside, Ulinastatin,
Rosa rugosa,
Dihydroquercetin

Regulate
p53/GPX4/GSDMD and
Nrf2/p53, decreases
oxidative stress

Protect against liver
failure, sepsis, and NASH

Wang et al. (2021),
Xu et al. (2023), Lei et al.
(2023), and Zeng et al.
(2024a)

Lung Diseases Activation Meteorin-like,
Meteorin-β, FGF,
GDF11, Quercetin

Suppress p53 acetylation,
activate
SIRT1/Nrf2/GPX4,
maintains iron
homeostasis

Alleviate ALI Chen et al. (2022a),
Chen et al. (2023b),
Lin et al. (2024b),
Wu et al. (2024), and
Deng et al. (2023)

Cardiovascular Diseases Activation Quercetin, Resveratrol,
Icariin, Pterostilbene,

Activate Nrf2/Keap1,
SIRT1/p53/SLC7A11,
inhibit ferroptosis in
cardiomyocytes

Protect against
myocardial infarction,
ischemia-reperfusion
injury, and
doxorubicin-induced
cardiotoxicity

Lin et al. (2023),
Wang et al. (2023a),
Abdel-Rahman et al.
(2022),
Yarmohammadi et al.
(2024), Tang et al.
(2024), Yu et al. (2023a),
Yu et al. (2024),
Zhang et al. (2023b), and
Zhang et al. (2024b)

Kidney Diseases Activation Baicalein, Gastrodin,
Earthworm extract

Enhance SIRT1/Nrf2,
reduce oxidative stress

Mitigates acute kidney
injury

Yu et al. (2023b),
Qiu et al. (2024), and
Shu et al. (2024)

Bone Health Activation Vitamin K2, Icariin Activate AMPK/SIRT1,
inhibit oxidative
stress-induced
ferroptosis

Prevent osteoporosis and
osteoarthritis

Jin et al. (2023), Jing et al.
(2019), and Schluesener
and Schluesener (2014)

Cancer Activation or Inhibition Protocadherin 20,
Ropivacaine,
β-nicotinamide
mononucleotide

Regulate SIRT1/AMPK,
PTEN/PI3K, modulate
ferroptosis sensitivity in
tumors

Enhances
ferroptosis-based
strategies in HCC,
colorectal cancer,
melanoma, and lung
adenocarcinoma

Jun et al. (2023),
Zeng et al. (2024b),
Sun et al. (2024), and
Zhang et al. (2023a)

Mastitis Activation Schisandrin B,
saikosaponin A,
diosmetin

Regulate
SIRT1/p53/SLC7A11,
Nrf2, GPX4

Alleviate mastitis Zhou et al. (2024b),
Zhao et al. (2023b), and
Zhao et al. (2023c)

Diabetes Activation Astragaloside-IV,
Flavanones, Honokiol

Enhance
FOXO3a/NRF2,
preserve β-cell function

Ameliorate diabetes and
its complications

Tang et al. (2022),
Zhou et al. (2025),
Han et al. (2024),
Liang et al. (2023), and
Hu et al. (2023)

key proteins involved in ferroptosis, such as GPX4 and FOXO3A,
positions it as a nodal point in the regulation of this cell death
process. By maintaining cellular redox balance and influencing iron
homeostasis, SIRT1 contributes to the cellular resistance against
ferroptosis. The therapeutic potential of SIRT1 in modulating
ferroptosis is vast and spans a range of diseases, including

neurodegenerative disorders, cancer, and kidney diseases. The
activation of SIRT1 has been shown to ameliorate ferroptosis-
associated cell death in various models, suggesting its utility in
developing protective strategies against diseases where ferroptosis
plays a pathogenic role. However, the field faces challenges,
including the need for a deeper understanding of the molecular
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underpinnings of SIRT1’s role in ferroptosis and the development of
targeted therapies that can effectively harness this enzyme’s activity.
In conclusion, the regulation of ferroptosis by SIRT1 represents a
burgeoning frontier in cellular biology with significant therapeutic
implications. As we continue to unravel the complexities of this
process, we edge closer to a future where the modulation of
ferroptosis through SIRT1 activation may offer novel treatment
strategies for a host of diseases. Our review establish a foundation
for future research and pave the way for novel therapeutic strategies
that could harness the potential of ferroptosis in biological and
medical contexts.
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