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Pyroptosis, a form of programmed cell death induced by inflammasome with a
mechanism distinct from that of apoptosis, occurs via one of the three pathway
types: classical, non-classical, and granzyme A/B-dependent pyroptosis
pathways. Pyroptosis is implicated in various diseases, notably exhibiting a
dual role in liver diseases. It facilitates the clearance of damaged hepatocytes,
preventing secondary injury, and triggers immune responses to eliminate
pathogens and damaged cells. Conversely, excessive pyroptosis intensifies
inflammatory responses, exacerbates hepatocyte damage and promotes the
activation and proliferation of hepatic stellate cells, accelerating liver fibrosis.
Furthermore, by sustaining an inflammatory state, impacts the survival and
proliferation of cancer cells. This review comprehensively summarizes the dual role
of pyroptosis in liver diseases and its therapeutic strategies, offering new theoretical
foundations and practical guidance for preventing and treating of liver diseases.
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1 Introduction

Liver disease is a major global health challenge, causing up to two million deaths
annually (Devarbhavi et al., 2023). The liver is a highly dynamic metabolic organ crucial for
plasma protein synthesis, gluconeogenesis, glycogen storage, cholesterol metabolism, bile
acid synthesis, drug/exogenous metabolism, and detoxification (Qian et al., 2021).
Maintaining normal liver structure and function requires balancing between cell
generation and death across liver tissues. Excessive cell death usually disrupts liver
structure and function (Michalopoulos and Bhushan, 2021).

Pyroptosis, an atypical form of programmed cell death, plays a substantial role in the
pathogenesis of various liver diseases, such as viral hepatitis, alcoholic liver disease (ALD),
metabolic dysfunction-associated steatohepatitis (MASH), drug-induced liver injury
(DILI), and hepatocellular carcinoma (HCC). It is mediated by activated cysteine
asparaginase (caspase) and gasdermin (GSDM) family proteins. Pyroptosis is
characterized by cellular swelling, perforation, membrane rupture, and an intact
nucleus, accompanied by the release of inflammatory factors.

Under normal conditions, pyroptosis is a natural immune response that removes
pathogens and defective cells from the body. However, excessive activation of cellular
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pyroptosis may aggravate inflammation, causing cell death and
tissue damage. Thus, pyroptosis acts as a double-edged sword
and plays various roles in various diseases, particularly liver
diseases, where its role has become increasingly prominent,
attracting widespread attention from the scientific community.
This article reviews the dual role and underlying mechanisms of
pyroptosis in liver diseases, providing references and insights for
researchers and clinicians in related fields with the hope of
advancing the prevention and treatment of liver diseases.

2 Pyroptosis

2.1 Definitions and history of pyroptosis

Pyroptosis was first identified in 1986 by Friedlander et al., who
discovered that exposing primary mouse macrophages to anthrax
lethal toxin led to cell death and a rapid expulsion of cellular
contents (Friedlander, 1986). This finding initiated the
exploration of intricate mechanisms underlying this unique form
of cell death. Morphological changes consistent with pyroptosis were
first observed in macrophages infected with Gram-negative bacteria
in 1992; however, this was mistaken for another form of apoptosis
(Fink and Cookson, 2005). In 2001, Boise and Collins named it
“pyroptosis,” from the Greek roots pyro (fire/heat) and ptosis
(falling); thus, pyroptosis is a form of programmed inflammatory
cell death (D’Souza and Heitman, 2001).

Pyroptosis, analogous to apoptosis, represents a programmed
cell death mechanism that encompasses deoxyribonucleic acid
(DNA) fragmentation and chromatin nuclear consolidation,
ultimately leading to cell death (Kurokawa and Kornbluth, 2009;
Fadeel and Orrenius, 2005). Unlike apoptosis, pyroptosis is
specifically mediated by the activation of caspase-1, which elicits
an inflammatory response. During this process, the N-terminal
pore-forming domain of the GSDM protein oligomerizes,
forming pores with a diameter of 10–14 nm in the cell
membrane. These pores result in the loss of integrity, enabling
the secretion of inflammatory factors such as interleukin 1β/
interleukin 18 (IL-1β/IL-18) and caspase-1, which have diameters
of 4.5 and 7.5 nm, respectively (Ding et al., 2016a); this secretion
amplifies the inflammatory response, ultimately causing membrane
rupture and cell lysis.

2.2 Molecular mechanisms of pyroptosis

The caspase family comprises cysteine proteases that recognize
the xxxD sequence of a substrate and cleave the aspartic acid
residues, activating the substrate protein. Without an upstream
signal, caspases exist in the cytoplasm as inactive zymogens;
however, upon receiving an upstream signal, they are activated
by self-shearing to recognize and cleave substrates. Based on the
classical theory, cell death is primarily caused by
inflammasomes—multiprotein complexes that activate caspases to
elicit diverse physiological reactions (Wang et al., 2020a). These
inflammasomes, comprising fundamental components, protect host
cells from endogenous threat signals and invading pathogens. The
mechanisms underlying inflammasome-mediated pyroptosis are

traditionally dichotomized into classical (activated by caspase-1)
and non-classical (activated by caspase-11 in mice or caspase-4/5 in
humans) pathways.

2.2.1 Classical inflammasome pathway
The classical inflammasome pathway was first identified in

macrophages infected with Salmonella as a caspase-1-dependent
cell death form (Fink and Cookson, 2006; Hersh et al., 1999).
Caspase-1, a vital protein involved in the classical pyroptosis
pathway, is activated by the inflammasome, a multimeric
complex that is a crucial defense mechanism against infection
and an essential component of the natural immune system.

Inflammasomes primarily comprise receptor proteins,
apoptosis-associated speak-like proteins containing caspase
recruitment domain (CARD) (ASC), and cystatin precursor (pro-
caspase-1). Receptor proteins include Toll-like receptor 4 (TLR4) (a
transmembrane surface receptor), NOD-like receptor family pyrin
domain containing 3 (NLRP3), NOD-like receptor family pyrin
domain containing 4 (NLRP4), NOD-like receptor family CARD
domain-containing protein 4 (NLRC4) of the NOD-like receptors
(NLR) family, Absent in Melanoma 2 (AIM2) of the interferon
(IFN)-inducible p200-protein (HIN200) family, and pyrin of the
Tripartite motif-containing protein (TRIM) family (Martinon et al.,
2002). Most receptor proteins are specifically activated; NLRP1 and
NLRPC4 respond only to pathogen-associated molecular patterns
(PAMPs), such as cytosolic acyl dipeptides and bacterial flagellin;
AIM2 is activated by endogenous pathogen-producing double-
stranded DNA; pyrin is activated by pathogenic toxins, such as
cytotoxic TcdB; NLRP3 is activated by several factors, encompassing
both intracellular stimuli such as reactive oxygen species (ROS),
mitochondrial dysfunction, and lysosomal rupture, as well as
extracellular signals, like adenosine triphosphate (ATP)-mediated
activation of the purinergic receptor type 2 X7 (P2X7), K+ efflux,
and Ca2+ influx (Toldo and Abbate, 2018). Furthermore, certain
pathogens like Staphylococcus aureus and other factors like asbestos
(Dostert et al., 2008) and ultraviolet radiation (Feldmeyer et al.,
2007) can activate NLRP3 inflammasome.

