Check for updates

OPEN ACCESS

EDITED BY Fernando Antunes, University of Lisbon, Portugal

REVIEWED BY

Nicolas Santander, Universidad de O'Higgins, Chile Virginia Actis Dato, University of California San Diego, United States

*CORRESPONDENCE

Luciano Saso, Iuciano.saso@uniroma1.it Beate Brand-Saberi, Beate.Brand-Saberi@ruhr-uni-bochum.de

RECEIVED 01 November 2024 ACCEPTED 19 February 2025 PUBLISHED 26 March 2025

CITATION

Divvela SSK, Gallorini M, Gellisch M, Patel GD, Saso L and Brand-Saberi B (2025) Navigating redox imbalance: the role of oxidative stress in embryonic development and long-term health outcomes. *Front. Cell Dev. Biol.* 13:1521336. doi: 10.3389/fcell.2025.1521336

COPYRIGHT

© 2025 Divvela, Gallorini, Gellisch, Patel, Saso and Brand-Saberi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Navigating redox imbalance: the role of oxidative stress in embryonic development and long-term health outcomes

Satya Srirama Karthik Divvela¹, Marialucia Gallorini², Morris Gellisch¹, Gaurav Deepak Patel¹, Luciano Saso³* and Beate Brand-Saberi¹*

¹Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr University Bochum, Bochum, Germany, ²Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy, ³Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy

Embryonic development is a complex process of concurrent events comprising cell proliferation, differentiation, morphogenesis, migration, and tissue remodeling. To cope with the demands arising from these developmental processes, cells increase their nutrient uptake, which subsequently increases their metabolic activity. Mitochondria play a key role in the maintenance of metabolism and production of reactive oxygen species (ROS) as a natural byproduct. Regulation of ROS by antioxidants is critical and tightly regulated during embryonic development, as dysregulation results in oxidative stress that damages essential cellular components such as DNA, proteins, and lipids, which are crucial for cellular maintenance and in extension development. However, during development, exposure to certain exogenous factors or damage to cellular components can result in an imbalance between ROS production and its neutralization by antioxidants, leading to detrimental effects on the developmental process. In this review article, we highlight the crucial role of redox homeostasis in normal development and how disruptions in redox balance may result in developmental defects.

KEYWORDS

ADHD, antioxidants, ASD, embryo, malformations, morphogenesis, ROS, oxidative stress

Introduction

Embryonic development is a highly coordinated process that culminates in the formation of a fully functional organism governed by a complex interplay of genetic, cellular, and environmental factors. During this pivotal phase, the developing embryo undergoes a series of precise and tightly regulated remodeling events involving cell proliferation, rearrangement, migration, and morphogenetic movements. All of these features are accompanied by dynamic changes in gene activity, ultimately giving rise to a diverse array of tissues and organs that constitute the adult organism. Interestingly, each of these steps is characterized by different oxygen levels, ranging from 1% to 5% during the formation of the placenta and up to 21% upon fetal development, where

tissue differentiation becomes the predominant process (Michiels, 2004; Hitchler and Domann, 2007; Ortega et al., 2016). These dynamic remodeling steps, summarized as morphogenesis, are accompanied by a variety of challenges experienced by cells and tissues during embryonic development. One critical stage is the generation of oxidative stress within the developing embryo (Danielsson et al., 2023). Oxidation–reduction (redox) homeostasis, like pH control, is central to life. Redox processes pervade almost all fundamental life processes, from bioenergetics to metabolism and life functions (Laforgia et al., 2018).

Oxidative stress arises from an imbalance between the production of reactive oxygen species (ROS), that is, the production of free radicals such as hydrogen peroxide (H_2O_2) , superoxide anions (O_2^{\bullet}) , and hydroxyl radicals ($^{\bullet}OH$) (Figure 1) as well as the ability of the embryo's antioxidant defense mechanisms to neutralize these potentially harmful molecules (Fathollahipour et al., 2019). In other words, oxidative stress disrupts mitochondrial redox signaling and control. High-flux pathways, such as the electron transport chain involved in ATP production, generate ROS as a byproduct. These ROS molecules feed into low-flux pathways, which also engage antioxidants to neutralize free radicals and oxidized macromolecules. Dysfunction in the high-flux pathways results in higher ROS production, disrupting cellular homeostasis, whereas dysfunction in the low-flux pathways compromises cell signaling in metabolism, growth, and apoptosis (Jones, 2006).

In the context of embryonic development, a delicate balance between ROS generation and regulation becomes paramount, as oxidative stress can have profound consequences on the normal course of development (DeFreitas et al., 2022). In mammals, the origin of oxidative stress during embryonic development is multifaceted, encompassing a wide range of factors. This review aims to comprehensively explore the causes underlying oxidative stress development during embryogenesis, shedding light on intracellular sources of ROS, cell mechanisms involved, and the potential consequences of oxidative stress during this critical developmental period. By deepening our knowledge regarding the intracellular burst of oxidative stress during embryogenesis, valuable insights into the intricate processes governing the formation of life and the potential implications for developmental disorders and birth defects can be gained (Danielsson et al., 2023). Additionally, oxidative stress generated during morphogenesis may contribute to long-term health complications that manifest later in life (Ducsay et al., 2018; Suzuki, 2018).

The origin of oxidative stress, including both endogenous and exogenous sources, is described in the following sections. Intracellular molecular responses activated by oxidative stress during embryonic development have been presented in parallel. Additionally, this review explores the consequences of oxidative stress on morphogenesis and how an imbalanced redox equilibrium may have detrimental effects on normal mammalian embryonic development. The potential impact of oxidative stress is analyzed in terms of developmental disorders. Finally, the protective role of antioxidant defense mechanisms is considered, and potential avenues for future research in this vital field of study are discussed.

Sources of oxidative stress and ROS in embryonic development

Embryogenesis requires specific signaling pathways to regulate cell proliferation and differentiation. Oxidative stress, due to an imbalance between the production of ROS and antioxidant defenses, disrupts signaling pathways and plays a causative role in birth defects. ROS generation within embryos can arise from various endogenous and exogenous sources (Jomova et al., 2023). Understanding these sources is essential for unraveling the complex mechanisms driving embryonic development and vulnerability to oxidative stress.

One of the primary endogenous sources of ROS in embryonic tissues is the normal metabolic activity of the developing cells. Mitochondria, the powerhouses of cells, produce ROS as byproducts of oxidative phosphorylation (Zorov et al., 2014). During embryogenesis, as cells rapidly divide and differentiate, there is an increased demand for energy production, leading to a higher rate of mitochondrial respiration and, consequently, elevated ROS production. In the early embryonic stages, mitochondria exhibit distinct characteristics (small and immature), which align with reduced oxidative phosphorylation and greater reliance on glycolysis. However, as cells differentiate, oxidative phosphorylation becomes a major source of ATP (Blerkom, 2004; Facucho-Oliveira and John, 2009). Given this crucial role, any mutations in mitochondria or dysfunction of mitochondria, as observed in maternal metabolic disorders such as diabetes and obesity, have been shown to be detrimental to organogenesis, compromising mechanisms such as proliferation, differentiation, and apoptosis, all of which affect organ maturation and development (Lu et al., 2009; Steffann et al., 2015).

Life processes rely on enzymatic reactions. Enzymes involved in various cellular processes, such as those responsible for DNA replication, repair, and cellular signaling, can generate ROS as part of their normal function (Magnani and Mattevi, 2019). More than 40 enzymes generate $O_2^{\bullet-}/H_2O_2$, including the NOX family of multi-subunit NADPH oxidases, the transmembrane components of which are responsible for electron transport across biological membranes. Members of the NADPH oxidase family (Nox1-3) are involved in the catalysis of superoxides by transferring electrons from NADPH to molecular oxygen, whereas Nox4, Duox1, and Duox2 are involved in the catalysis of H_2O_2 from molecular oxygen (Geiszt et al., 2003; Joshi et al., 2013; Nisimoto et al., 2014; Lam et al., 2015; Szanto et al., 2019). In addition to NOX, found principally on the plasma membrane, nuclear, and endoplasmic reticulum (ER) membranes, peroxisomes are major generators of ROS. Peroxisomes contain various oxidases that produce H₂O₂ as a byproduct of fatty acid β -oxidation. They also contain antioxidants like catalase and superoxide dismutase to neutralize ROS (Antonenkov et al., 2010; Zhang et al., 2015). Another enzyme known to produce ROS is xanthine oxidase, which catalyzes the oxidation of hypoxanthine to uric acid, generating superoxide and hydrogen peroxide as byproducts (Cantu-Medellin and Kelley, 2013). These enzymatic reactions play a physiological role and are essential for proper development (Dutta et al., 2020). However, they can contribute to oxidative stress if not properly controlled (Cobbaut and Lint, 2018). During embryonic development, reactive oxygen species (ROS) are also produced in response to growth factors and cytokines. Growth factors, such as vascular endothelial growth factor (VEGF), and cytokines, such as TNF-a and IL-1, have been shown to stimulate ROS production in different contexts (Gurjar et al., 2001; Kim et al., 2010; Maraldi et al., 2010).

