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Proteasomes, essential protease complexes in protein homeostasis, adapt to
metabolic changes through intracellular movements. As the executive arm of the
ubiquitin-proteasome system, they selectively degrade poly-ubiquitinated
proteins in an ATP-dependent process. The primary proteasome configuration
involved in this degradation is the 26S proteasome, which is composed of a
proteolytically active core particle flanked by two regulatory particles. In
metabolically active cells, such as proliferating yeast and mammalian cancer
cells, 26S proteasomes are predominantly nuclear and actively engaged in
protein degradation. However, during nutrient deprivation or stress-induced
quiescence, proteasome localization changes. In quiescent yeast,
proteasomes initially accumulate at the nuclear envelope. During prolonged
quiescence with decreased ATP levels, proteasomes exit the nucleus and are
sequestered into cytoplasmic membraneless organelles, so-called proteasome
storage granules (PSGs). In mammalian cells, starvation and stress trigger
formation of membraneless organelles containing proteasomes and poly-
ubiquitinated substrates. The proteasome condensates are motile, reversible,
and contribute to stress resistance and improved fitness during aging.
Proteasome condensation may involve liquid-liquid phase separation, a
mechanism underlying the assembly of membraneless organelles.

KEYWORDS

metabolic regulation of proteasome localization, proteasome condensates in
membraneless organelles, proteasome storage granules, protein homeostasis
(proteostasis), ubiquitin 26S-proteasome system

Proteasomal protein breakdown is ubiquitin- and
ATP-dependent

Protein homeostasis describes the equilibrium between protein synthesis and
degradation, and involves dynamic assembly and disassembly of proteins, and their
trafficking between cellular compartments (Wolf and Menssen, 2018). Newly
synthesized proteins can be misfolded, be supernumerary, or missing their native
interaction partner due to heterologous expression. If these proteins expose
hydrophobic regions prone to random aggregation, circuits of protein quality
control make triage decisions. The question arises: Should these proteins be
refolded by chaperones, eliminated by degradation, or deposited into organelles?
Stress complicates triage decisions. To cope with stress, chaperones are activated to
preserve proteins from being degraded. Up to the early 1980s, it was not plausible that
peptide bonds, which require large amounts of energy to be built, could be reverted.
Only the discovery of ubiquitin-mediated protein degradation triggered a paradigm
shift that peptide bonds are broken under ATP consumption, which was awarded with
the Nobel Prize in 2004 (Giles, 2004).
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In the lab environment, yeast and mammalian cancer cells are
easily cultured and have plenty of energy. ATP-dependent
proteolysis was recognized as an advantage to eliminate
unwanted short-lived proteins. By this, biological activities of
proteins, i.e., regulating cell cycle progression and gene
expression, are irreversibly switched off (Goldberg, 2003). Their
shutdown is achieved by protein degradation through proteasomes,
the key proteases of the ubiquitin-proteasome system (UPS)
(Hershko and Ciechanover, 1998). Ubiquitin serves as a death
signal and is conjugated in multiple copies to protein substrates
for recognition by the proteasome. The ubiquitin moieties are linked
to the substrate through reiterating cycles of ATP-consuming
ubiquitin activation and ligation (Ciechanover, 2015). Thus, poly-
ubiquitination of protein substrates is highly ATP demanding. The
unfolding and translocation of protein substrates into the proteolytic
cavity of proteasomes further consume hundreds of ATP molecules
(Benaroudj et al., 2003; Peth et al., 2013). Ubiquitination is also
involved in the elimination of proteins by the vacuole/lysosome,

which engulfs cytoplasmic constituents and cell surface receptors via
autophagic and endosomal vesicles (Ciechanover, 2005). Lysosomal
degradation targets long-lived proteins, membrane-associated
proteins, protein aggregates, and macromolecular machineries
such as proteasomes (Ballabio and Bonifacino, 2020; Hoeller and
Dikic, 2016; Marshall and Vierstra, 2019).

Proteasome structure

Proteasome biogenesis requires huge amounts of energy, as the
proteasome is the secondmost abundant protein complex composed
of ~33 different subunits. Thus, proteasome biogenesis only takes
place in proliferating cells with high metabolic activity (Marguerat
et al., 2012). Subunit incorporation into the proteasome complex
requires transient interactions (Gu and Enenkel, 2014). Their
concerted action yields the proteolytic core particle (CP) with
two adjacent regulatory particles (RP), known as RP-CP-RP

FIGURE 1
Cartoon of 26S proteasomes with RP-CP-RP configuration. Left: RP base ATPases (marine blue) and RP base subunits Rpn1, Rpn2, Rpn10, and
Rpn13 recognizing the poly-ubiquitinated protein substrate (sky blue) are depicted. Four ubiquitin molecules represent the minimal poly-ubiquitin chain
(yellow). RP lid subunits are depicted in green. Right: Once the poly-ubiquitin chain is cleaved off by Rpn11 (pink), the ATPases are committed to
translocate the unfolded protein (white) through the outer α-rings of the CP. The unfolded polypeptide is degraded into peptides in the catalytic
cavity located between the inner β-rings of the CP (orange). CP, core particle; RP, regulatory particle. The model is adopted fromMatyskiela et al. (2013).
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configured 26S proteasome (Figure 1) (Hershko and Ciechanover,
1998; Tanaka, 2009). Asymmetric RP-CP configurations also exist
under the name of 26S proteasomes but are not further dealt with in
this review.