In response to PAMPs and danger-associated molecular
patterns (DAMPs), cytosolic pattern recognition receptors (PRRs,
also known as inflammasome sensors) detect stimuli and assemble
into inflammasomes through their interactions with ASC and pro-
caspase-1. ASC acts as a connector protein, featuring a pyrin domain
(PYD) at its N-terminus and a CARD domain at its C-terminus. The
PYD domain activates upstream PRRs and prompts the self-
aggregation of ASC into dimers (Martinon and Tschopp, 2007).
Subsequently, the CARD domain recruits pro-caspase-1, facilitating
its binding to the CARD domain of pro-caspase-1. This interaction
induces the self-cleavage and activation of adjacent pro-caspase-
1 molecules, transforming them from their zymogen state into
proteolytic enzymes (Lamkanfi and Dixit, 2014). Activated
caspase-1 cleaves the precursor proteins, pro-IL-1β and pro-IL-
18, converting them into the mature inflammatory cytokines, IL-1β
and IL-18, respectively, which are secreted extracellularly to elicit
inflammatory responses. In addition, activated caspase-1 cleaves
GSDMD, a crucial component of the GSDM protein family and a
key protein in pyroptosis, characterized by the presence of cytotoxic
N- and C-terminal inhibitory domains linked by a flexible connector
(Zou et al., 2021). Upon cleaving caspase-1 at a specific site within its
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structural domains, GSDMD oligomerizes, producing a 31-kDa
amino-terminal fragment (GSDMD-N). This fragment interacts
with membrane lipids such as phosphatidylinositol, phosphatidic
acid, and phosphatidylserine on the inner leaflet of cell membranes.
Subsequently, GSDMD-N inserts into the lipid bilayer, forming
oligomeric pores with an internal diameter ranging from 10 to
14 nm, enabling the release of inflammatory factors, disrupting
cellular ion homeostasis, and eventually inducing pyroptosis
(Jorquera et al., 2021).

2.2.2 Non-classical pathway
The non-classical pyroptosis pathway involves the direct

recognition and binding of lipopolysaccharide (LPS) in the
cytoplasm to the N-terminal CARD structural domain of
caspase-4/5/11, leading to their activation. LPS, a major
component of Gram-negative bacteria, is recognized by the
TLR4/MD2/CD14 receptor complex following bacterial entry into
the cytoplasm (Ding et al., 2016b; Pilla et al., 2014), which
subsequently activates caspase-4/5/11. Next, activated caspase-4/
5/11 cleaves GSDMD to generate GSDMD-N, which oligomerizes
and forms pores in the cell membrane (Aglietti et al., 2016). This
causes K+ efflux—a signal that activates NLRP3. Although caspase-
4/5/11 cannot cleave pro-IL-18/pro-IL-1β, NLRP3 activation
triggers the NLRP3/caspase-1 pathway, driving the maturation
and secretion of these cytokines through the GSDMD-N-formed
membrane channels, inducing pyroptosis (Shi et al., 2017). Unlike
the classical pathway, only caspase-1 cleaves IL-1β and IL-18,
whereas other inflammatory caspases handle GSDMD cleavage.

2.2.3 Granzyme A/B-dependent cellular
pyroptosis pathway

Granzymes (GZM), a class of homologous serine proteases that
share structural and functional similarities, are predominantly
expressed in cytotoxic T lymphocytes (CTLs) and natural killer
(NK) cells. These enzymes induce cell death by cleaving specific
substrates within the target cells. Members of the human GZM
family include GZMA, GZMB, GZMH, GZMK, and GZMM. GZM-
induced cell death as apoptosis (Hou et al., 2008; Martinvalet et al.,
2005). However, a recent study revealed that NK cells and CTLs can
induce pyroptosis in GSDMB-expressing cells via cleaving GSDMB
by GZMA (Zhou et al., 2020a). Another study showed that CAR-T
cells trigger rapid caspase-3 activation in target cells via releasing
GZMB, causing caspase-3/GSDME-mediated pyroptosis (Liu et al.,
2020a). In addition, GZMB can directly cleave GSDME, inducing
pyroptosis. This process enhances the antitumor immune response
and effectively suppresses tumor growth (Wang et al., 2017).

2.3 Inflammasomes in pyroptosis

2.3.1 NLRP3 inflammasome
The NLRP3 inflammasome is the most well-studied, comprising

NLRP3, ASC, and pro-caspase-1, which are coupled through protein
interactions. Activation of the NLRP3 inflammasome is associated
with various diseases, such as metabolic disorders, multiple sclerosis,
and other autoimmune diseases.

NLRP3 inflammasome activation occurs in two signaling steps,
namely, initiation and activation. First, exposure to PAMP/DAMP

phosphorylates TLR and activates nuclear factor kappa B (NF-κB)
signaling, promoting nuclear translocation of NLRP3, pro-IL-1β,
and pro-IL-18 (Bauernfeind et al., 2009). This is the first pre-
processing step in activating the NLRP3 inflammasome.
Subsequently, intracellular and extracellular activation signals
activate NLRP3 inflammasome by promoting the oligomerization
of inactive NLRP3, ASC, and pro-caspase-1. The
NLRP3 inflammasome activation signals confirmed by current
studies include.

2.3.1.1 Intracellular and extracellular ionic fluxes
The flow of intracellular and extracellular ions is a factor in

NLRP3 inflammasome activation, including K+ efflux, Cl− efflux,
and altered Ca2+ signaling. The roles of various ionic fluxes are
as follows:

• K+ efflux: As a major upstream factor in NLRP3 activation and
inflammasome formation, K+ efflux occurs in response to
several NLRP3 activators. For example, extracellular ATP
activates NLRP3 inflammasome by opening the two-pore
structural domains of P2X7 channels and TWIK2 to trigger
K+ efflux (Rabie et al., 2009; Mariathasan et al., 2006). In
addition, K+ efflux is induced by Nigerian bacteriocins, short
mycopeptides, and pore-forming toxins, which permeabilize
the plasma membrane during inflammasome activation
(Franchi et al., 2014). Other activators of the
NLRP3 inflammasome, including cholesterol crystals and
silica, also trigger K+ efflux (Rajamaki et al., 2010).

• Cl− efflux: Cl− channels, including volume-regulated anion
channels and chloride-gated intracellular channels
(CLICs), regulate NLRP3 inflammasome activation (Tang
et al., 2017; Compan et al., 2012; Domingo-Fernandez et al.,
2017). During mitochondrial dysfunction, CLICs
translocate to the plasma membrane, triggering Cl−

efflux, which enhances NLRP3-Nek7 complex formation.
However, Cl− efflux alone mediates only ASC binding and
oligomerization, which is insufficient for the assembly of
functional inflammasome, whereas K+ efflux is crucial for
the downstream cleavage of caspase-1 and the release of
IL-1β.

• Ca2+ flow: Artificial removal of intracellular and extracellular
Ca2+ stores significantly inhibits ASC oligomerization during
NLRP3 inflammasome and pro-caspase-1 activation (Franchi
et al., 2012). Major intracellular Ca2+ sources include the
endoplasmic reticulum, which releases Ca2+ during stress
into the cytoplasm to activate NLRP3 (Wang et al., 2020b).
Another source of intracellular Ca2+ is lysosomes. Lysosomal
damage or dysfunction, a crucial mechanism for activating
NLRP3 inflammasome, is often caused by phagocytosis of
endogenous particles, such as monosodium urate crystals,
cholesterol lipid crystals, deoxy sphingomyelin, and
amyloid-β aggregates, as well as exogenous particles,
including silica, asbestos, and alum. Phagocytosed crystals
accumulate in the lysosomal compartment, causing
increased lysosomal acidification, swelling, membrane
integrity loss, and rupture to release histone B, a lysosomal
enzyme that activates NLRP3 inflammasome (Hornung et al.,
2008; Chu et al., 2009; Sheedy et al., 2013).
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2.3.1.2 Mitochondria and ROS
Cytoplasmic ROS, generated by reduced nicotinamide adenine

dinucleotide phosphate oxidase, is a common activator of the
NLRP3 inflammasome, whereas thioredoxin-interacting protein
(TXNIP) is an NLRP3 ligand, and under normal conditions, their
activity is inhibited when they interact. Physiological ROS levels
maintain normal cellular signaling and homeostasis; however,
elevated ROS levels disrupt this function, allowing TXNIP
binding to NLRP3 and its activation primarily through the
leucine-rich repeat (LRR) structural domain (Zhou et al., 2010).
Similarly, ROS production initiates signals that activate
NLRP3 inflammasome through ROS-dependent transcription
factor NF-κB and LPS-mediated deubiquitination of NLRP3
(Juliana et al., 2012).