A special scenario is represented by the mammalian maternal-fetal interface. During pregnancy, the maternal-fetal interface is a critical site for oxidative stress. As a matter of fact, the placenta plays a crucial role in nutrient transport and gas exchange between the maternal and fetal circulations. Changes in oxygen levels (hypoxia or hyperoxia) during development and fluctuations in blood flow and tissue perfusion can lead to oxidative stress (Torres-Cuevas et al., 2017). These changes can occur naturally as part of the embryonic developmental program but may also result from various pathological conditions (Danielsson et al., 2023).

In addition, exposure to maternal agents, such as infections and inflammation, or maternal lifestyle choices, such as smoking or alcohol consumption, can elevate ROS levels in embryonic tissues (Jiang et al., 2012). It has been recently reported that cigarette smoke is associated with the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression and activity in granulosa cells of women undergoing in vitro fertilization (Budani et al., 2022). Additionally, placental dysfunction or inadequate blood supply may compromise oxygen delivery to the developing embryo, leading to hypoxia-reperfusion injury that can trigger ROS production (Leslie et al., 2015). Moreover, infections and inflammatory responses in the maternal system can lead to the release of cytokines and immune cells, which generate ROS (Yu et al., 2022). These inflammatory mediators can potentially reach the developing embryo and initiate oxidative stress. In the case of maternal infections, such as those caused by viruses or bacteria, the development of fragile embryo immune defenses may be less effective in combating infection-triggered oxidative stress (Hussain et al., 2021).

Maternal diet and nutrition play crucial roles in mammalian embryonic development. A diet lacking essential nutrients and antioxidants can lead to oxidative stress in both the mother and the developing embryo (Diniz et al., 2023). Conversely, excessive intake of certain nutrients, such as iron or vitamin A, can also contribute to oxidative stress and depletion of the intracellular pool of glutathione through mechanisms such as the Fenton reaction or excessive production of ROS (Morales et al., 2022).

Exogenous sources of oxidative stress are equally significant contributors to embryonic oxidative stress. Environmental factors, including exposure to pollutants, radiation, and toxins, can affect embryo development (Al-Gubory, 2014). Some pollutants and chemicals, such as heavy metals and pesticides, can induce oxidative stress by promoting ROS production or interfering with antioxidant defenses (Ruder et al., 2008). Recently, micro- and nanoplastic (MNP) accumulation has been observed in the human placenta, raising important questions regarding the biological effects of these contaminants on the health of pregnant women and offspring (Zurub et al., 2024). In both rat and mouse models, oral exposure to MNPs results in the accumulation of these particles within the uterine tissue and in various ovarian compartments, including growing follicles (Wei et al., 2022). A recent study showed the accumulation of MNPs in the placenta has also been shown to increase apoptosis and induce endoplasmic reticulum stress, accompanied by elevated ROS levels, resulting in placental dysfunction and growth retardation (Bai et al., 2024).

In summary, the sources of oxidative stress in embryonic tissues are diverse and multifaceted and arise from both endogenous and exogenous factors (Figure 2). Developing embryos must navigate these challenges while maintaining a delicate balance between unavoidable ROS generation and antioxidant defense mechanisms. Understanding the origin of oxidative stress during embryonic development is essential for understanding its impact on normal development and its potential contribution to developmental disorders and birth defects.

FIGURE 2

Exogenous and endogenous sources of ROS. Sources of oxidative stress can be categorized as exogenous or endogenous. Exogenous sources include external factors such as infections (e.g., *Mycobacterium tuberculosis, Pseudomonas aeruginosa*, HIV, influenza virus, and *Plasmodium falciparum*), inflammation, smoking, and alcohol abuse, which contribute to the production of reactive oxygen species (ROS). Endogenous sources arise from internal cellular processes, including mitochondrial activity, disruptions in the nuclear membrane, protein misfolding in the endoplasmic reticulum, and lysosomal dysfunction. Both categories lead to an imbalance in ROS homeostasis, potentially resulting in oxidative damage to biomolecules and cellular structures.

Mechanisms within cells and their responses to oxidative stress during embryonic development

Oxidative stress, which is characterized by an imbalance between the production of reactive oxygen species (ROS) and the capacity of antioxidant defense mechanisms to neutralize them, can exert profound effects on embryonic development. During this critical period, the developing embryo undergoes the intricate processes of cell division, differentiation, and tissue formation (Dennery, 2007). When oxidative stress disrupts these processes, it can lead to growth retardation and malformations in the embryo and fetus (Dennery, 2010).

In response to the aforementioned stressors that result in free radicals (FR), cells activate antioxidants to limit the damage caused by the free radicals. Antioxidants can be classified into two categories: enzymatic and non-enzymatic. The enzymatic group comprises superoxide dismutases, catalase, glutathione peroxidases, glutathione reductase, peroxiredoxins, and thioredoxin. The nonenzymatic group includes glutathione, vitamin C, vitamin E, betacarotene, and ubiquinone. Superoxide dismutases (SODs) catalyze the dismutation of superoxide radicals into hydrogen peroxide (H_2O_2) and molecular oxygen (O_2) . Intracellular H_2O_2 normally oxidizes cysteine residues in proteins to initiate redox biology, or it may be converted to H_2O by cellular antioxidant proteins, such as peroxiredoxins (PRx), glutathione peroxidase (GPx), and catalase (CAT). Glutathione reductase (GR) catalyzes the reduction of glutathione disulfide (GSSG) to glutathione, which is crucial for redox homeostasis. Thioredoxin (Txn) catalyzes the reduction of disulfide bonds in proteins and acts as an electron donor for peroxiredoxins.

The effect of free radicals on embryonic development is complex, as these molecules have diverse effects, such as deterioration of cell promotion depending on the number of free radicals, starting from the first stages of development (fertilization, cleavage state, compaction, and blastocyst formation). Under normal conditions, a balance of ROS is observed prior to fertilization in both sperm and oocytes. However, it has been reported that disproportionate production and neutralization of ROS affects sperm maturation (Barati et al., 2020), motility, and capacitation (Takeshima et al., 2021). During fertilization, ROS also play a crucial role in the regulation of calcium levels and ATP synthesis in oocytes (Lewis et al., 2014). Dysregulation of ROS has been shown to have profound effects on development, resulting from spindle

FIGURE 3

Effects of ROS on sperm, oocyte, and developmental competence. Oxidative stress plays a crucial role in reproductive processes, impacting both male and female gametes and embryonic development. In sperm, oxidative stress impairs maturation, motility, and capacitation, key processes essential for successful fertilization. In oocytes, oxidative stress influences calcium regulation, ATP synthesis, and the stability of the spindle and chromosomes, all of which are critical for ensuring developmental competence. During embryonic development, oxidative stress affects embryonic programming, increases the risk of disease, and may have transgenerational effects, potentially influencing the health of future generations.

instability and chromosomal abnormalities, which directly affect the developmental competence of oocytes (Sasaki et al., 2019). In parallel, ROS have been observed to increase during the very first cell divisions post-fertilization, in the time of blastula formation, and during hatching prior to implantation in murine and bovine embryos (Lopes et al., 2010; Deluao et al., 2022). Recent evidence has shown that increased ROS in early embryonic stages alters embryonic programming and enhances the risk of diseases later in life, with transgenerational effects (Figure 3) (Loeken, 2004; Ornoy, 2007; Morrison, 2008).