The RP is divided into a base and lid subcomplex (Glickman
et al., 1998). The RP base contains, among other subunits, Rpn1,
Rpn10 and Rpn13, both bridged by Rpn2, which recognizes the
poly-ubiquitin chain of the substrate. In addition, several ubiquitin
receptors exist, such as RAD23 in mammals and Rad23 in yeast.
They transiently interact with the RP to hand over poly-
ubiquitinated substrates for degradation (Shi et al., 2016).
Proteasomes do not care about the nature of the substrates, just
the presence of the ubiquitin death signal.

The RP base also contains a six-membered ATPase ring, which
is responsible for opening/gating of the CP, substrate unfolding, and
translocation. Since branched poly-ubiquitin chains are bulky, they
are removed from the protein substrate prior to degradation. The
isopeptide bond between the ubiquitin chain and the substrate is
cleaved by the deubiquitinase Rpn8-Rpn11module located in the RP
lid (Wehmer et al., 2017; Bard et al., 2019). The release of the poly-
ubiquitin chain induces a conformational switch by which the RP
base ATPase ring snaps into place on the adjacent CP gate (Bard
et al., 2019).

Over the last years, single-particle cryo-electron microscopy
enabled the deconvolution of coexisting 26S proteasome
conformations and their delineation in the degradation of poly-
ubiquitinated substrates (Wehmer et al., 2017; Unverdorben et al.,
2014; Schweitzer et al., 2016). The recognition of the poly-
ubiquitinated substrate occurs in the inactive s1 ground state of
the 26S proteasome. The 26S proteasome then adopts several
commitment states until substrate degradation becomes
irreversible (Wehmer et al., 2017; Unverdorben et al., 2014; Dong
et al., 2019; de la Pena et al., 2018; Eisele et al., 2018). These
proteasome rearrangements resulting in conformational
heterogeneity prevented crystallographic analyses of the 26S

proteasome and RP. It is worth mentioning that 26S proteasomes
are further able to cleave proteins with intrinsically disordered
regions in an ubiquitin-independent manner (Erales and Coffino,
2014), sometimes leading to protein processing through limited
proteolysis (Rape and Jentsch, 2002). Sophisticated in vitro
experiments revealed that a folded protein is spared from
degradation although being modified by a poly-ubiquitin chain.
Instead, an intrinsically disordered protein lacking poly-
ubiquitination but interacting with the folded poly-ubiquitinated
protein was degraded (Inobe and Matouschek, 2014). On one hand,
this suggests that poly-ubiquitination is not necessarily leading to
proteasomal degradation (Collins and Goldberg, 2017). On the other
hand, proteins with intrinsically disordered regions are sensitive to
proteasomal degradation and can have shorter half-life (Tsvetkov
et al., 2009; van der Lee et al., 2014).

Furthermore, 26S proteasome assembly is sensitive to oxidative
stress. Oxidative stress, e.g., induced by perhydrol, results in the
dissociation of 26S proteasomes into the CP and RP, and an
accumulation of poly-ubiquitinated substrates. Under these
conditions, an increased association of the proteasome-interacting
protein Ecm29 with purified RP was detected (Wang et al., 2010),
consistent with the finding that Ecm29 fulfills quality control
functions in proteasome assembly (Lehmann et al., 2010; Park
et al., 2011). The resulting free CP has closed gates and thus
latent enzyme activity (Eytan et al., 1989). However, the CP gates
are accessible for intrinsically disordered and oxidatively damaged
proteins that are in vitro degraded by the CP (Tsvetkov et al., 2009;
Liu et al., 2003; Ben-Nissan and Sharon, 2014).

In contrast to the 26S holoenzyme, the CP with its more static
global structure is resolved at atomic resolution by x-ray
crystallography. The CP is composed of a stack of two inner β-
subunit rings and two outer α-subunit rings. The inner β-rings
harbor the active sites for endoproteolytic peptide bond cleavage.
Outer α-rings serve as gates into the CP cavity, which are opened by
the adjacent ATPase rings of the RP base. Thus, ATPase activity is

FIGURE 2
Models for membraneless organelles containing the ubiquitin-proteasome system (UPS) that form in response to nutrient limitations and stress. For
simplicity, only proteasomes, the key proteases of the UPS, are depicted. Left: A shell of proteasomes surrounds a core of poly-ubiquitinated proteins.
Middle: UPS components are randomly distributed between poly-ubiquitinated proteins. Both types of organelles are proposed to serve as proteolysis
centers and to be driven by liquid-liquid phase separation (LLPS). Right: In quiescent yeast, proteasome storage granules (PSGs) behave differently as
they contain no poly-ubiquitinated proteins. PSG formation requires the presence of mono-ubiquitin above a threshold, for details see Table 1.
Proteasomes are depicted as in Figure 1. The variety of poly-ubiquitinated proteins is symbolized by green, violet and blue colors. Ubiquitin is yellow.
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required for α-ring opening, unfolding, and translocating of
substrates into the CP (Groll et al., 1997).