Mitochondrial DNA (mtDNA), a potent immunostimulant
comprising a 16.5-kb double-stranded circular molecule, is
highly sensitive to oxidative damage. mtDNA released from
the cytoplasm triggers inflammatory responses and responds
to NLRP3 activators such as ATP, hexokinase, and Nigerian
mycobacteria. Oxidized mtDNA (ox-DNA) directly activates the
NLRP3 inflammatory vesicle (Shimada et al., 2012).
Furthermore, mitochondrial ROS (mtROS) production is
among the first factors believed to activate inflammasome
(Heid et al., 2013). Elevated metabolic rates, hypoxic
conditions, and membrane damage are among the diverse
stress factors that significantly enhance mtROS generation
(Sheu, 2019). NLRX1, a conserved NLR protein localized in
the mitochondria, promotes mtROS production.
Bisphosphatidyl glycerol, a specific phospholipid in the inner
mitochondrial membrane, translocates to the outer membrane
to bind to the LRRs of NLRP3, activating it. Mitochondria-
associated regulatory proteins have also been implicated in
NLRP3 inflammasome activation; however, their mechanism
of action remains unclear. Both PAMPs and DAMPs
stimulate ROS production, inducing the NLRP3
inflammasome assembly.

2.3.2 AIM2 inflammasome
AIM2 is a cytoplasmic protein discovered in 2010 to detect DNA

viruses. As an intracytoplasmic DNA receptor, AIM2 comprises an
N-terminal pyrin domain with double-stranded (ds) DNA-
recognition capability (independent of binding to a specific
sequence) and a C-terminal hematopoietic interferon-inducible
nuclear (HIN) that recognizes dsDNA (independent of binding
to specific sequences). For AIM2 to oligomerize, it must bind at
least 80 bp of dsDNA.

Under steady-state conditions, the intramolecular complex
formed by the PYD and HIN structural domains of
AIM2 remains bound. The PYD, a folded structure with six α-
helices belonging to the death domain superfamily, binds
specifically to other proteins through PYD-PYD interactions.
AIM2 recruits and binds to ASC through this interaction,
initiating inflammasome assembly (Lee et al., 2021). When
dsDNA from microbial pathogens or damaged host cells bind
to the C-terminal HIN structural domain of AIM2, it triggers
inflammasome assembly and activates caspase-1, inducing
pyroptosis. In addition, the PYD of AIM2 can self-oligomerize
to induce its activation (Lu et al., 2014).

3 Liver disease and pyroptosis

3.1 Viral hepatitis

Viral hepatitis is the most prevalent chronic viral infectious
disease globally, characterized by fatal liver inflammation caused by
hepatitis virus infection of hepatocytes. Clinical symptoms include
anorexia, nausea, upper abdominal discomfort, pain in the liver area,
and fatigue. Hepatitis B virus (HBV) (Robinson et al., 2023) and
Hepatitis C virus (HCV) (Mohd Hanafiah et al., 2013) are the most
common causative agents of liver infections, with an infection rate
reaching 90%.

The role of pyroptosis in viral infections remains unclear.
Pyroptosis is a pivotal innate immune response within the body,
playing a crucial role in counteracting infections and responding to
endogenous danger signals. Regarding viral hepatitis, pyroptosis
functions as an antiviral defense mechanism by triggering the death
of hepatocytes infected with the virus, restricting viral replication
and impeding its spread. Over time, HBV has evolved mechanisms
to evade the host immune response, and the inflammasome plays a
crucial role in suppressing HBV infection in vivo (Watashi et al.,
2013). Chen et al. detected activated NLRP3 inflammasomes in
human peripheral blood mononuclear cells (PBMCs) isolated from
patients with acute hepatitis B (Chen et al., 2018a). Weinberger et al.
demonstrated that the NLRP3 inflammasome elicits an immune
response to the hepatitis B surface antigen (HBsAg) vaccine
(Weinberger et al., 2018). In addition, NLRP3-mediated pro-
inflammatory cytokine IL-1β significantly inhibits HBV infection
(Yu et al., 2017). These findings emphasize the central role of the
NLRP3 inflammasome in antiviral defense.

Human hepatocytes can increase IL-18 production in response
to the hepatitis B virus via upregulating AIM2 inflammasome
formation (Pan et al., 2016). Conversely, HBV infection can
exploit the regulation of pyroptosis-related inflammasome
activation to evade the immune system. HBV-encoded proteins,
such as HBp, HBx, HBsAg, and HBeAg, can promote persistent viral
infection and immunosuppression by inhibiting innate immune
signaling pathways (Bertoletti and Ferrari, 2013). Yu et al. found
that HBV suppressed LPS-induced NLRP3 activation in a persistent
infection model (Yu et al., 2017). HBeAg partially mediated this
inhibitory effect by inhibiting the NF-κB signaling pathway and
reducing ROS production. However, Xie et al. discovered that HBx, a
key factor in HBV-induced hepatitis, can activate the
NLRP3 inflammasome in hepatocytes, increasing mtROS
production and promoting pyroptosis (Xie et al., 2020). In
addition, HBcAg enhances LPS-induced NLRP3 activation and
IL-1β release in HepG2 cells by promoting NF-κB
phosphorylation (Ding et al., 2019a). In summary,
NLRP3 regulation in HBV infection involves a complex
mechanism, with HBx and HBcAg promoting activation and
HBeAg inhibiting it (Figure 1).

HCV is a major cause of chronic liver disease. In 2016,
researchers first observed pyroptosis in Huh-7.5 cells infected
with HCV (JFH-1T) (Kofahi et al., 2016). Further experiments by
Kofahi et al. revealed that pyroptosis occurred not only in infected
cells and neighboring uninfected cells (Kofahi et al., 2016). In the
experiment, the caspase-1-specific inhibitor Z-WEHD-FMK was
utilized to treat HCV-infected and control cells. When caspase-1
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activity was effectively inhibited, over half of the cells originally
destined to die due to HCV infection survived. Additionally, IL-1β
was not detected in the supernatants of the infected cells (Kofahi
et al., 2016). This discovery confirmed the involvement of pyroptosis
in HCV infection. HCV infection is associated with
NLRP3 activation, and HCV genomic ribonucleic acid (RNA)
reportedly activates NLRP3 in human myeloid cells (Chen et al.,
2014). HCV infection of hepatocytes also activates NLRP3, and its
over-activation can be inhibited via deubiquitination
(Ramachandran et al., 2021a). However, Chen et al. (2014) found
that HCV particles do not significantly activate NLRP3 in Huh7 cells
and THP-1-derived macrophages (Chen et al., 2014). Negash et al.
revealed that the HCV core protein activates NLRP3 via
phospholipase C (PLC)-related calcium signaling in liver
macrophages, driving IL-1β release and inflammation (Negash
et al., 2019a).