Several pro-and antioxidant genes have been studied for loss-of-function mutations to better understand the impact of oxidative stress on embryonic development. In mouse models, loss-of-function mutations of pro-oxidant genes, such as *Nox1*, *Nox2*, *Nox3*, *Nox4*, *Duox1*, and *Duox2*, did not reveal any embryonic phenotype. However, adult mice showed different pathological conditions. In contrast, loss-of-function mutations of key antioxidant genes have been shown to be detrimental to embryonic development. For instance, thioredoxin (*Txn*) has been shown to be indispensable for early embryonic development, as its loss resulted in embryonic lethality after implantation (Matsui et al., 1996). Another antioxidant, glutathione peroxidase 4 (*GPx4*), is a highly evolutionarily conserved enzyme that acts as a phospholipid hydroperoxidase, utilizing reduced glutathione (GSH) to convert phospholipid hydroperoxides (PL—OOH) to phospholipid alcohols

(PL-OH), which serves to regulate lipid peroxide levels. The depletion of GSH or inactivation of GPx4 in cells leads to excessive reactive oxygen species (ROS)-induced lipid peroxides and compromises redox homeostasis. Gpx4-null mice show embryonic lethality due to intrauterine resorption around embryonic day 7.5 during gastrulation (Yant et al., 2003). Similarly, studies have shown that the absence of two key antioxidant enzymes leads to impaired gastrulation and embryonic death in mouse models. These enzymes include glutathione synthetase (Gss), which is crucial for glutathione (Gsh) production, and thioredoxin reductase 1 (Txnrd1), which maintains thioredoxin in its reduced state (Bondareva et al., 2007; Winkler et al., 2011). Similarly, knockout models of the glutamate-cysteine ligase catalytic subunit (Gclc), thioredoxin reductase 2 (Txnrd2), and glutaredoxin 3 (Glrx3), which play crucial roles as antioxidants, also showed embryonic lethality during mid-gestation (E12.5-E13.5) (Dalton et al., 2000; Conrad et al., 2004; Cheng et al., 2011).

Loss of the other key antioxidant enzyme, superoxide dismutase (Sod2), was shown to be peri- or postnatally lethal in mice. Embryos exhibited severe oxidative stress during development, with pathologies such as dilated cardiomyopathy, neurodegeneration, metabolic acidosis, and lipid accumulation in the liver and skeletal muscles (Li et al., 1995; Huang et al., 2001; Ikegami et al., 2002). Additionally, the loss of function of genes such as isocitrate dehydrogenase 1 (*Idh1*), ferritin heavy chain 1 (*Fth1*), and glucose-6-phosphate dehydrogenase (*G6pd*), which play antioxidant roles, also resulted in embryonic lethality (Ferreira et al., 2000; Longo et al., 2002; Sasaki et al., 2012). We curated a list of well-known pro-and antioxidant knockout mouse models by briefly showing the phenotype during embryonic development (Table 1).

In parallel with studies on developing embryos, stem cells and stem cell-derived systems, such as organoids, have been studied regarding their oxygen consumption, dependence, and the impact thereof, revealing a tightly regulated network between oxygen metabolism and free radical (FR) production (Mohyeldin et al., 2010; Närvä et al., 2013). These in vitro systems allow researchers to study the impact of oxygen concentrations and oxidative stress under more standardized conditions than in living embryos and even enable them to analyze the molecular components and culture materials that alleviate cellular stress conditions to a certain extent (Harrison et al., 2007; Khattak et al., 2007; Gholipourmalekabadi et al., 2016; Oyefeso et al., 2021). During early embryonic development, embryonic stem cells (ESCs) reside in a hypoxic microenvironment, where cells use glycolysis to quickly produce very low levels of ATP. However, during differentiation, ATP production increases via oxidative phosphorylation (OxPhos), which in turn generates ROS (Cho et al., 2006). Metabolic shifts between glycolysis and OxPhos are accompanied by the differentiation of pluripotent stem cells (PSCs). The enhancement of glycolysis via hypoxia and the suppression of OxPhos leads to concomitantly decreased ROS levels, promoting the maintenance and proliferation of PSCs and thereby repressing differentiation (Mandal et al., 2011). Endogenous ROS levels are increased by sirtuin 1 (SIRT1)-mediated inhibition of p53 antioxidant function. SIRT1, a longevity-promoting NAD+-dependent class III histone deacetylase, is also involved in PSC function by regulating the p53-dependent expression of the pluripotency marker Nanog. SIRT1 is precisely suppressed during human PSC differentiation,

Genes	Reaction involved	Expression	Knockout mouse models	Observed phenotype
CAT (catalase)	Catalyzes the decomposition of hydrogen peroxide (H ₂ O ₂) into water and oxygen	Ubiquitous	Viable	No embryonic phenotype; adult animals showed increased susceptibility to oxidative stress (Ho et al., 2004)
DUOX1	Catalyzes the production of hydrogen peroxide (H ₂ O ₂) from molecular oxygen using NADPH as an electron donor	Ubiquitous	Viable	No embryonic phenotype; adults showed altered inflammatory response and airway epithelial function (Donkó et al., 2010)
DUOX2	Catalyzes the production of hydrogen peroxide from molecular oxygen using NADPH as an electron donor	Thyroid gland, salivary glands, respiratory epithelial cells, gastrointestinal tract, and pancreas	Viable	No embryonic phenotype; adults showed congenital hypothyroidism (Johnson et al., 2007; Grasberger et al., 2012)
FTH1	Encodes the heavy subunit of ferritin	Ubiquitous	Embryonic lethality	Essential for embryonic development, embryos die between 3.5 and 9.5 days of development (Ferreira et al., 2000)
G6PD	Production of NADPH and ribose 5-phosphate	Ubiquitous	Embryonic lethality	Hemizygous embryos died between E7.5 and E.10.5, and severe pathological changes were seen in the placenta (Longo et al., 2002)
GCLC	Catalyzes l-glutamate and l-cysteine to form γ-glutamylcysteine	Ubiquitous, higher expression in the liver	Embryonic lethality	Essential for embryonic development, embryos die before E13 (Dalton et al., 2000)
GCLM	Modulates the catalytic activity of the GCLC	Ubiquitous	Viable	No embryonic phenotype; in adults, it is associated with myocardial infarction and hemolytic anemia (McConnachie et al., 2007)
Glutaredoxin 1	Catalyzes the reduction of protein-glutathione mixed disulfides	Ubiquitous	Viable	Not essential for embryonic development (Ho et al., 2007)
Glutaredoxin 2	Catalyzes the reduction of protein-glutathione mixed disulfides	Ubiquitous	Viable	Not essential for embryonic development (Wu et al., 2011)
Glutaredoxin 3	Catalyzes the reduction of protein-glutathione mixed disulfides	Ubiquitous	Embryonic lethality	Essential for embryonic development; embryos die at 12.5 days of development; impaired cell cycle (Cheng et al., 2011)
GPX1	Reduces H_2O_2 and soluble low-molecular hydroperoxides	Ubiquitous, cytoplasm and mitochondria	Viable	No embryonic phenotype (Ho et al., 1997)
GPX2	Reduces H_2O_2 and soluble low-molecular hydroperoxides	Gastrointestinal system, human liver	Viable	No aberrant phenotype before birth; GPX1 was able to compensate for the loss of GPX2 and the abnormal increase in apoptosis and mitosis in the intestine (Florian et al., 2010)
GPX3	Reduces H_2O_2 and soluble low-molecular hydroperoxides	Mainly in the kidney, secreted in plasma	Viable	No embryonic or adult phenotype (Olson et al., 2010)

TABLE 1 List of phenotypes observed following ablation of pro- and antioxidant genes.