Nuclear proteasome localization in
dividing cells

On top of conformational plasticity, 26S proteasomes are highly
dynamic regarding their intracellular localization (Enenkel, 2014a;
Tomita et al., 2019; de Almeida et al., 2021). Our understanding of
proteasome localization in cells was debated for decades before a
consensus was reached.

In mammalian cells, intracellular proteasome localizations by
indirect immunofluorescence microscopy had been controversially
discussed as they varied depending on antibodies, cell lines, and
culture conditions used (Brooks et al., 2000). At high confluency,
when nutrients became limiting in the cell culture medium,
proteasomes appeared to be cytoplasmic, while proteasomes
appeared to be more nuclear in cancer cells grown at low
confluency (Wojcik and DeMartino, 2003). Early indirect
immunofluorescence microscopy using antibodies with cross-
reactivity for proteasomes from different organisms revealed
intracellular distributions of proteasomes. Proteasomes were
localized to the nucleus in Xenopus laevis oocytes and HeLa cells
(Peters et al., 1994). Particularly in the prophase of rat granulosa
cells, proteasomes accumulated with chromatin, where also cyclins
localize before being degraded (Amsterdam et al., 1993). Cyclins are
short-lived proteins regulating cell cycle progression and one of the
first identified proteasomal substrates (Glotzer et al., 1991). At that
time, the detection of nuclear proteasomes was consistent with
Varshavsky’s and co-workers’ discovery that ubiquitin-dependent
protein degradation plays a critical role in cell cycle control and gene
expression (Finley et al., 1984). Four decades later, proteasome
abundance in the nucleus is still attracting attention, with
quantification by nuclear fractionations and proteomics analyses
confirming cell cycle-dependent recruitment of proteasomes to
chromatin (Kito et al., 2020). Meanwhile, monoclonal antibodies
that enable the co-immunoprecipitation of 26S proteasomes are
commercially available and suitable for proteasome localization by
indirect immunofluorescence microscopy (Hendil et al., 1995).
Complementary to this classical approach, the labeling of
proteins with green fluorescent protein (GFP) and related
variants became an invaluable technique to correlate cell cycle-
dependent dynamics of protein concentrations and their
localizations using live-cell imaging (Litsios et al., 2024). In yeast,
the chromosomal replacement of proteasomal subunits by GFP-
labeled versions is standardized and yields reliable fluorescent
reporter subunits that are fully incorporated into proteasomes.
Almost every proteasomal subunit is functionally replaceable by a
GFP-labeled version consistently showing the same intracellular
distribution in yeast (Enenkel, 2014a). In mammalian cells, an
increasing number of GFP reporter subunits for live-cell imaging
of proteasomes is emerging. Dantuma and co-workers were one of
the first who aimed for the stable expression of GFP-labeled CP
subunit α4 in cancer cell lines (Gierisch et al., 2020). The efficiency of
the reporter subunit incorporation into proteasomes was verified by
glycerol gradient ultracentrifugation, which separates 26S
proteasomes in fast-migrating fractions from not fully

incorporated subunits in slow-migrating fractions (Salomons
et al., 2010). Direct fluorescence microscopy of GFP-labeled α4 in
Mel JuSo cells revealed significant nuclear localization (Enenkel,
2014a). We adopted this expression system to U2OS cells and
confirmed major nuclear proteasome localization for GFP-labeled
α4, consistent with indirect immunofluorescence microscopy using
commercial MCP444 antibodies (unpublished results). Similar
observations were reported by Murata and co-workers, who
established RP lid subunit Rpn11-Flag-EGFP tag-exchangeable
knock-in mice. Their approach allows one to distinguish between
young, in other words, newly synthesized, proteasomes in the
nucleus and old proteasomes in the cytoplasm of embryonic
fibroblasts. Thus, this cell system is suited to monitor age-related
proteasome dynamics in mammalian cells (Tomita et al., 2019).
More recently, Zuber and co-workers developed an elegant
approach by ectopic expression of fluorescent mCherry-labeled
proteasomal subunits in CRISPR-Cas9 induced RKO knockdown
cells. Their approach yielded the full replacement of the endogenous
CP β4 subunit by a fluorescent-labeled version. Again, the
fluorescent reporter subunit of the proteasome revealed nuclear
localization in dividing RKO cells (de Almeida et al., 2021).

Taken together, direct and indirect fluorescence microscopy in
proliferating yeast and mammalian cells with high metabolic activity
reveal nuclear localization of proteasomes. It is not surprising that
the localization of an essential and abundant protease complex is
evolutionarily conserved (Botstein and Fink, 2011). However, even
in yeast as model organism of eukaryotic cells, it was puzzling that
proteasomes were primarily nuclear (Russell et al., 1999; Enenkel
et al., 1998; Wilkinson et al., 1998). At this point, we would like to
point out again that proteasomes in the cytoplasm are proteolytically
active. Cryo-electron tomography (cryo-ET), a non-invasive
imaging technology that preserves protein structures in their
native cellular environment (Baumeister, 2022), of cytoplasmic
volumes of neuronal cells revealed that ~20% of the cytoplasmic
proteasomes were engaged in substrate degradation. The remainder
of 26S proteasomes was in the substrate-accepting ground state
(Asano et al., 2015). Without stress, the reservoir of cytoplasmic 26S
proteasomes appears to be far from exhausted.