HCV glycoprotein can trigger NLRP3 activation and pyroptosis
in THP-1 macrophages. Both HCV RNA and proteins can activate
NLRP3 under specific conditions, exerting substantial effects on the
infection and pathological processes. In addition, HCV-infected
cells often exhibit organelle rearrangement (Egger et al., 2002),
which may be associated with pyroptosis. Under homeostatic
conditions, ASC and IRGM co-localize in the Golgi apparatus.
However, HCV infection causes ASC to dissociate from IRGM
and the Golgi apparatus and bind to NLRP3. NLRP3 knockdown
using small interfering RNA (siRNA) results in reduced Golgi

fragmentation, whereas ASC knockdown using siRNA alters the
Golgi structure in both control and infected cells and reduces IRGM
localization within the Golgi apparatus (Daussy et al., 2021). These
findings suggest that ASC regulates IRGM upstream in the
pyroptosis pathway and controls the Golgi apparatus. Aggan
et al. found elevated serum NLRP3 levels in patients with HCV,
which were associated with liver pathological changes, proposing
serum NLRP3 levels as a biomarker for hepatic necroinflammatory
changes, fibrosis, and steatosis (Aggan et al., 2022). In summary,
HCV regulates NLRP3 through multiple pathways, where HCV
RNA stimulates TLR7 in endosomes and initiates NLRP3 gene
transcription, whereas HCV core protein and virus-induced K+

efflux activate NLRP3 inflammasome. These processes, receptors,
and complexes play important roles in infection-related diseases and
require further investigation.

Currently, interventions targeting pyroptosis for treating viral
hepatitis are in the early stages. ATOH8, a basic helix-loop-helix
(bHLH) superfamily transcription factor, inhibits hepatocyte
pyroptosis and aids HBV immune evasion to interfere with the
host’s innate immune system. However, the specific mechanism of
its inhibitory action on pyroptosis requires further investigation (Liu
et al., 2023). IDN-6556 (Pockros et al., 2007) and PF-03491390
(Shiffman et al., 2010) are potent caspase inhibitors and effective
therapeutic agents for patients with HCV. The innate immune
restriction factor tetherin (also known as bone marrow stromal
cell antigen 2, BST-2), a type II transmembrane protein induced by

FIGURE 1
Proposed mechanisms of NLRP3 inflammasome activation and regulation in HBV infection. HBcAg and HBx activate NLRP3 via NF-κB
phosphorylation and mtROS pathways, respectively. HBeAg inhibits NLRP3 inflammasome activation via NF-κB signaling pathway and ROS suppression.
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type I interferons, strongly inhibits HBV-induced pyroptosis. BST-2
may inhibit the HBV progression by blocking the AIM2-dependent
signaling pathway. However, further studies are needed to clarify
this mechanism (Miyakawa et al., 2015).

3.2 Autoimmune hepatitis (AIH)

AIH is a chronic progressive inflammatory liver disease
mediated by autoimmune responses and accounts for 10%–

20% of chronic hepatitis cases globally, with higher incidence
in Europe and North America. It involves an autoimmune
response where the immune system mistakenly attacks liver
tissues, leading to inflammation and damage (Czaja, 2022).
Pyroptosis mediated by inflammasomes is crucial in
determining the severity of inflammatory responses and liver
damage in AIH.

Hepatocyte death is crucial in AIH progression. In AIH,
pyroptosis may lead to the lysis of hepatocytes and the release of
inflammatory mediators, which subsequently attract more immune
cells to infiltrate the liver, forming a sustained inflammatory cycle.
Concanavalin A (ConA)-induced AIH mediates liver injury
characterized by T lymphocyte infiltration into the liver, a
process triggered by the activation of NK cells and macrophages,
leading to cell death and liver damage. Wang et al. reported that
pyroptosis is the primary cell death mechanism in mice with AIH,
and GSDMD knockout nearly eliminates liver inflammation in
mice; this highlights GSDMD-dependent pyroptosis as a key
hepatocyte death pathway in AIH (Wang et al., 2022a).
Pyroptosis may exacerbate the imbalance of immune regulation
by affecting the activation and function of immune cells. This
discovery opens new perspectives on the pathogenesis and
treatment of AIH.

In addition, the NLRP3 inflammasome plays a substantial role in
ConA-induced hepatitis (Guan et al., 2022). In AIH, the activation of
inflammasomes is a major driver of exacerbated inflammation and
liver fibrosis damage, primarily through initiating pyroptosis and
releasing abundant cytokines. This process constitutes a core and
crucial event in AIH progression (Beringer and Miossec, 2018). The
activation mechanism of NLRP3 may be associated with ROS
production in the liver. Hepatitis virus strain-3, heat stress, and
CdSe/ZnS quantum dots activate NLRP3 inflammasome in
hepatocytes by inducing mtROS (Guo et al., 2015; Lu et al., 2016;
Geng et al., 2015). ConA increases ROS production and decreases
cellular viability (Zhuang et al., 2016). Furthermore, recombinant
human IL-1 receptor antagonists (rHIL-1RAs) alleviate liver
inflammation and reduce NLRP3, caspase-1, and IL-1β
production in hepatocytes by scavenging ROS and inhibiting
pyroptosis (Luan et al., 2018), suggesting that the
NLRP3 inflammasome may be a potential therapeutic target for
AIH. Notably, although the role of pyroptosis in AIH is increasingly
recognized, its specific mechanisms remain incompletely
understood. Future studies need to explore the intrinsic
connection between pyroptosis and AIH, further to provide new
theoretical foundations and practical guidance for preventing and
treating the disease.

AIH treatment primarily involves immunoregulatory therapeutic
agents, such as glucocorticoids and immunosuppressants. Although

immunosuppressive glucocorticoids (for example, prednisone) reduce
inflammation, they can have severe side effects. Therefore, using
drugs that target pyroptosis and reduce inflammation may
represent a novel approach to treating AIH. Dimethyl fumarate
(DMF) is a clinically approved fumaric acid derivative used to treat
some inflammatory diseases. It reduces mitochondrial damage and
mtROS production and enhances the PKA signaling pathway,
increasing NLRP3 phosphorylation on Ser/Thr residues at PKA-
specific sites and inhibiting NLRP3 inflammasome activation (Shi
et al., 2022). DMF inactivates GSDMD through succination and
inhibits pyroptosis (Humphries et al., 2020). In addition, DMF can
inhibit ASC complex assembly and caspase-1 production to
prevent GSDMD-mediated pyroptosis (Shi et al., 2022).
Therefore, using DMF could be an effective therapeutic
approach for AIH.