(Continued on the following page)

Genes	Reaction involved	Expression	Knockout mouse models	Observed phenotype
GPX4	Reduces complex lipid hydroperoxides, H ₂ O ₂ , and soluble low-molecular hydroperoxides	Ubiquitous, exists as cytosolic, mitochondrial, and nuclear isoforms	Embryonic lethality	Essential for embryonic development, embryos die at E7.5 (Imai et al., 2003; Yant et al., 2003)
GPX5	Reduces H_2O_2 and organic hydroperoxides	Epididymis	Viable	No reported embryonic phenotype; upregulation of catalase and other GPX isoforms was observed (Noblanc et al., 2012)
GPX6	Reduces H_2O_2 and organic hydroperoxides	Olfactory epithelium, embryonic tissues	Viable	Cyagen Biosciences Inc.
GPX7	Reduces $\rm H_2O_2$ and organic hydroperoxides	Endoplasmic reticulum	Viable	No embryonic phenotype; adult mice showed impaired protein folding and higher cancer susceptibility (Wei et al., 2012; Chen et al., 2015)
GPX8	Reduces H_2O_2 and organic hydroperoxides	Endoplasmic reticulum	N/A	Highly expressed from 4-cell to blastocyst stage; lower cancer susceptibility (Mihalik et al., 2020)
GSS	ATP-dependent condensation of γ -glutamylcysteine and glycine to form glutathione	Ubiquitous, higher expression in the liver	Embryonic lethality	Essential for embryonic development; embryos die at E7.5 during gastrulation (Winkler et al., 2011)
HMOX1	Heme catabolism and cellular stress response	Ubiquitous	Viable	Homozygous breeding (Hmox-/-) resulted in embryonic lethality Heterozygous and homozygous mating resulted in abnormal Mendelian ratios with lower survival rates in the case of Hmox-/- pups. Growth retardation was observed in surviving embryos (Poss and Tonegawa, 1997)
IDH1	Catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) while reducing NADP + to NADPH	Ubiquitous	Embryonic or perinatal lethality	Massive hemorrhage within the cerebral hemispheres and cerebellum was reported as aberrant collagen maturation (Sasaki et al., 2012)
IDH2	Catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) while reducing NADP + to NADPH	Ubiquitous	Viable	Sensitive to oxidative stress (White et al., 2018)
KEAP1	Redox regulation	Ubiquitous	Viable	Postnatal lethality was observed (mice die after weaning) (Wakabayashi et al., 2003)
ME1	Oxidative decarboxylation of malate to pyruvate, NADPH production	Ubiquitous	Viable	No embryonic phenotype (Alektiar et al., 2024)
ME2	Modulation of cellular redox state	Ubiquitous	Viable	-NA-
Metallothionein 1 & metallothionein 2	Metal binding, ROS scavenging, metal detoxification, and zinc homeostasis	Ubiquitous	Viable (dual knockout)	Adults showed increased sensitivity to metal toxicity and oxidative stress (Masters et al., 1994)

TABLE 1 (Continued) List of phenotypes observed following ablation of pro- and antioxidant genes.

(Continued on the following page)

07

Genes	Reaction involved	Expression	Knockout mouse models	Observed phenotype
Metallothionein 3	Metal binding, ROS scavenging, and zinc homeostasis	Highly expressed in the CNS, kidney, retina, and reproductive organs	Viable	Not essential for embryonic development (Erickson et al., 1997)
MSRA	Catalyzes the reduction of methionine sulfoxide to methionine; antioxidant role	Ubiquitous	Viable	Adults showed short life span and an atypical walking pattern (Moskovitz et al., 2001)
MSRB1	Catalyzes the reduction of methionine-R-sulfoxide to methionine	Ubiquitous	Viable	Adults showed signs of oxidative stress (Fomenko et al., 2009)
MSRB3	Catalyzes the reduction of methionine-R-sulfoxide to methionine	Ubiquitous	Viable	Congenital hearing loss was observed due to the degeneration of stereociliary bundles and apoptotic death of cochlear hair cells (Kim et al., 2016)
NOX1	Catalyzes the production of superoxide from molecular oxygen using NADPH as an electron donor	Ubiquitous	Viable	No embryonic phenotype; adults showed decreased blood pressure (Matsuno et al., 2005; Gavazzi et al., 2006)
NOX2	Catalyzes the production of superoxide from molecular oxygen using NADPH as an electron donor	Ubiquitous, particularly high in phagocytic cells (neutrophils, macrophages, and dendritic cells), vascular smooth muscle cells, endothelial cells	Viable	No embryonic phenotype; impaired inflammation and altered vascular function have been reported in adults (Chen et al., 2004; Ahmed et al., 2024)
NOX3	Catalyzes the production of superoxide from molecular oxygen using NADPH as an electron donor	Inner ear	Viable	No embryonic phenotype; adults showed balance disorders (Paffenholz et al., 2004)
NOX4	Catalyzes the production of hydrogen peroxide (H_2O_2) from molecular oxygen using NADPH as an electron donor	Ubiquitous	Viable	No embryonic phenotype; adults showed altered vascular function and impaired angiogenesis (Kleinschnitz et al., 2010; Zhang et al., 2010)
NQO1	Catalyzes the two-electron reduction of quinones to hydroquinones	Ubiquitous	Viable	No embryonic phenotype (Iskander et al., 2008)
NRF1	Activates genes involved in mitochondrial respiration and biogenesis	Ubiquitous	Embryonic lethality	Severe anemia and growth retardation were observed in the dead embryos (Chan et al., 1998) Dual knockout of Nrf1 and Nrf2 resulted in early embryonic lethality (Leung et al., 2003)
NRF2	Regulates the expression of numerous antioxidant and cytoprotective genes	Ubiquitous	Viable	No embryonic phenotype was observed (Chan et al., 1996)
PRDX1	Catalyzes the reduction of hydrogen peroxide and organic hydroperoxides	Ubiquitous	Viable	No embryonic phenotype; adults showed severe hemolytic anemia, higher susceptibility to oxidative stress, malignancies (Neumann et al., 2003)

TABLE 1 (Continued) List of phenotypes observed following ablation of pro- and antioxidant genes.

(Continued on the following page)

Genes	Reaction involved	Expression	Knockout mouse models	Observed phenotype
PRDX2	Catalyzes the reduction of hydrogen peroxide and organic hydroperoxides	Ubiquitous	Viable	No embryonic phenotype; adults showed splenomegaly and severe hemolytic anemia (Lee et al., 2003)
PRDX3	Catalyzes the reduction of hydrogen peroxide and organic hydroperoxides	Ubiquitous	Viable	No embryonic phenotype; adults showed increased susceptibility to oxidative stress (Li et al., 2007)
PRDX4	Catalyzes the reduction of hydrogen peroxide and organic hydroperoxides	Ubiquitous	Viable	No embryonic phenotype; adult males showed testicular atrophy (Iuchi et al., 2009)
PRDX5	Catalyzes the reduction of hydrogen peroxide and organic hydroperoxides	Ubiquitous	Viable	No embryonic phenotype; adult animals showed increased susceptibility to oxidative stress (Kim et al., 2018)
PRDX6	Peroxidase and phospholipase activity	Ubiquitous	Viable	No embryonic phenotype; adult animals showed increased susceptibility to oxidative stress (Wang et al., 2003)
SOD1	Catalyzes the dismutation of superoxide radicals into oxygen and hydrogen peroxide	Ubiquitous	Viable	No embryonic phenotype; adult animals showed increased susceptibility to oxidative stress, liver cancer, and sarcopenia (Deepa et al., 2017)
SOD2	Catalyzes the dismutation of superoxide radicals into oxygen and hydrogen peroxide	Ubiquitous	Embryonic or early postnatal lethality	Severe oxidative stress during development; dilated cardiomyopathy; neurodegeneration; metabolic acidosis; lipid accumulation in liver and skeletal muscle (Li et al., 1995; Huang et al., 2001; Ikegami et al., 2002)
SOD3	Catalyzes the dismutation of superoxide radicals into oxygen and hydrogen peroxide	Ubiquitous, primarily localized in the extracellular matrix and on cell surfaces	Viable	No embryonic phenotype; In adults, hypertension, altered vascular function, higher oxidative stress in various tissues, impaired angiogenesis, and wound healing have been reported (Yao et al., 2010; Xu et al., 2011)
TXN	Redox homeostasis	Ubiquitous	Embryonic lethality	Essential for embryonic development; embryos die after implantation (Matsui et al., 1996)
TXNRD1	Catalyzes the NADPH-dependent reduction of thioredoxin	Ubiquitous	Embryonic lethality	Essential for embryonic development; failed gastrulation (Bondareva et al., 2007)
TXNRD2	Catalyzes the NADPH-dependent reduction of thioredoxin	Ubiquitous	Embryonic lethality	Essential for embryonic development; healthy until E8.5; after that, embryos showed severe anemia and growth retardation and died around E13.5 (Conrad et al., 2004)
TXNRD3	Catalyzes the NADPH-dependent reduction of thioredoxin and reduces glutathione disulfide	Highly expressed testis	Viable	No embryonic phenotype; male mice showed impaired fertility (Wang et al., 2022b)

TABLE 1 (Continued) List of phenotypes observed following ablation of pro- and antioxidant genes.

resulting in the reactivation of developmental genes, such as the neuroretinal morphogenesis regulators DLL4, TBX3, and PAX6. Similarly, superoxide dismutase 1 (Sod1) is modulated by Oct4, Sox2, and Nanog, suggesting a core relationship between redox homeostasis and pluripotency in PSCs (Lee et al., 2018).