Nuclear import of proteasomes

The answer to the question of how proteasomes are imported
into the nucleus is that several pathways are used. Our previous
reviews have recapitulated in detail the discoveries on nuclear
import of proteasomes over the last decades (Enenkel, 2014b;
Wendler and Enenkel, 2019; Enenkel et al., 2022). We briefly
summarize the basic concepts of nuclear import of proteasomes.
In proliferating yeast, inactive CP precursor complexes and RP
subcomplexes are imported by the conventional import receptor
importin/karyopherin αβ, suggesting that holoenzymes are
assembled in the nucleus (Lehmann et al., 2002; Isono et al.,
2007). Alternatively, proteasomes are imported as matured
enzymes by importins/karyopherins with transient accessory
proteins such as Sts1 binding to the RP lid in yeast (Chen et al.,
2011; Budenholzer et al., 2020), and AKIRIN2 binding to the CP α-
ring in mammalian cells (de Almeida et al., 2021). Intriguingly,
Sts1 and AKIRIN2 are short-lived. Their proteasomal degradation is
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triggered upon arrival in the nucleus by a mechanism not fully
understood.

When yeast cells rest in quiescence, a temporary halt of
proliferation, CP precursor complexes are unavailable due to
stalled proteasome biogenesis. Upon exit from quiescence,
nuclear proteasome assembly from newly synthesized precursor
complexes takes time (Laporte et al., 2008). Thus, matured
proteasomes are immediately transported from the cytoplasm
into the nucleus. Sudden changes in metabolic activities,
i.e., from low state in quiescence to high state in proliferation,
require quick adaptations. With the resumption of cell proliferation,
Blm10 facilitates nuclear import of the CP in yeast (Weberruss et al.,
2013). PA200, the mammalian counterpart of Blm10, is similarly
involved in nuclear proteasome activation (Ustrell et al., 2002).
Which nuclear import pathway prevails over another depends on
the availability of proteasomal transport cargoes, importins/
karyopherins, and adaptor proteins, showcasing the plasticity of
proteasome configurations under different growth conditions. To
put it simply, all nuclear import pathways have in common that 26S
proteasomes do not pass the nuclear pore as active enzymes. The fact
that 26S proteasomes and free CP are able to degrade intrinsically
disordered proteins would make the passage of active enzymes
detrimental to nuclear pore proteins, because nuclear pore
proteins with repetitive hydrophobic Gly-Leu-Phe-Gly motifs are
intrinsically disordered (Denning et al., 2003; Denning and Rexach,
2007). To avoid collateral damage to nuclear pore proteins,
proteasomes are translocated as inactive enzymes. On the way
through the nuclear pore, proteasome activity is inhibited either
as a precursor complex or by binding to accessory proteins, such as
Blm10, which seals the CP gate.

Proteasome condensates in response
to stress and metabolic challenges

In the 2000s, the UPS field predominantly focused on
cytoplasmic protein degradation by proteasomes because the
scientific community was interested in endoplasmic reticulum
(ER)-associated protein degradation, antigen processing, and the
removal of newly synthesized proteins (Sommer and Wolf, 1997;
Kloetzel and Ossendorp, 2004; Yewdell, 2005). Experiments were
designed to study newly synthesized proteins that were often more
expressed than their binding partners. However, Hartl and
colleagues found that endogenous nascent polypeptides remain
largely protected from proteolysis due to the abundance of
cytoplasmic chaperones (Vabulas and Hartl, 2005). Moreover,
misfolded proteins were found to be delivered into the nucleus
for proteasomal degradation (Park et al., 2013), while tumor
suppressor protein p53 was proposed to be exported into the
cytoplasm for proteasomal degradation (Hirayama et al., 2018).
The fate of p53 is intriguing because it is controlled by mono- or
poly-ubiquitination, the latter has been shown to promote
degradation in the nucleus (Li et al., 2003). 26S proteasomes are
also engaged in cytoplasmic protein breakdown. Since 26S
proteasomes are enzymes, quality counts over quantity. Sites of
proteasome localizations may not correlate with major sites of
proteolysis. Furthermore, the activities of nucleo- and
cytoplasmic 26S proteasomes are differently regulated by post-

translational modifications (Sha et al., 2011; VerPlank and
Goldberg, 2017). Therefore, based on our current knowledge, it is
difficult to decide in which compartment proteasomes are most
active in protein degradation.

Proteasome condensates in the
nucleus of mammalian cells

Based on indirect immunofluorescence localization studies, von
Mikecz and co-workers shifted the research focus back to the UPS
within nuclear speckles. Intrigued by the observation that ubiquitin,
the ubiquitin-activating enzyme, ubiquitin ligases, and proteasomes
accumulate in nuclear speckles, also known as foci, bodies, and
granules, the question arose: What is the function of these UPS
conglomerations (von Mikecz, 2006)? When all UPS players are in
place, it is conceivable that short-lived proteins that regulate cell
cycle progression and gene expression, such as cyclins and
transcription factors, are instantaneously poly-ubiquitinated and
degraded on site. If so, these conglomerations represent enhanced
UPS activities and differ from pathological aggregates that
accumulate undegradable proteins linked to neurodegenerative
disorders and can be caused by nanoparticles (von Mikecz
et al., 2008).