Purple sweet potato polysaccharide significantly improves Con
A-induced hepatitis by regulating the P2X7R/NLRP3 pathway and
reducing oxidative stress (Ding and Fan, 2024). Cucurbitacin E
glucoside (CuE), a tetracyclic triterpene glycoside isolated from
Cucurbitaceae plants, inhibits oxidative stress by enhancing the
SIRT1/Nrf2/HO-1 pathway while suppressing NF-κB/
NLRP3 signaling, demonstrating considerable liver protective
effects against Con A-induced AIH (Mohamed et al., 2022).
Phenethyl isothiocyanate (PEITC), an isothiocyanate compound
derived from secondary metabolites of cruciferous plants, inhibits
NLRP3 expression and caspase-1 cleavage in vivo and in vitro. It
directly interacts with cysteine 191 of GSDMD to inhibit hepatocyte
pyroptosis, positioning PEITC as a new candidate drug for
preventing and treating Con A-induced liver injury (Wang et al.,
2022b). As mentioned previously, rhIL-1RAs reduce the severity of
ConA-induced hepatitis by eliminating ROS, inhibiting
NLRP3 inflammasome assembly and activation, preventing
pyroptosis, and competing with IL-1β (Wang et al., 2016a). Bone
marrow mesenchymal stem cell derived exosomes bind to the
3′UTR of the NLRP3 messenger RNA (mRNA) through
exosomal miR-223, which interferes with protein translation.
This inhibits NLRP3 inflammasome activation, reversing
hepatocyte injury in the S100- or LPS/ATP-induced mouse AIH
model (Chen et al., 2018b).

3.3 Alcoholic hepatitis (ALD)

Alcoholic hepatitis (ALD) is caused by long-term excessive
alcohol consumption. The primary cause of ALD is the direct
toxic effects of ethanol and acetaldehyde on the liver. Chronic
alcohol abuse can worsen hepatotoxicity due to commonly used
medications, certain vitamins, environmental toxins, and
carcinogens (Singal et al., 2018). ALD has a high mortality rate,
with no effective treatment currently available.

Hepatocyte death following alcohol consumption is a key
mechanism in ALD pathogenesis. Several types of cell death,
including pyroptosis, occur in cultured hepatocytes and livers of
alcohol-exposed rodents, as well as those of patients with ALD
(Wang et al., 2016b). Caspase-11 and GSDMD are unregulated in
alcohol-exposed mice, with caspase-1 unchanged. In human ALD
liver samples, caspase-4 and GSDMD were activated. The caspase-
11 knockout mice exhibited reduced GSDMD activation, hepatocyte
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death, and liver bacterial load, whereas GSDMD overexpression
increased hepatocyte death and infiltration of polymorphonuclear
leukocytes (PMNs) in the liver. These data support the role of
caspase-11/GSDMD in hepatocyte death and PMN infiltration.

Elevated serum IL-18 levels in ALD mouse models and IL-18
knockout mice are proved to be associated with increased liver
bacterial load and GSDMD-mediated hepatocyte pyroptosis
(Khanova et al., 2018). These results support the role and
significance of the caspase-11/4-GSDMD atypical pyroptosis in
ALD pathogenesis. Mitochondrial dysfunction plays a crucial role
in alcohol-induced hepatocyte regeneration and liver injury.
GSDMD downregulation alleviates alcohol-induced pyroptosis
and liver injury in ALD mice by improving hepatocyte
mitochondrial dysfunction and excessive ROS release (Xie et al.,
2024). In addition, studies have confirmed the activation and
mechanism of the NLRP3 inflammasome in mice with ALD.
Alcohol-induced TXNIP overexpression promotes
NLRP3 inflammasome activation and pyroptosis. The primary
mechanism involves TXNIP directly interacting with the
NLRP3 inflammasome to facilitate the formation of oligomeric
complexes (NLRP3/ASC/caspase-1) (Heo et al., 2019),aligning
with the findings on activated caspase-1 in hepatocytes of
patients with ALD. TXNIP deficiency enhances cell proliferation
and resistance to cell death. Furthermore, transfection with miR-
148a improves alcohol-induced pyroptosis, suggesting potential
therapeutic targets for ALD. Selenium-rich spirulina tablets
improve alcohol-induced liver injury by reducing caspase-1-
induced pyroptosis (Fu et al., 2018). These data indicate that
pyroptosis stimulates and maintains the ALD inflammatory cycle.

Suppressing ROS production can inhibit NLRP3 inflammasome
activation and subsequent cellular inflammation. Antioxidant drugs
may be potential agents for treating ALD. Quercetin can reduce ROS
production, promoting heme oxygenase-1 (HO-1) expression and
alleviating acute alcohol-induced liver injury in mice. This, in turn,
inhibits NLRP3 inflammasome activation. Therefore, quercetin can
counteract alcohol-induced liver injury (Zhao et al., 2022). Oroxylin
A, the main active component of Scutellaria baicalensis, exhibits
multiple pharmacological activities such as anti-inflammatory,
antitumor, and vascular protective effects. By reducing ROS
accumulation, oroxylin A inhibits NLRP3 inflammasome
activation and protects hepatocytes from pyroptosis in alcohol-
fed mice via promoting PGC-1α nuclear translocation, increasing
Mfn2 transcription, and stabilizing mitochondria (Kai et al., 2020).
Diallyl trisulfide, the major organosulfur compound in garlic,
reduces the accumulation of intracellular ROS by upregulating
hydrogen sulfide levels and inhibiting alcohol-induced
NLRP3 inflammasome and GSDMD activation, as well as
pyroptosis (Zhu et al., 2022). Sinapic acid (SA, 4-hydroxy-3,5-
dimethoxycinnamic acid) is a phenolic acid compound found in
various oilseeds, cereals, vegetables, and berries. Bromodomain-
containing protein 4 (BRD4) can be considered a therapeutic
target for many diseases associated with oxidative stress and
pyroptosis. SA treatment significantly abolishes the upregulation
of key proteins in the classical pyroptosis pathway in the livers of
BRD4 and alcohol-fed mice while enhancing the antioxidant
response (Chu et al., 2021).

Dihydroquercetin (TAX), the most abundant dihydroflavonol
present in onions, milk thistle, and Douglas fir bark, affects lipid

synthesis and oxidation by modulating AMPK activity and reducing
alcohol-induced lipid accumulation in mouse livers. TAX inhibits
activation of the alcohol-induced P2X7R-Caspase-1-
NLRP3 inflammasome and is a potential candidate for treating
alcoholic fatty liver disease (Zhang et al., 2018). Cenicriviroc, a novel
oral dual CCR2/CCR5 antagonist, prevents alcohol-induced
pyroptosis and improves steatohepatitis and liver injury (Ambade
et al., 2019). Disulfiram, an alcohol-aversion drug approved by the
United States Food and Drug Administration for treating alcohol
withdrawal symptoms, inhibits GSDMD-mediated pyroptosis
in vitro by blocking pore formation and liposome leakage,
reducing IL-1β and IL-18 production by activated
NLRP3 inflammasomes (Hu et al., 2020).

3.4 Metabolic-dysfunction-associated fatty
liver disease (MAFLD)

MAFLD, previously known as nonalcoholic fatty liver disease
(NAFLD) until a recommendation by an international panel of
experts in 2020 to rename it, is a chronic and progressive liver
disorder that affects genetically predisposed individuals. This
condition arises from a combination of factors, including
nutritional excess and insulin resistance. The spectrum of
MAFLD encompasses metabolic-associated simple fatty liver,
MASH, and MASH-related fibrosis, cirrhosis, and even
hepatocellular carcinoma (Eslam et al., 2020). Notably, MASH
represents a severe manifestation of MAFLD and serves as an
intermediate stage in the progression from simple fatty liver to
cirrhosis and liver cancer. With the improvement of living standards
globally, the incidence of MAFLD has been increasing annually, and
the affected population is becoming younger. Consequently,
MAFLD has emerged as the most prevalent chronic liver
disease worldwide.