In addition to PSCs, mesenchymal stem cells (MSCs) have low levels of intracellular ROS and high levels of glutathione, a key antioxidant. They also constitutively express high levels of the enzymes required to manage oxidative stress. In terms of redox regulation, numerous recent reports have described the importance of oxidants in MSC differentiation into adipocytes, osteocytes, chondrocytes, and myocytes through the activation of signaling cascades involved in differentiation. In contrast, elevated levels of ROS lead to cell cycle arrest and apoptosis in MSCs (Atashi et al., 2015). Thus, the ability to respond to environmental oxidative damage is a universal property of MSC, but the biological mechanisms employed by fetal and placental MSCs in response to oxidative stress might be compromised under pathophysiological conditions such as preeclampsia (Kusuma et al., 2022).

ROS as secondary messengers

ROS primarily act as secondary messengers by regulating key transcription factors, thereby influencing cellular signaling. The rapid turnover of ROS through enzymatic reactions is a major contributor to this process. However, during embryonic development, ROS are produced locally, acting as primary messengers that affect specific signaling pathways (Hansen, 2006; Schieber and Chandel, 2014). In addition, different ROS concentrations have been observed to influence various cellular mechanisms. Studies have shown that a reduction in ROS promotes cell proliferation, moderate ROS levels promote the differentiation of stem cells, and highly elevated ROS results in apoptosis or necrosis (Milkovic et al., 2019).

During development, ROS have been shown to alter vital pathways by regulating transcription factors such as activator protein (Ap1), hypoxia-inducible factor (HIF1), nuclear factor κB (NF-κB), nuclear factor (NF)-E2 related factor 1 and 2 (Nrf1, Nrf2), and redox-sensitive factors such as redox effector factor-1 (Ref-1) and wingless-related integration site (Wnt), which play crucial roles in proliferation, differentiation, and apoptosis (Dennery, 2007). In addition to enzymatic and non-enzymatic cellular responses to oxidative stress, living tissues can combat the consequences of oxidative stress by activating redox signaling pathways by regulating transcription factors. Nuclear factor (NF)-E2-related factor 2 (Nrf2) is the master regulator of antioxidant cell responses and orchestrates the expression of antioxidant genes, enabling cells to mount a defense against oxidative damage (Ma, 2013). Being located at the intersection of crucial signaling pathways, Nrf2 can influence a number of critical cellular functions, which extend beyond the maintenance of redox balance but include cellular metabolism, proteostasis, mitochondrial function, inflammation, and cell differentiation during development. Therefore, Nrf2 exhibits biological dualism by being involved in many pathological conditions, such as cancer (Gallorini et al., 2024). It has been reported that prolonged or excessive activation of Nrf2 can disrupt embryonic development by perturbing the balance of redoxregulated genes (Harris and Hansen, 2012). Recently, the role of Nrf2 during the blastocyst stage was described, and its mRNA expression was found to be attenuated in porcine embryos cultured under metabolically stressful conditions (Glanzner et al., 2024).

Nrf2 is regulated by Kelch-like ECH-associated protein 1 (KEAP1), an important sensor of oxidative stress (Motohashi and Yamamoto, 2004). KEAP1 inhibits Nrf2 by promoting its ubiquitination. However, upon conformational changes in KEAP1 resulting from the oxidation of cysteine residues, Nrf2 is stabilized and moves into the nucleus, binding the antioxidant-responsive element (ARE) in the promoter region (Figure 4) (Yamamoto et al., 2018). Despite its crucial role, *Nrf2* null mice did not show any phenotype during embryonic development and are viable (Chan et al., 1996). Interestingly, a dual knockout of *Nrf1* and *Nrf2* was embryonically lethal. Nrf1 is known to regulate proteostasis and mitochondrial biogenesis (Leung et al., 2003).

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), a master regulator of inflammation, has also been identified as being regulated by ROS. ROS have been shown to activate and inhibit NF-kB function depending on the context. Cytoplasmic ROS (H2O2) have been observed to activate NFκB via oxidation and activation of IKK, whereas nuclear ROS (H_2O_2) have been observed to inhibit the binding of NF- κ B to DNA via oxidation of cysteine residues, thereby decreasing its transcriptional activity (Nakajima and Kitamura, 2013). Knocking out the proteins involved in NF-KB signaling also resulted in embryonic lethality, compromising not only redox homeostasis but also various mechanisms (Pasparakis et al., 2006). Other vital transcription factors that have been observed to be activated by ROS are hypoxia-inducible factors (HIF-1a and HIF-2a), in which oxidants help stabilize HIF factors and initiate the hypoxic response (Pagé et al., 2008). The knockout mouse model of HIF-1 α showed embryonic lethality after E8.0 with multiple developmental defects (Ryan et al., 1998). However, HIF-2 α null mice were viable but showed multiple organ pathologies (Scortegagna et al., 2003). Activator protein (Ap1) is a transcription factor complex consisting of Jun and Fos family proteins that regulate the oxidative stress response via modulation of gene expression. Knockout models of c-Fos, FosB, and JunD have suggested that these proteins are indispensable for embryonic development. In contrast, c-Jun, JunB, and Fra-1 are essential for both the embryonic and adult stages (Jochum et al., 2001).

Oxidative stress induces DNA, protein, and lipid damage during embryogenesis

Intrinsic ROS generation is tightly regulated to prevent overproduction and subsequent oxidative damage. However, imbalances can occur, mainly during critical developmental stages, which may lead to significant damage to macromolecules such as DNA, proteins, and lipids.

It is well known that ROS can cause DNA damage in developing cells. The activation of DNA repair mechanisms, such as the base excision repair (BER) and nucleotide excision repair (NER) pathways, aims to restore genomic integrity (Musson et al., 2022). However, persistent DNA damage can lead

Regulation of Nrf2 under both normal conditions and in the presence of excessive reactive oxygen species (ROS). Under normal conditions, Nrf2 is bound to its cytoplasmic inhibitor, Keap1 (Kelch-like ECH-associated protein 1). This interaction promotes the ubiquitination (Ub) of Nrf2, marking it for proteasomal degradation through the ubiquitin–proteasome pathway, thereby maintaining low intracellular levels of Nrf2. During oxidative stress, characterized by elevated ROS, the interaction between Nrf2 and Keap1 is disrupted. This results in the release of Nrf2, which then translocates into the nucleus. Once in the nucleus, Nrf2 binds to antioxidant response elements (ARE) in the promoter regions of target genes, initiating the transcription of antioxidant and cytoprotective genes that help mitigate oxidative damage.

to mutations and chromosomal abnormalities, contributing to developmental defects (Ribeiro et al., 2023).

ROS have been reported to cause a variety of lesions in DNA (such as base and/or sugar alterations, sugar-base cyclization, DNAprotein cross-links, and intra- and inter-strand cross-links), which, in turn, can result in DNA strand breaks. The consensus is that cell cycle checkpoints, including G1/S, intra-S, and G2/M, are involved in DNA damage response reactions. In addition, yH2AX, a marker of DNA damage, is an early indicator of DNA doublestrand breaks and plays an important role in the DNA damage response. It has been reported that mouse embryos fertilized with H₂O₂-treated sperm show the appearance of yH2AX and a delay in first cleavage (Wang et al., 2013). In addition, checkpoint proteins ATM, Chk1, and Cdc25 are phosphorylated and activated in zygotes fertilized with H₂O₂-treated sperm (Song et al., 2014), which indicates that embryos fertilized with treated sperm might be arrested at the G2/M checkpoint through the ATM \rightarrow Chk1 \rightarrow Cdc25B/Cdc25C pathway.