Stress-adaptable Promyelocytic leukemia protein (PML)-
associated nuclear bodies (PML NB) or clastosomes (Lafarga
et al., 2002; Lallemand-Breitenbach et al., 2001) have multifaceted
roles by recruiting a variety of unrelated proteins in response to
stress, i.e., oxidation. PML NB are archetypes of membraneless
organelles with a diameter of ~1 µm (Sahin et al., 2014).
Membraneless organelles are fascinating subcompartments, as
they are thought to float as dense phase in the dilute phase of an
aqueous environment. Their components often condense in
response to cellular stress and dilute upon stress relief (van
Leeuwen and Rabouille, 2019).

The current model to describe the phenomenon of condensed
mixtures of macromolecules is liquid-liquid phase separation
(LLPS). LLPS is driven by concentration gradients, the
promiscuity and multivalency of macromolecules, i.e., variable
weak interactions through proteins with repetitive sequences of
hydrophobic amino acids, low complexity or intrinsically
disordered regions, and proteins in folding transitions (Alberti
and Hyman, 2021; Vernon and Forman-Kay, 2019).

PML has an intrinsically disordered C-terminal domain and
interacts with multiple proteins. According to immunogold electron
microscopy and confocal microscopy, PML surrounds PML NB
(Silonov et al., 2023; Lallemand-Breitenbach and Hugues, 2010).
Like a sponge, PML NB serves as overflow compartment for nuclear
quality control and hosts misfolded proteins under conditions of
proteotoxic stress, such as proteasome inhibition. Defective
ribosomal products (DRiPs), in other words, aberrant newly
synthesized proteins of low molecular mass, constantly escape the
cytoplasmic quality control system. They diffuse through nuclear
pores into the nucleus, are ubiquitinated, and transiently stored in
PML NB (Silonov et al., 2023; Lallemand-Breitenbach and Hugues,
2010). The condensed PML NB core could be envisioned as a unique
solvent continuously extracting and exchanging proteins from the
environment. Heat shock proteins, chaperones, and proteasomes
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around PML NB reduce the influx of DRiPs by refolding and
degradation, respectively. Thus, PML NB have a highly dynamic
DRiP composition, and prevent unintended interactions of DRiPs
with nuclear proteins. Failures of DRiP clearance under conditions
of prolonged stress, such as critical energy shortage and irreversible
proteasome inhibition, result in PML NB solidification.
Immobilization of UPS components in solidifying PML NB leads
to depletion of ubiquitin and proteasomes, which jeopardizes cell
vitality (Mediani et al., 2019a; Mediani et al., 2019b). The age-related
and thus irreversible decline of proteasome activities
(Chondrogianni et al., 2003; Torres et al., 2006) causes challenges
in senescent cells that cope with the burden of poly-ubiquitinated
proteins by uptake into nuclear proteasome bodies (senescence-
associated nuclear proteasome foci; SANPs) using the ubiquitin
receptor RAD23B (Iriki et al., 2023).

Meanwhile, evidence has increased that membraneless
organelles containing proteasomes and a diversity of poly-
ubiquitinated substrates originate from various stress conditions.
The simplest explanation for this phenomenon is that different
kinds of stress cause an energy crisis and force the energy-
consuming UPS into quality control compartments. As
mentioned above, stress-adaptable PML NB and SANP might
represent overflow compartments for UPS clearance (Mediani
et al., 2019a; Mediani et al., 2019b; Iriki et al., 2023). Additional
stressful situations leading to UPS condensation are listed in Table 1.
For example hyperosmotic shock induces the formation of nuclear
organelles containing proteasomes, poly-ubiquitinated proteins,
chaperone VCP p97, and ubiquitin receptor RAD23B. Orphan
ribosomal subunits that failed to be incorporated into nascent
ribosomes represent an abundant source of proteasomal

TABLE 1 Proteasome organelles induced by different stress factors.

Name Stress factor Organism Locali-
zation

Composition Methods Disassembly Ref

nUPS
speckles

nanoparticles,
UPS inhibition

M N UPS, poly-Ub proteins IF Proteasomes von Mikecz (2006), von Mikecz
et al. (2008)

PML NB inflammation,
viral infection,
oxidation,
proteasome
inhibition

M N PML, misfolded proteins,
DRiPs, ubiquitination,
SUMOylation, surrounded
by UPS

IF, IEM Proteasomes Lafarga et al. (2002),
Lallemand-Breitenbach et al.
(2001), Sahin et al. (2014),
Silonov et al. (2023),
Lallemand-Breitenbach and
Hugues (2010), Mediani et al.
(2019a), Mediani et al. (2019b)

SANP senescence M N proteasome, poly-Ub
proteins, RAD23B

IF, foci fusion,
FRAP

n. d. Iriki et al. (2023)