Inflammation, a prominent feature of MAFLD, is linked to
pyroptosis and is associated with its progression (Beier and
Banales, 2018). GSDMD-N protein levels correlate with the
MAFLD Activity Score and fibrosis in patients with MASH.
Notably, MAFLD mouse models with GSDMD gene knockout
exhibit a significant retardation in liver fibrosis progression,
accompanied by reduced release of inflammatory cytokines.
Conversely, when GSDMD is overexpressed, this inhibitory effect
is completely reversed, generating a large number of cleaved and
activated GSDMD-N fragments, which is accompanied by
hepatocyte pyroptosis, suggesting its role in MAFLD progression
(Xu et al., 2018). It acts by mediating the secretion of pro-
inflammatory cytokines (IL-1β, TNF-α, and MCP-1), activating
the NF-κB signaling pathway, inducing macrophage infiltration,
and enhancing lipogenic gene expression (Xu et al., 2018). Unlike
ALD, GSDMD-N elevation in MAFLD is primarily caused by the
activation of the NLRP3-ASC-Caspase-1 inflammasome. Therefore,
GSDMD is a potential biomarker and therapeutic target for MAFLD
(Mai et al., 2020). Gao et al. proposed that estrogen receptor alpha
(ERα) can inhibit GSDMD-mediated pyroptosis to improve
MAFLD (Gao et al., 2021), suggesting that ERα may be a
potential target for NAFLD treatment.

NLRP3 inflammasome activation in the liver promotes MASH
progression (Csak et al., 2011). During the development of
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experimental and clinical MAFLD, NLRP3 expression in the liver is
significantly increased (Csak et al., 2014; Szabo and Petrasek, 2015).
The pharmacological blockade of NLRP3 can alleviate liver
inflammation and fibrosis in experimental MASH models in mice
(Mridha et al., 2017). In mouse models with NLRP3, ASC, and
caspase-1 knockouts, the hepatocyte death, inflammation, and
fibrosis induced by an HFD were all mitigated, further
demonstrating the pivotal role of the NLRP3 inflammasome in
the pathogenesis of MASH (Wree et al., 2014; Stienstra et al., 2011;
Dixon et al., 2013).

Studies have identified multiple mechanisms underlying
NLRP3 activation in MAFLD. MAFLD development may be
associated with plasma-free fatty acid (FFA) accumulation,
particularly palmitic acid, which triggers NLRP3 activation in
macrophages via mechanisms involving HIF-1α (Mehal, 2014;
Wang et al., 2019; Gupta et al., 2017), cathepsin B (Tang et al.,
2018), mitochondrial DNA (Pan et al., 2018), ROS (Yang et al.,
2016), and impaired mitophagy flux (Zhang et al., 2019). P2X
purinoceptor 7 (P2X7R) plays a crucial role in ATP energy
metabolism. Experimental studies have shown elevated P2X7R
protein levels in liver biopsy samples from patients with MASH,
primarily in macrophages and Kupffer cells, which correlates with
increased inflammation and inflammasome activation (Baeza-Raja
et al., 2020). Consistent with these findings, P2X7R deficiency
reduces NLRP3 inflammasome activation in hepatic sinusoidal
endothelial cells and protects mice from liver injury induced by
methionine-choline-deficient (MCD) or high-fat diet (HFD)
(Blasetti Fantauzzi et al., 2017), demonstrating extracellular ATP
involvement in inflammasome activation in MASH.

In Kupffer cells of mice with MASH, interactions between the
TXNIP protein and the NLRP3 inflammasome increase. In contrast,
mice lacking TXNIP exhibit exacerbated steatosis and liver
inflammation when fed an MCD diet (Blasetti Fantauzzi et al.,
2017), suggesting a negative regulatory role of TXNIP on
NLRP3 and its protective role in MASH. Bile acids regulate
inflammasome signaling in hepatocytes by interacting with
Takeda-G-protein-receptor-5 (TGR5) or Farnesoid X Receptor
(FXR). Reduced TGR5 expression in mice with MASH and
human livers correlates with increased NLRP3 activation (Farrell
et al., 2019), favoring MASH progression. In addition, FXR
deficiency increases NLRP3 activation in the liver (Han et al.,
2018), indicating that both TGR5 and FXR inhibit
NLRP3 activation in hepatocytes.

In the mouse model of MASH induced through an atherogenic
dietary regimen, mice deficient in IL-1β display a notable decrease in
liver inflammation and fibrosis compared to their wild-type
counterparts (Kamari et al., 2011). The liberation of
mitochondrial DNA is a stimulus for NLRP3 activation,
subsequently inducing the secretion of IL-1β by Kupffer cells in
the context of MASH (Pan et al., 2018). Furthermore, mice with a
knockout of the IL-1R1 gene exhibited mitigation of HFD-induced
steatosis, inflammation, and fibrotic changes (de Roos et al., 2009).
Within hepatocytes, IL-1β is also implicated in facilitating the
accumulation of cholesterol and triglyceride. These findings
further emphasize the importance of the NLRP3-IL-1β axis in
the progression of MAFLD. Although NLRP3 inflammasome
activation primarily exhibits detrimental effects in MAFLD, some
studies have suggested its potential protective role (Henao-Mejia

et al., 2012). However, these views remain controversial, and direct
evidence to support them is currently lacking, necessitating
further research.

In a mouse model of long-term HFD-induced MASH,
AIM2 levels are elevated in the liver (Ganz et al., 2014). When
fed a normal diet, AIM2-deficient mice exhibit increased body
weight, insulin resistance, and exacerbated adipose tissue
inflammation (Gong et al., 2019). This suggests that AIM2 is
also involved in MASH progression, with a mechanism that
depends on TLR/MyD88 signaling in hepatocytes and
macrophages (Lozano-Ruiz and Gonzalez-Navajas, 2020; Csak
et al., 2014).

Inhibiting NLRP3 inflammasome activation may represent an
important therapeutic approach for MAFLD. Compounds such as
actin A (Ruan et al., 2021), Dieckol (Oh et al., 2021), MCC950
(Mridha et al., 2017), and vitamin D (Zhang et al., 2021) suppress
pyroptosis, decrease triglyceride and FFA accumulation, improve
liver injury, and lower MAFLD scores by inhibiting
NLRP3 inflammasome. Taurine alleviates pyroptosis and liver
inflammation in an arsenic trioxide (As2O3)-induced MASH
model by inhibiting the CTSB-NLRP3 inflammasome pathway
(Qiu et al., 2018). Mangiferin upregulates p-AMPKα levels,
regulates glucose and lipid metabolism, and downregulates
NLRP3 inflammasome-related protein expression, reducing
pyroptosis and improving liver injury and other symptoms in
mice with MAFLD (Yong et al., 2021). Genipin, an uncoupling
protein-2 (UCP2) inhibitor, reverses HFD-induced liver injury,
inhibits NLRP3 inflammasome activation, and is associated with
UCP2–ROS signaling (Zhong et al., 2018). In addition, long non-
coding RNA growth arrest-specific transcript 5 (GAS5) binds to
miR-28a-5p in MAFLD, inhibiting NLRP3 inflammasome-
mediated hepatocyte pyroptosis (Chen et al., 2023).

Caveolin-1 (Jiang et al., 2023), berberine (Mai et al., 2020), and
salvianolic acid A (Ding et al., 2016a) inhibit pyroptosis in MAFLD
by suppressing NLRP3 activation mediated by the ROS-TXNIP axis.
Liraglutide prevents MASH by blocking NLRP3 inflammasome
activation, reducing lipid accumulation, maintaining
mitochondrial function, and decreasing ROS production (Yu
et al., 2019). Activating the NRF2/HO-1 axis, an important
signaling axis against oxidative stress, inhibits
NLRP3 inflammasome formation. Baicalein (Shi et al., 2020) and
Danshen Zexie decoction (Biao et al., 2022) reduce hepatocyte
pyroptosis and protect against HFD-induced inflammation and
liver injury through the NRF2/HO-1/NLRP3 pathway.