ROS can induce structural and functional changes in proteins and disrupt critical developmental processes. ROS can oxidize thiol (-SH) groups in cysteine residues, resulting in the formation of disulfide bonds between proteins, which in turn alters their conformation and aggregation states. This affects crucial processes, such as fertilization, cell division, and morphogenesis, where damage to the extracellular matrix and

cytoskeletal proteins has been observed (Hernebring et al., 2006; Wong and Wessel, 2008). In addition, several other amino acids have been shown to be prone to side-chain modifications by free radicals (Ahmad et al., 2016). For instance, oxidation of methionine to its oxidized form, methionine sulfoxide, can significantly affect S-adenosylmethionine (SAM), a universal methyl donor, resulting in hypomethylation in hESCs (Shiraki et al., 2014; Winkle and Ryznar, 2019). Similarly, the tyrosine residue in superoxide dismutase, a crucial antioxidant, is prone to nitration by peroxynitrite, rendering SOD inactive (Demicheli et al., 2018). Iron-sulfur (Fe-S) clusters in DNA repair enzymes are also prone to oxidation, which compromises the base-excision repair pathway (Musson et al., 2022). Free radicals have also been shown to result in the carbonylation of chaperone proteins such as HSP90, which plays a crucial role in protein folding during embryonic development. HSP90 has been shown to be associated with OCT4 and NANOG and to prevent their ubiquitin-dependent degradation. Therefore, it can be inferred that HSP90 dysfunction due to carbonylation can directly affect the stability of OCT4 and NANOG, directly influencing pluripotency and early embryonic differentiation (Bradley et al., 2012).

Advanced oxidation protein products (AOPPs) are markers of oxidation-mediated protein damage and are usually carried by plasma proteins. As a key product of oxidative reactions, AOPPs and their effects on the female reproductive system have received increasing attention. A high level of AOPPs in the follicular fluid has been reported to have adverse effects on oocytes and early embryonic development. High AOPP concentrations in the follicular fluid are also associated with poor IVF outcomes (Song et al., 2009). AOPPs have also been observed to result in cellular senescence in placental trophoblast cells, disrupting trophoblast cell invasion and placental development and contributing to preeclampsia (PE). Similarly, their accumulation is correlated with infertility, congenital malformations, and pregnancy-related complications (Li et al., 2022).

Lipid peroxidation is a chain reaction induced by free radicals (FR) that impair cell membrane integrity. Free radicals, such as hydroxyl radicals ($^{\bullet}$ OH) or superoxide anions ($O_2^{\bullet-}$), remove a hydrogen atom from polyunsaturated fatty acids (PUFAs) in cell membranes, forming lipid radicals. These lipid radicals react with molecular oxygen to form peroxyl radicals (ROO[•]). Thus, the formed peroxyl radical removes hydrogen atoms from adjacent PUFAs, generating new radicals and lipid hydroperoxides, further damaging cellular membranes. The reaction continues until the antioxidant interrupts and neutralizes the ROS. Lipid radicals also react with each other to form non-reactive products such as malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE) (Ayala et al., 2014). Overall, lipid peroxidation compromises the membrane integrity, impairs enzyme function, and triggers apoptosis and necrosis. It has also been implicated in several congenital abnormalities.

Excessive lipid peroxidation in the uterine epithelium has been reported to cause implantation failure and pregnancy loss (Lu et al., 2024). Post-implantation, lipid peroxidation has also been observed to interfere with key developmental processes, resulting in several congenital anomalies such as esophageal atresia and autosomal dominant polycystic kidney disease.

Oxidative stress and developmental challenges in mammalian embryogenesis

Oxidative stress, characterized by excess reactive oxygen species (ROS) in cells, has been extensively studied for its detrimental effects on embryonic and fetal development in mammals (Takahashi, 2012). The most obvious effect of oxidative stress is growth impairment. Intrauterine growth restriction (IUGR) is a common consequence of oxidative stress that occurs during pregnancy. Maternal exposure to high levels of ROS also resulted in reduced fetal growth in mice (Xu et al., 2006). Researchers have attributed this to impaired placental function and reduced nutrient transport. This phenomenon manifests itself as impaired skeletal development. Schoppa et al. (2022) showed that ROS could inhibit osteoblast differentiation in mouse embryos, leading to skeletal abnormalities.

Oxidative stress-induced growth retardation in embryos often results from the disruption of critical cellular processes. Impaired cell proliferation, altered cell cycle regulation, and reduced nutrient uptake due to oxidative damage can all contribute to reduced fetal growth (Joo et al., 2021). In contrast, intrauterine growth restriction (IUGR) increases the risk of preterm births and longterm health issues in offspring. Organogenesis critically depends on a precise orchestration of events: embryonic tissues must proliferate sufficiently to interact by direct fusion, migration, or generation of permissive and instructive signals. Hence, growth retardation and inhibition of proliferation inevitably result in structural malformations. These malformations may affect various organs and systems, including the cardiovascular, nervous, and musculoskeletal systems. For example, oxidative stress-induced damage to neural crest cells can result in congenital heart defects, neural tube defects, and craniofacial abnormalities (Carmichael et al., 2023) (Table 2).

Oxidative stress during embryogenesis can affect neurodevelopment (Rains et al., 2021). Studies in rats have demonstrated that oxidative stress induced by prenatal alcohol exposure leads to impaired neuronal migration and neurogenesis in the fetal brain (Sogut et al., 2015). The developing fetal brain is particularly vulnerable to oxidative stress because of its high metabolic rate and low antioxidant defense system. Oxidative damage can disrupt essential processes, such as neurogenesis, neuronal migration, and synaptogenesis, leading to long-lasting changes in brain structure and function (Chen et al., 2012; Derme et al., 2024).

In the absence of fully functional compensatory mechanisms, mutations in key transcription factors, such as those in the HIF transcription complex, result in stage- and gene-specific effects on organogenesis, including placental formation and heart morphogenesis [reviewed by Dunwoodie (2009)]. Recently, attention has shifted to include epigenetic modifications. Oxidative stress can induce epigenetic modifications such as DNA methylation and histone modifications in developing tissues (Scarpato et al., 2020). These modifications can alter gene expression patterns; although primarily a coping strategy related to "developmental plasticity" (Ducsay et al., 2018), it may result in developmental abnormalities. Epigenetic changes induced by oxidative stress may persist into adulthood and influence an individual's susceptibility to chronic diseases (Menezo et al., 2016).

Oxidative stress has also been reported to impair apoptosis regulation. Cells experiencing severe oxidative stress may undergo apoptosis or enter a state of cellular senescence (Redza-Dutordoir and Averill-Bates, 2016). Although apoptosis is essential for eliminating damaged cells, excessive apoptosis can impair proper tissue development. In the last few decades, many researchers have attempted to decipher the molecular mechanisms that initiate and execute apoptosis during development. Two distinct but ultimately converging pathways initiate apoptosis: the mitochondrial, intrinsic, or B-cell lymphoma 2 (BCL-2)-regulated pathway and the extrinsic or death receptor pathway. Mice lacking individual apoptotic regulators provided evidence for the requirement of specific regulators and suggested that developmental apoptosis is essential for mammalian development. In particular, it has become clear that reducing apoptosis typically causes webbed digits, vaginal septa, and lymphadenopathy, which commonly cause exencephaly, cleft face or palate, and occasionally omphalocele (Voss and Strasser, 2020). Cellular senescence can disrupt tissue homeostasis by altering the secretory profile of affected cells, influencing nearby cells, and contributing to developmental abnormalities (Lorda-Diez et al., 2015).

TABLE 2 List	of congenital	anomalies	associated	with	oxidative s	stress.
--------------	---------------	-----------	------------	------	-------------	---------

Congenital anomaly	Affected tissues	Source of oxidative stress
Biliary atresia	Bile duct epithelium	Alterations in mtDNA copy number, viral infections during pregnancy, hypomethylation, and immunological dysregulation (Impellizzeri et al., 2020)
Congenital heart defects	Cardiac tissue, valves	Maternal alcohol, cigarette smoking, industrial chemical exposure, viral infections, maternal diabetes, and compromised folic acid pathway are linked to the condition (Laforgia et al., 2018)
Craniofacial malformations	Facial mesenchyme	ALX3 transcription factor disruption leads to excessive apoptosis in neural crest cells, maternal diabetes, and alcohol exposure (García-Sanz et al., 2017)
Diaphragmatic hernia	Diaphragmatic musculature	NADPH oxidase-induced ROS in pleuroperitoneal folds impaired muscle differentiation; retinoic acid deficiency (Tovar, 2012; Aras-López et al., 2016)
Esophageal atresia	Esophageal epithelium	Lipid peroxidation, malondialdehyde (MDA) levels, and carbonic anhydrase (CA) levels are high; catalase, SOD, and G-6-PD activities are lower (Impellizzeri et al., 2020)
Fetal alcohol syndrome	CNS, facial structures	Ethanol metabolism byproducts increase ROS overproduction, leading to mitochondrial damage and maternal alcohol consumption (González-Flores et al., 2024)
Neural tube defects	Neural tube, CNS	DNA damage, disrupted cell signaling pathways involving Pax3 and Shh genes, impaired neural fold closure, maternal diabetes, hyperglycemia, and folate deficiency (Laforgia et al., 2018)
Autosomal dominant polycystic kidney disease	Renal tubules, renal blood vessels	Lipid peroxidation; 8-epi-PGF 2α levels are high, and SOD activity is reduced in ADPKD patients; reduced nitric oxide production (Lucchi et al., 1993; Merta et al., 2003)
Retinopathy of prematurity	Retinal vasculature	Hyperoxia-induced ROS inhibition of angiogenesis in premature birth babies (Ozsurekci and Aykac, 2016)