INQ proteasome
inhibition, DNA
damage

Y NE -N proteasome shell, poly-Ub,
misfolded proteins,
SUMOylation

IEM, FM,
FLIP, foci
fusion

proteasomes,
chaperones

Miller et al. (2015), Kumar et al.
(2022)

JUNQ,
aggresome

proteasome
inhibition,
substrate
overexpression

Y, M NE - ER proteasome shell, poly-Ub,
misfolded proteins

IF, FLIP,
FRAP, FM

proteasomes,
chaperones

Kaganovich et al. (2008),
Kopito et al. (2000)

proteasome
foci

high glucose,
hyperosmotic
shock

M N proteasome shell, poly-Ub
proteins, orphan ribosomal
proteins, RAD23B, VCP
p97 chaperone

TEM, FM,
cryo-ET,
FRAP, LLPS

isoosmosis, DUB Yasuda et al. (2020)

SIPAN amino acid
starvation

M N proteasome, poly-Ub
proteins, RAD23B

IEM, FM,
FRAP, LLPS

amino acids, DUB Uriarte et al. (2021)

p62 foci heat, oxidation,
inhibited nuclear
export by Crm1/
Xpo1

M N core: p62, poly-Ub proteins,
orphan proteasomal
subunits; shell: proteasome,
ubiquitination cascade

FRAP, FM,
foci fusion

stress relief Fu et al. (2021)

GA
aggregates

neurotoxic Gly-
Ala repeats

M C proteasomes stalled in
degradation of neurotoxic
proteins occurring in
amyotrophic lateral
sclerosis and
frontotemporal dementia

cryo-ET irreversible Guo et al. (2018)

PSG glucose starvation,
low ATP, low pH

Y C proteasome, monoubiquitin IEM, FM glucose, high ATP Laporte et al. (2008), Gu et al.
(2017), Waite et al. (2022),
Peters et al. (2013), Saunier
et al. (2013), van Deventer et al.
(2015)

Abbreviations: C, cytoplasm; cryo-ET, cryo-electron tomography; DRiP, defective ribosomal product; DUB, deubiquitinase; FLIP, fluorescence loss in photobleaching; FM, direct fluorescence

microscopy; FRAP, fluorescence recovery after photobleaching; IEM, immunoelectron microscopy; IF, indirect immunofluorescence microscopy; LLPS, in vitro reconstitution of liquid-liquid

phase separation; n. d., not defined; NE, nuclear envelope; N, nucleus; M, mammals; TEM, transmission electron microscopy; Ub, ubiquitin (ated); Y, yeast.
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substrates and are part of these organelles. These organelles were one
of the first to be resolved by cryo-ET analysis. 26S Proteasomes were
found to be randomly distributed within the organelle. In vitro, LLPS
was mediated by multivalent interactions between two ubiquitin-
associated domains of RAD23B and tetraubiquitin chains, two
components of this UPS organelle (Yasuda et al., 2020).

Heat, oxidation, and inhibition of nuclear export through the
canonical export receptor Crm1/Xpo1 are alternative stressors. They
trigger nuclear LLPS of poly-ubiquitinated proteins, including
orphan proteasomal subunits that escaped the incorporation into
precursor complexes in the cytoplasm. Notably, the receptor p62 for
transport of ubiquitinated cargo into autophagosomes is sequestered
into these nuclear foci. Confocal immunofluorescence localization
studies revealed that proteasomes and enzymes of the ubiquitination
cascade are at the periphery of these foci, suggesting a local
enhancement of UPS activities (Fu et al., 2021).

Acute amino acid deprivation is another stressor. It triggers the
reversible formation of starvation-induced proteasome assemblies in
the nucleus (SIPAN) with poly-ubiquitinated proteins shuffled by
RAD23B. RAD23B is highly intrinsically disordered and undergoes
LLPS in the presence of crowding agents, i.e., Ficoll, dextran or
polyethylene glycol (Uriarte et al., 2021). In vivo, SIPAN is dissolved
by amino acid replenishment and contributes to stress resilience and
fitness under pathological conditions (Uriarte et al., 2021).
Following the starvation of amino acids, specifically of the
mTOR-agonistic aromatic amino acids Phe, Tyr, and Trp, the
proteasome moves from its large nuclear pool to the cytoplasm
(Livneh et al., 2023). This phenomenon mirrors early observations
of proteasome movements from the nucleus to the cytoplasm in
response to increased confluency of mammalian cells in culture
(Wojcik and DeMartino, 2003).

Proteasome condensates in the nuclear
periphery of mammalian cells

At both the nucleo- and cytoplasmic side of the nuclear envelope
(NE), the latter connected with the ER, proteasomes and substrates
were found to be condensed in intranuclear quality (INQ) and juxta-
nuclear quality (JUNQ/CytoQ) speckles, respectively. These cellular
‘junkyards’ were initially observed when proteasomal degradation
was overwhelmed through heterologous expression of model
substrates, e.g., the von Hippel Lindau protein in yeast
(Kaganovich et al., 2008; Kopito, 2000; Miller et al., 2015). JUNQ
formation is fostered by proteasome inhibition either chemically in
mammalian cells or by UPS-specific mutations in yeast. When stress
relieves, e.g., by proteasome and chaperone activation, the
‘junkyards’ dissolve (Kaganovich et al., 2008). Interestingly, INQ
and PML NB are discussed to represent counterparts in yeast and
humans, respectively, and depend on SUMO-ylation, an ubiquitin-
like modifier, which distinguishes INQ and PML NB from JUNQ
(Kumar et al., 2022). Failures in the clearance of these quality control
compartments are thought to be related to neurodegenerative
disorders and premature aging (Kopito, 2000; Miller et al., 2015).