Exenatide effectively reduces NLRP3, caspase-1, and IL-1β
expression in HepG2 cells induced by oleic acid/LPS and in mice
with MCD diet-induced liver injury, thus suppressing pyroptosis
and alleviating MASH symptoms (Liu et al., 2021). The traditional
Chinese medicine formula, Jinlida Granules, decreases NLRP3,
caspase-1, IL-1β, and IL-18 expression in HFD-induced mice and
FFA-treated HepG2 cells, mitigating liver injury (Hao et al., 2022).
The natural plant component, Gardenoside, inhibits pyroptosis-
related proteins through the CCCTC-binding factor/dipeptidyl
peptidase-4 signaling pathway to improve lipid accumulation and
liver fibrosis (Shen et al., 2021). Jiangzhi Ligan decoction exerts
hepatoprotective effects in a rat model of HFD-induced MAFLD by
regulating the classical and non-classical pyroptosis pathways
mediated by GSDMD (Yin et al., 2021).
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3.5 Primary liver cancer

Primary liver cancer, predominantly HCC, accounts for
approximately 90% of liver cancer cases (Petrick et al., 2016) and
has high mortality rates globally. Key clinical HCC features include a
high recurrence rate and a propensity for metastasis, leading to
recurrence in 40%–70% of patients who underwent surgical
resection within 5 years (Tampaki et al., 2021). Chemotherapy
remains the cornerstone of treating advanced HCC (Grandhi
et al., 2016). However, sorafenib, the current standard systemic
therapy for patients with advanced HCC, offers relatively limited
survival benefits (Liang et al., 2013). Therefore, further exploration
of new therapeutic targets and their molecular mechanisms to guide
treatment strategies for HCC and improve patient prognosis
is crucial.

The activation of NLR family proteins and AIM2 is closely
associated with HCC progression (Figure 2).NLRP1 activation is
favorable for HCC prognosis. Zhou et al. found increased
NLRP1 expression in HCC compared to that in normal liver
tissue (Zhou et al., 2022). Another study revealed that
NLRP1 inflammasome activation leads to caspase-1 activation,
IL-1β and IL-18 secretion, and pyroptosis (Grivennikov et al.,
2010; Henderson et al., 2021). Furthermore,
NLRP1 overexpression is associated with a favorable prognosis in

HCC as it leads to immune-mediated tumor eradication and
improved prognosis for patients with HCC. However, NLRP3,
NLRC4, and caspase-1 overexpression in surrounding non-
cancerous tissues is associated with a poorer prognosis
postoperatively (Sonohara et al., 2017). NLRP3 inflammasome
levels are relatively low in normal hepatocytes but are
significantly upregulated in inflammatory liver environments and
downregulated in HCC tissues (Wei et al., 2014).
IRAK1 downregulation can inhibit the activation of the MAPKs/
NLRP3/IL-1β signaling pathway, preventing the proliferation,
migration, and invasion of HCC cells (Chen et al., 2020).
Anisodamine treatment significantly increases INF-γ and IL-27
levels and decreases TNF-α and IL-4 levels by inhibiting NLRP3,
significantly suppressing HCC cell growth (Li et al., 2020). These
results suggest that NLRP3 may promote an inflammatory cycle in
the cancer microenvironment by mediating the cleavage and release
of inflammatory factors such as IL-1β and IL-18, leading to tumor
progression. Dead hepatocytes also release DAMPs, causing further
inflammatory damage to the liver (Brenner et al., 2013).
Furthermore, low AIM2 expression correlates with HCC severity,
poor tumor differentiation, and enhanced invasion/metastasis
(Chen et al., 2017). Genetic silencing of AIM2 prevents HCC in
mice (Martinez-Cardona et al., 2018). Radiofrequency ablation on
the proliferation of hepatoma cells is achieved through the induction

FIGURE 2
Proposed mechanisms underlying pyroptosis in HCC. Pyroptosis is triggered by inflammasome activation, particularly the NLRP3 inflammasome,
leading to the release of IL-1β and IL-18, which fuel the inflammatory cycle in the cancer microenvironment and promote HCC progression. NLRP1,
NLRC4, AIM2 inflammasomes, and cleaved gasdermin proteins can also induce pyroptosis, resulting in HCC cell death and inhibition of tumor
progression. GSDME expression enhances phagocytosis of tumor cells by tumor-associated macrophages, inhibiting HCC cell growth.
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of pyroptosis via the AIM2 inflammasome signaling pathway (He
et al., 2024).

Contrary to the above conclusion, multiple studies have revealed
that tumor cells emit danger signals, recruiting antitumor immune
cells via pyroptosis. Moreover, these immune cells induce pyroptosis
in tumor cells, and the inflammation triggered by pyroptosis elicits a
potent antitumor immune response, establishing a positive feedback
loop (Wang et al., 2019; Wang et al., 2020c). Wei et al. found that
NLRP3 inflammasome reconstitution reverses malignant HCC cells,
suggesting that NLRP3 activation may inhibit HCC progression.
Specifically, 17β-estradiol (E2) inhibits malignancy in HCC through
E2/ERβ/MAPK signaling-mediated upregulation of the
NLRP3 inflammasome (Wei et al., 2015). A subsequent study
also demonstrated that E2-induced activation of the
NLRP3 inflammasome may inhibit HCC progression by
triggering pyroptosis (Wei et al., 2019).

Gasdermins are potential new targets for cancer
immunotherapy, as they promote antitumor immunity by
inducing pyroptosis in tumor cells (Zhang et al., 2020a). Qiu
et al. found that GSDMD is a prognostic biomarker and
potential therapeutic target for HCC by analyzing its RNA
expression, genetic alterations, prognosis, and immune
infiltration. GSDMD inhibits tumor proliferation and metastasis
by mediating pyroptosis, possibly through a noncanonical
pyroptosis pathway (Qiu et al., 2021). Similarly, GSDME is a
potential biomarker for HCC diagnosis and prognosis (Hu et al.,
2021). GSDME expression enhances phagocytosis of tumor cells by
tumor-associated macrophages and increases the number and
function of tumor-infiltrating NK and CD8+ T lymphocytes. In
addition, GSDME promotes tumor suppression by activating
pyroptosis and enhancing antitumor immunity (Zhang
et al., 2020b).

Pharmacotherapy aimed at inducing pyroptosis in tumor cells is
commonly used for cancer treatment. Berberine (Ortiz et al., 2014) is
a promising drug for cancer therapy that upregulates caspase-1
mRNA and protein expression in anHCC cell line (HepG2 cells) in a
concentration-dependent manner, inhibiting cell survival via
caspase-1-mediated pyroptosis (Chu et al., 2016). Miltirone
inhibits HCC progression by targeting GSDME-induced
pyroptosis, significantly increasing intracellular ROS
accumulation while inhibiting MAPK activation and mitogen-
activated protein kinase/extracellular signal-regulated kinase
phosphorylation, which collectively inhibit the activity of
extracellular signal-regulated kinase 1/2 (ERK1/2). This leads to
pyroptosis via BAX/caspase-9/caspase-3/GSDME (Zhang et al.,
2020a). Cannabidiol induces an integrated stress response and
mitochondrial stress in HCC cells, activating ATF4 and its
downstream target gene, CHOP, leading to upregulated Bax
protein expression. This initiates a cellular cascade that
culminates in caspase-3/caspase-9/GSDME-mediated pyroptosis
(Shangguan et al., 2021).