ROS modulate epigenetic mechanisms during embryonic development

Epigenetic regulators are susceptible to free radicals. Free radicals can directly oxidize DNA. Guanine was found to react with the hydroxyl radical (OH) to form 8-hydroxy-2'deoxyguanosine (8-OHdG), which inhibits DNA methylation at the nearest cytosine bases, resulting in local hypomethylation. Research has shown that the presence of 8-OHdG correlates with reduced fertilization rates and low-quality embryos during in vitro fertilization (Seino et al., 2002). It has also been demonstrated as a potential biomarker for oxidative stress-induced hyperglycemia prior to the development of gestational diabetes mellitus (Urbaniak et al., 2020). Similarly, 5-methylcytosine (5 mC) is directly oxidized to 5hydroxymethylcytosine (5-hmC), rendering it unrecognizable by DNA methyltransferases and leading to changes in the overall methylation pattern. This modification has also been associated with neurodevelopmental and autism spectrum disorders (Khoodoruth et al., 2024).

Another group of epigenetic modifiers is DNA methyltransferases (DNMTs), a family of enzymes that transfer methyl groups from S-adenosylmethionine (SAM) to cytosine residues in DNA, predominantly at CpG dinucleotides. DNMT1 primarily maintains methylation by copying the methylation patterns during DNA replication, whereas DNMT3A and DNMT3B are involved in *de novo* DNA methylation. ROS can directly oxidize DNMTs, resulting in global hypomethylation, and can indirectly increase the expression of DNMTs, resulting in hypermethylation (Kietzmann et al., 2017). ROS-induced DNA hypomethylation and hypermethylation have been linked to hereditary sensory neuropathy and congenital heart disease, respectively (Klein et al., 2011; Serra-Juhé et al., 2015).

In addition to DNA, histone proteins are subjected to direct oxidation by reactive oxygen species (ROS). Modifications to core histone proteins H3 and H4, due to their accessible tails around the nucleosome, alter chromatin organization and gene expression patterns. Similar to many other proteins, cysteine residues in histone proteins are liable to direct oxidation (Kietzmann et al., 2017). Apart from cysteine residues, histone proteins can also be TABLE 3 ROS alter epigenetic landscape during embryonic development.

Epigenetic modification	Observation during development			
Oxidation of DNA				
Guanine + ([●] OH) → 8-OhdG	Biomarker of oxidative stress Associated with lower fertility rates (Seino et al., 2002), gestational diabetes (Urbaniak et al., 2020), preterm birth (Murata et al., 2024), and congenital heart disease (Vanreusel et al., 2023)			
$5 \text{ mC} + (^{\bullet}\text{OH}) \rightarrow 5 \text{hmC}$	Associated with autism spectrum disorder (ASD) and neurodevelopmental disorders (Khoodoruth et al., 2024)			
Modulation of methyltransferases				
Direct oxidation	Hypomethylation			
DNIMT CH - 11202 S DNMT COLL	DNMT1 ^{-/-} , DNMT3A ^{-/-} , and DNMT3B ^{-/-} ESCs failed to differentiate either completely or partially while retaining stem cell characteristics (Jackson et al., 2004)			
DNM1-5⊓ + H2O2 → DNM1-50H	Neural tube defects (Chen et al., 2010), ICF syndrome (Jin et al., 2008), and hereditary sensory neuropathy (Klein et al., 2011)			
Indirect effect	Hypermethylation			
Results in hypermethylation	Congenital heart disease (Serra-Juhé et al., 2015)			
Oxidation/modulation of histone proteins				
Direct oxidation				
Histone—SH + H2O2 →histone–SOH + H2O	Direct oxidation has been shown to impact gene expression, impair cellular differentiation, disrupt epigenetic reprogramming, and is associated with an increased risk of neural tube defects			
Tyrosine nitration—H1, H2B, and H3 (DNA protection)				
Carbonyl formation—H3 (chromatin relaxation)				
Cysteine glutathionylation—H3 (chromatin relaxation)				
Lysine Formylation—H1, H2A, H3, and H4 (blocks methylation and acetylation)				
Indirect effect				
H3K4me1/2/3 (↑)—gene activation	Neural tube defects (Li et al., 2019), Congenital heart defects (Wang et al., 2022a)			
H3K9me2/3 (†)—gene repression				
H3K27me3 (↓)—gene activation				
H3K36me3 (↑)—gene activation				
H3/H4 acetylation (↑)—gene activation				
H3S10 phosphorylation (†)—chromatin relaxation				

oxidized at different amino acid residues. For instance, histones H1, H2B, and H3 undergo nitration and oxidation by reacting with peroxynitrite, resulting in alterations to chromatin structure and genome stability (Khan et al., 2016).

ROS can also affect the histone proteins indirectly. ROS reduce SAM levels. Since SAM is a cofactor for histone methyltransferases (HMTs), its reduction leads to decreased histone methylation (Mentch et al., 2015). Moreover, ROS can modulate the expression of

histone demethylases (HDMs); for example, the expression of JmjC KDMs is reduced by the decreased availability of cofactors, such as Fe(II) and ascorbate, whereas ROS have been observed to increase the expression of KDM6B via STAT6 signaling (Monfort and Wutz, 2013; He et al., 2015). Overall, it can be concluded that ROS play a crucial role in the modulation of the expression, activity, and localization of histone proteins that affect the epigenetic landscape both during development and disease (Table 3).

FIGURE 5

Effect of oxidative stress on embryonic development.

Implications of prenatal oxidative stress in psychological disorders

The prenatal period is a crucial phase during which the developing brain is highly vulnerable to environmental influences, and there is ongoing discussion about a causal relationship between oxidative stress and the development of psychological disorders, as these influences significantly shape an individual's psychological and cognitive wellbeing (Salim, 2014). Recent research indicates that oxidative stress during pregnancy can significantly increase the risk of developing psychological disorders later in life (Figure 5) (Pham et al., 2023). Research using high oxygen tension (hyperoxia) in neonatal mice demonstrated that oxidative stress induces reactive oxygen species, cell death, and disruptions in hippocampal circuits (Abbah et al., 2022). While such studies tend to focus on learning and memory processes, other studies have suggested that oxidative stress may also play a crucial role in the etiology of autism spectrum disorders (ASD) (Bjørklund et al., 2020). Oxidative stress and genetic polymorphisms in antioxidant enzymes such as glutathione transferases (GSTs) are significant contributors to the development of ASD (Mandic-Maravic et al., 2019). Perinatal complications such as prematurity, neonatal jaundice, and respiratory distress syndrome significantly increase the risk of ASD. Moreover, the GSTM1 genotype interacts with prenatal factors, including medication use, and influences ASD risk, particularly in patients homozygous for GSTM1-null. These findings underscore the importance of oxidative stress and genetic factors in ASD etiology and potential therapeutic approaches (Mandic-Maravic et al., 2019). Additionally, high levels of ROS and immune system dysfunction in ASD patients suggest that oxidative stress and inflammation may contribute to the pathogenesis and severity of ASD (Pangrazzi et al., 2020).