To understand the occurrence of UPS-containing organelles on
either nucleo- or cytoplasmic side of the NE, the kinetics of UPS
transport through nuclear pores might be considered. Cryo-ET of
Chlamydomonas cells revealed 26S proteasomes tethered to the

basket of the nuclear pore, at the inner NE (Albert et al., 2017)
and in clusters at the outer NE/ER for ER-associated protein
degradation (Albert et al., 2020). As the diameter of nuclear
pores shrinks upon stress and energy depletion and dilates with
stress relief and energy replenishment (Zimmerli et al., 2021), UPS
components and poly-ubiquitinated substrates tend upon stress to
be concentrated on either side of the bottleneck formed by nuclear
pores. Thus, phase separation of proteasomes and poly-
ubiquitinated substrates could be the result of molecular
crowding due to impaired nuclear transport. In the event of
extreme stress, UPS organelles may even fragment nuclear pore
components, but this hypothesis remains to be tested (Lee
et al., 2021).

To gain an overview of the repeating patterns of UPS organelles
that harbor proteasomes or are surrounded by a proteasome shell
(Figure 2), the common theme is stress, which ultimately requires
energy management. Macromolecular machineries such as
proteasomes may simply throttle their motor once energy is
scarce. Further intriguing questions are: How many different UPS
organelles coexist? To answer this question, we will focus future
research on the analysis of proteasome configurations rather than
individual substrates within different organelles. And how many
more energy-dependent macromolecular machineries
simultaneously condense into membraneless organelles to
overcome stressful conditions (Gu et al., 2017)?

Proteasome condensates in the
cytoplasm of mammalian cells

In the cytoplasm of mammalian cells, the presence of
proteasome condensates is less explored. Instead, stress granules
are known to be cytoplasmic organelles formed by LLPS. Stress
granules contain non-translating RNA, a plethora of RNA-binding
proteins and stalled preinitiation 40S ribosomes (Protter and Parker,
2016). Again, stress relief triggers stress granule clearance and the
resumption of protein biogenesis. Stress granules do not contain
proteasomes (Jain et al., 2016) but relieve the burden on the nuclear
UPS by hostingmisfolded proteins in the cytoplasm (Xu et al., 2023).

Close to the cytoplasmic side of the NE, proteasomes are
concentrated in aggresomes, which are structurally and
functionally overlapping with JUNQs. The formation of
aggresomes, as well as of JUNQs, is induced by proteasome
inhibition and overexpression of neurotoxic proteins. Aggresomes
were initially proposed to serve as proteolytic centers (Wojcik and
DeMartino, 2003; Kaganovich et al., 2008; Kopito, 2000). How
inhibited proteasomes accelerate the proteolysis of toxic and
sometimes undegradable proteins remains a conundrum.

Cryo-ET was employed to understand the molecular
architecture of neurotoxic protein aggregates within intact
neurons. A genetic aberration in the C9orf72 gene leading to
modifications with repetitive Gly-Ala motifs is responsible for the
development of amyotrophic lateral sclerosis and frontotemporal
dementia. The hydrophobic patches of poly-Gly-Ala peptides
produced by this genetic aberration are prone to aggregation.
Cryo-ET revealed that undegradable aggregates containing poly-
Gly-Ala peptides trap 26S proteasomes in a substrate-processing
conformation, causing them to be stuck in a dead-end road of
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protein degradation and severely compromising protein
homeostasis (Guo et al., 2018).

Notably, fluorescence microscopy cannot distinguish between
proteolytically active proteasomes and proteasomes stalled in
degradation, and thus cannot differentiate between reversible
UPS organelles and irreversible UPS aggregates. This may explain
why previous histograms of centenarians’ brains showing
aggregations and inclusions of proteasomes and ubiquitin were
difficult to interpret. UPS organelles were not necessarily
associated with a medical history of neurological diseases
(Tanaka and Matsuda, 2014; Ciechanover and Kwon, 2017; Itoh
et al., 1998). As long as UPS organelles remain reversible, they confer
fitness during aging (Iriki et al., 2023).

Can we nowadays characterize reversible UPS organelles?
Unfortunately, membraneless UPS organelles fall apart during
cell disintegration, unless they are chemically fixed. They escape
biochemical characterization by conventional means. Cryo-ET
became the state-of-the-art technology to provide insight into the
structure and function of UPS organelles without interfering with
their native environment (Baumeister, 2022).