Chimeric antigen receptor T (CAR-T)-cell immunotherapy has
demonstrated efficacy in cancer treatment. CAR-T cells release
perforins to form pores that allow GZMB entry into the target
tumor cells and caspase-3 activation, leading to GSDME cleavage
and pyroptosis (Liu et al., 2020b). The CAR-T cell therapy provides
an effective, specific, long-term cancer treatment. In addition,
scientists designed NK92 cells expressing a chimeric costimulatory

translational receptor (CCCR) comprising the extracellular structural
domain of programmed cell death protein 1 (PD1), the
transmembrane and cytoplasmic structural domains of NKG2D,
and the cytoplasmic structure of 41BB. This receptor converts
inhibitory PD1 signaling into activating signaling, effectively
enhancing antitumor activity. In vitro, CCCR-NK92 cells rapidly
kill tumor cells by inducing GSDME-mediated pyroptosis and
significantly inhibit tumor growth in a cancer xenograft model (Lu
et al., 2020). CCCR-NK92 cells offer a potential “ex vivo”
immunotherapy for treating PDL1-positive cancers.

Another common cancer treatment strategy involves
activating the host immune system to identify and counteract
aberrant malignant tumor cells in vivo. GZM activation by NK
and CTL cells initiates tumor cell pyroptosis. Notably, GSDMB
overexpression in HEK-293T cells, which lack endogenous
GSDM expression, triggers pyroptosis when co-cultured with
human NK cells, independent of caspase involvement (Zhou
et al., 2020b). Similarly, perforin, IFN-γ, and several cytokines
triggered by immune stimulation can eliminate tumor cells by
inducting cellular pyroptosis (Zhang et al., 2020b; Xi
et al., 2019).

3.6 Drug-induced liver injury (DILI)

The liver is a vital organ for drug aggregation, transformation,
and metabolism, and usually, drugs absorbed through the digestive
tract usually pass through the portal vein into the liver. DILI refers to
liver damage caused by drugs or their metabolites, which may occur
owing to hypersensitivity to drugs or decreased tolerance. DILI is a
common cause of acute liver failure and poses considerable challenges
in clinical practice and drug development (Norman, 2020).

Hepatocyte death is a cause of drug-induced hepatotoxicity and
a characteristic feature of DILI. Acetaminophen (APAP), a widely
used antipyretic and analgesic, is a hepatotoxin that can induce DILI
through a predictable, dose-related mechanism with intrinsic liver
injury characteristics (Yan et al., 2018). Earlier studies highlighted
the role of NLRP3 inflammasome in APAP-induced DILI.
Researchers further elucidated the relative importance of
NLRP3 activation in APAP-induced hepatotoxicity by inhibiting
inflammasome activity using aspirin or mouse models deficient in
NLRP3, ASC, caspase-1, and TLR9 (Imaeda et al., 2009). Wang et al.
demonstrated that PRX3 inhibits NLRP3 activation by acting on
ROS, mitigating APAP-induced pyroptosis and protecting the liver
(Wang et al., 2021). Furthermore, GSDMD enhances the survival
capacity of hepatocytes in liver injury induced by acetaminophen. A
recent study using GsdmD−/− mice demonstrated that these mice
exhibited significantly higher levels of liver injury when exposed to
toxic levels of acetaminophen (Yang et al., 2019). In addition,
Ouyang et al. observed GSDME activation in APAP-induced
DILI mouse models and patient samples and found that GSDME
knockout protected mice against APAP-induced pyroptosis and
deISGylation of carbamoyl phosphate synthetase-1 (CPS1) while
improving drug-induced liver injury (Ouyang et al., 2024). This
suggests that GSDME may be a promising therapeutic target for
APAP-induced DILI.

The primary treatment strategy for DILI is to discontinue the drug
causing the condition immediately (Hassan and Fontana, 2019).
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Notably, despite drug withdrawal, liver injury often persists in many
patients with DILI owing to the activation of the innate immune
system and subsequent drug withdrawal-induced cytokine-mediated
adaptive immune responses (Mosedale and Watkins, 2017).
Therefore, targeting these pathological mechanisms is essential for
the complete recovery of patients with DILI. Shikonin, a natural
antioxidant and anti-inflammatory compound, can inhibit the
hepatotoxicity of APAP by significantly reducing NLRP3 and
TLR9 mRNA levels, as well as inflammatory cytokine expression
such as IL-1β and IL-6, in APAP-treated mice (Guo et al., 2019). BRB
can improve APAP-induced liver injury by inhibiting
NLRP3 inflammasome activation and tissue damage, as well as
caspase-1 and IL-1β expression, with low-dose BRB showing more
pronounced effects (Vivoli et al., 2016). Cisplatin, a widely used
chemotherapy drug, can cause hepatotoxicity by increasing
inflammatory cytokines (Zhou et al., 2017). Astragaloside IV
derived from the traditional Chinese medicine, Huangqi
(Astragalus membranaceus), exerts cytoprotective effects (Li et al.,
2017) and reduces cisplatin-induced liver injury in rats by activating
mitophagy to inhibit NLRP3 inflammasome assembly (Qu et al.,
2019). Hinokiflavone alleviates APAP-DILI-induced pyroptosis
through the SIX4/Akt/Stat3 pathway, showing promise as a
potential treatment for DILI (Liu et al., 2024).

4 Summary

Cell death under physiological conditions is essential for tissue
renewal but can also contribute to disease onset and progression.
Recent studies on pyroptosis and liver diseases have confirmed the
role of pyroptosis in liver diseases. Mitochondrial dysfunction and
excessive ROS production can lead to NF-κB translocation and
NLRP3 inflammasome activation, promoting pyroptosis in various
liver diseases. Blocking the molecules involved in the pyroptosis
pathway (such as NLRP3 and IL-1β) can affect the onset and
progression of liver disease, providing potential therapeutic
targets for liver disease. However, as pyroptosis is a defense
mechanism of the body against pathogens, inhibiting it
completely may cause potential adverse effects such as an
increased risk of infection. Thus, further studies on disease- or
tissue-specific pyroptosis inhibition treatment are warranted.

Cell death under physiological conditions is essential for tissue
renewal but contributes to disease onset and progression. Recent
studies on pyroptosis and liver diseases have confirmed the role of
pyroptosis in liver diseases (Supplementary Table S1). Pyroptosis
exhibits a “double-edged sword” effect in liver disease occurrence
and development, as it helps eliminate infectious pathogens and
abnormal cells and may lead to tissue damage and disease
progression when excessively activated. Mitochondrial dysfunction
and excessive ROS production can result in NF-κB translocation
and NLRP3 inflammasome activation, promoting pyroptosis in
various liver diseases. Blocking molecules involved in the pyroptosis
pathway can influence the onset and progression of liver diseases,
providing potential therapeutic targets for liver diseases. However,
since pyroptosis is a defense mechanism of the body against pathogens,
completely inhibiting it may cause potential adverse effects, such as an
increased risk of infection. Therefore, in the future, it may be necessary
to develop personalized and precise pyroptosis targeted therapies for

patients with liver disease. By specifically and precisely targeting key
molecules in the pyroptosis pathway, such as NLRP3 and GSDMD,
pathological processes of liver diseases can be alleviated without
compromising the body’s immune defense mechanisms.

In summary, pyroptosis plays a substantial dual role in liver
diseases. Future studies should comprehensively consider the pros
and cons of pyroptosis and develop effective therapeutic strategies to
prevent and control of liver diseases effectively.
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