Proteasome storage granules in the
cytoplasm of yeast cells

In yeast cells transitioning from logarithmic to stationary phase, cells
start competing for nutrients. Due to glucose deprivation, cells become
less metabolically active. Thus, the ATP concentration strikingly
decreases (Laporte et al., 2011). Cell proliferation is temporarily
halted, and cells enter quiescence (De Virgilio, 2012). During the
transition to quiescence, yeast proteasomes uniformly move towards
the NE. Proteasome clusters are detected close to nuclear pores,
suggesting that proteasomes are piling up before being slowly
translocated through nuclear pores (Laporte et al., 2008). During
prolonged quiescence, which is marked by high cell density and low
metabolic activity, yeast proteasomes eventually exit the nucleus. They
then accumulate in proteasome storage granules (PSGs) in the
cytoplasm. PSGs are also induced by mitochondrial malfunctions
(Waite and Roelofs, 2022) and low pH due to deficient proton
pumping (Peters et al., 2013), suggesting that ATP availability and
further downstream metabolites of catabolic pathways influence PSG
formation. Additionally, signaling cascades involving mitogen-activated
protein kinaseMAPK, andAMP kinase, named Snf1 in yeast, strengthen
the importance of cellular energy homeostasis for PSG formation (Li
et al., 2019). Acidification converts the aqueous protoplasm into a solid-
like phase that restricts the mobility of macromolecules and fosters their
condensation (Munder et al., 2016; Parry et al., 2014).

Upon metabolic reactivation, PSGs immediately dissolve. Within a
few minutes, mature CP and RP stored in PSGs appear reassembled in
the nucleus (Laporte et al., 2008; Weberruss et al., 2013). If quiescent
yeast cells are disintegrated in buffer with ATP regeneration, intact 26S
proteasomes are obtained. If quiescent cells are disintegrated without
ATP supplement, 26S proteasomes are dissociated into RP and CP
(Weberruss et al., 2013; Gu et al., 2017; Bajorek et al., 2003). Which
buffer will mimic the physiological environment of PSGs? Only in the
presence of a chemical cross-linker could PSGs be isolated as intact
organelles (Gu et al., 2017).Mass spectrometry and biochemical analysis
of cross-linked PSGs revealed a homogeneous composition of

proteasomal subunits but no poly-ubiquitinated substrates,
suggesting that PSGs are not active in the degradation of poly-
ubiquitinated proteins. High-throughput screens using the collection
of yeast null mutants suggested that proteasomal deubiquitination
activities (Rpn11, Ubp6) and a threshold level of free ubiquitin
promote PSG formation (Gu et al., 2017). This contrasts with the
various UPS organelles containing poly-ubiquitinated substrates as
mentioned above. Notably, rpn11-m1 and ubp6Δ mutants do not
form PSGs (Gu et al., 2017; Saunier et al., 2013). Due to the RP’s
deficient deubiquitinase activity in rpn11-m1, the Cullin-RING
E3 ligase, accounting for one-fifth of the poly-ubiquitination of
proteasomal substrates, remains activated by modification through
the ubiquitin-like protein NEDD8/Rub1 (Bramasole et al., 2019).
Thus, the burden of poly-ubiquitinated substrates upon entry into
quiescence might be incompatible with PSG formation, since the
negative feedback loop of reducing the pool of poly-ubiquitinated
substrates by the RP is disturbed.

The reversibility of PSGs remains during prolonged quiescence
(Saunier et al., 2013; vanDeventer et al., 2015). Furthermore, PSGs seem
to protect proteasome assemblies from autophagy (Marshall and
Vierstra, 2019; Li and Hochstrasser, 2020). The question is whether
LLPS is the underlying mechanism of PSG formation. Miscellaneous
protein composition is a typical feature of LLPS organelles. However,
mass spectrometry of cross-linked PSGs and stochastic optical
reconstruction microscopy suggested dense packing of proteasomes
within PSGs (Gu et al., 2017). Will few proteasomal subunits with
intrinsically disordered regions support LLPS-driven PSG formation
(Aufderheide et al., 2015)? Ubiquitin is a key component of the UPS,
and mono-ubiquitin is required for PSG formation. Mono-ubiquitin
disruptsmultivalent interactions andmodulates LLPS (Dao et al., 2018).
In line with this,mono-ubiquitin is essential for the disassembly of stress
granules in cells recovering from stress (Franzmann and Alberti, 2021).
It will be exciting to learn about the structure of PSG-related organelles
in comparison with proteasome condensates containing poly-
ubiquitinated proteins.

Our review started with a paradigm shift in protein homeostasis
based on cellular energy homeostasis: the hydrolysis of peptide
bonds of short-lived proteins is achieved by ATP-consuming
ubiquitination and proteasomal proteolysis in cells with high
metabolic activity. Protein homeostasis is severely impacted by
metabolic imbalances that are associated with aging and diseases
such as diabetes, obesity, cancer, and neurodegeneration
(Ciechanover and Kwon, 2017). The master regulator of
metabolic stress and proteasome activity is the TOR complex1
(Rousseau and Bertolotti, 2018). Not only adenosine nucleotides
but also nicotinamide adenine dinucleotide (NAD+) are essential as
coenzymes in a myriad of bioenergetic pathways. Cells with
balanced metabolism are well prepared for energy shortages and
the systemic decline of coenzymes during aging and stress, to protect
the UPS from autophagy and to regulate protein degradation within
UPS condensates (Marshall and Vierstra, 2019; Li et al., 2019;
Karmon and Ben Aroya, 2019).
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