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder in children that is linked to abnormalities in particular circumscribed brain regions and disturbances in the catecholaminergic pathway. Its pathophysiology, although not fully understood, involves multiple factors, including increased oxidative stress and neuroinflammation (Corona, 2020). Oxidative damage during critical periods of brain development can affect the maturation of neural circuits involved in executive function and attention regulation. Urinary concentrations of oxidative stress biomarkers linked to inflammation, such as PGF2a, correlate with increased behavioral problems, indicative of ADHD (Rommel et al., 2020). In addition, early risk factors for ADHD, such as maternal infections, exposure to pollutants, alcohol, tobacco, and obesity, elevate maternal inflammation levels (Costenbader and Karlson, 2006; Rommel et al., 2020). This suggests that prenatal oxidative stress driven by these inflammatory conditions may play a critical role in the development of ADHD. The interplay between oxidative stress and inflammation during prenatal development is crucial for understanding the pathophysiology of ADHD and highlights the need for strategies to mitigate oxidative stress during pregnancy to reduce ADHD risk.

These conditions demonstrate a complex interplay between oxidative stress, genetic factors, and environmental factors. Understanding this interplay is essential for developing effective strategies against oxidative stress during pregnancy that may reduce the risk of various psychological disorders.

Future directions

Oxidative stress represents a significant challenge to embryonic development that is capable of disrupting crucial cellular processes and leading to growth retardation and malformations in the embryo and fetus. A deeper understanding of the intricacies of cellular responses to oxidative stress and their impact on development is essential for advancing our knowledge of developmental biology and improving the outcomes of pregnancies at risk of oxidative stress-related complications. Further research is needed to uncover specific molecular targets and pathways that can be therapeutically manipulated to protect the developing embryo from the detrimental effects of oxidative stress.

Understanding the cellular mechanisms and signaling pathways activated by oxidative stress during embryonic development is crucial for developing strategies to mitigate its adverse effects. Researchers are exploring potential therapeutic interventions to counteract oxidative stress during pregnancy, including the administration of antioxidants (Mistry and Williams, 2011). However, the timing, dosage, and safety of such interventions should be carefully considered to avoid unintended consequences.

Conclusion

Published research has highlighted the significant impact of oxidative stress on the growth and organogenesis of mammalian embryos and fetuses. Oxidative stress-induced intrauterine growth restriction (IUGR), skeletal abnormalities, neurodevelopmental consequences, cardiovascular defects, gastrointestinal malformations, and limb abnormalities underscore the vulnerability of prenatal development to ROS imbalance. Therefore, extensive research is required to understand the impact of ROS on both pre- and post-implantation embryonic development. Understanding these effects is critical for developing strategies to mitigate oxidative stress-related developmental disorders and to improve the outcomes of pregnancies exposed to oxidative stress-inducing factors. Further research is needed to uncover the intricate mechanisms underlying these effects and explore potential interventions to protect embryonic and fetal development from the adverse consequences of oxidative stress.

Interdisciplinary collaboration is indispensable for gaining a comprehensive understanding of the relationship between oxidative stress and prenatal development. The intricate nature of this relationship demands expertise from various fields, including molecular biology, toxicology, epidemiology, clinical medicine, and neuroscience. By combining insights from these disciplines and employing cutting-edge techniques and technologies, researchers can uncover the mechanisms, risk factors, and potential interventions that contribute to the understanding of oxidative stress during prenatal development. These collaborative efforts hold the promise of improving maternal and fetal health outcomes and addressing the long-term consequences of oxidative stress in offspring.

Author contributions

SD: Writing-original draft, Writing-review and editing. MG: Writing-original draft, Writing-review and editing. MG: Writing-original draft, Writing-review and editing. GP: Writing-original draft, writing-review and editing. LS: Conceptualization, Writing-original draft, writing-review and editing. BB-S: Conceptualization, Writing-original draft, Writing-review and editing.

References

Abbah, J., Vacher, C.-M., Goldstein, E. Z., Li, Z., Kundu, S., Talbot, B., et al. (2022). Oxidative stress-induced damage to the developing Hippocampus is mediated by $GSK3\beta$. *J. Neurosci.* 42, 4812–4827. doi:10.1523/jneurosci.2389-21.2022

Ahmad, S., Khan, H., Shahab, U., Rehman, S., Rafi, Z., Khan, M. Y., et al. (2016). Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine. *Front. Biosci.* (Sch. Ed.) 9, 71–87. doi:10.2741/s474

Ahmed, A., Patil, G., Sonkar, V. K., Jensen, M., Streeter, J., and Dayal, S. (2024). Loss of endogenous Nox2-NADPH oxidase does not prevent age-induced platelet activation and arterial thrombosis in mice. *Res. Pr. Thromb. Haemost.* 8, 102597. doi:10.1016/j.rpth.2024.102597

Alektiar, J. M., Shan, M., Radyk, M. D., Zhang, L., Halbrook, C. J., Lin, L., et al. (2024). Malic enzyme 1 knockout has no deleterious phenotype and is favored in the male germline under standard laboratory conditions. *PLOS ONE* 19, e0303577. doi:10.1371/journal.pone.0303577

Al-Gubory, K. H. (2014). Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. *Reprod. Biomed. Online* 29, 17–31. doi:10.1016/j.rbmo.2014.03.002

Antonenkov, V. D., Grunau, S., Ohlmeier, S., and Hiltunen, J. K. (2010). Peroxisomes are oxidative organelles. *Antioxid. Redox Signal.* 13, 525–537. doi:10.1089/ars.2009.2996

Funding

The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

Acknowledgments

All the figures presented in the article were created using Biorender.com.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Aras-López, R., Tovar, J. A., and Martínez, L. (2016). Possible role of increased oxidative stress in pulmonary hypertension in experimental diaphragmatic hernia. *Pediatr. Surg. Int.* 32, 141–145. doi:10.1007/s00383-015-3826-5

Atashi, F., Modarressi, A., and Pepper, M. S. (2015). The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. *Stem Cells Dev.* 24, 1150–1163. doi:10.1089/scd.2014.0484

Ayala, A., Muñoz, M. F., and Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. *Oxidative Med. Cell. Longev.* 2014, 360438. doi:10.1155/2014/360438

Bai, J., Wang, Y., Deng, S., Yang, Y., Chen, S., and Wu, Z. (2024). Microplastics caused embryonic growth retardation and placental dysfunction in pregnant mice by activating GRP78/IRE1α/JNK axis induced apoptosis and endoplasmic reticulum stress. *Part. Fibre Toxicol.* 21, 36. doi:10.1186/s12989-024-00595-5

Barati, E., Nikzad, H., and Karimian, M. (2020). Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. *Cell. Mol. Life Sci.* 77, 93–113. doi:10.1007/s00018-019-03253-8

Bjørklund, G., Meguid, N. A., El-Bana, M. A., Tinkov, A. A., Saad, K., Dadar, M., et al. (2020). Oxidative stress in autism spectrum disorder. *Mol. Neurobiol.* 57, 2314–2332. doi:10.1007/s12035-019-01742-2

Blerkom, J. V. (2004). Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. *Reproduction* 128, 269–280. doi:10.1530/rep.1.00240

Bondareva, A. A., Capecchi, M. R., Iverson, S. V., Li, Y., Lopez, N. I., Lucas, O., et al. (2007). Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. *Free Radic. Biol. Med.* 43, 911–923. doi:10.1016/j.freeradbiomed.2007.05.026

Bradley, E., Bieberich, E., Mivechi, N. F., Tangpisuthipongsa, D., and Wang, G. (2012). Regulation of embryonic stem cell pluripotency by heat shock protein 90. *Stem Cells* 30, 1624–1633. doi:10.1002/stem.1143

Budani, M. C., Gallorini, M., Elsallabi, O., Pino, V., Fratta, I. L., Pesce, M., et al. (2022). Cigarette smoke is associated with up-regulation of inducible NOS and COX-2 protein expression and activity in granulosa cells of women undergoing *in vitro* fertilization. *Reprod. Toxicol.* 113, 128–135. doi:10.1016/j.reprotox.2022.08.013

Cantu-Medellin, N., and Kelley, E. E. (2013). Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. *Redox Biol.* 1, 353–358. doi:10.1016/j.redox.2013.05.002

Carmichael, S. L., Yang, W., Ma, C., Desrosiers, T. A., Weber, K., Collins, R. T., et al. (2023). Oxidative balance scores and neural crest cell-related congenital anomalies. *Birth Defects Res.* 115, 1151–1162. doi:10.1002/bdr2.2211

Chan, J. Y., Kwong, M., Lu, R., Chang, J., Wang, B., Yen, T. S. B., et al. (1998). Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. *EMBO J.* 17, 1779–1787. doi:10.1093/emboj/17.6.1779

Chan, K., Lu, R., Chang, J. C., and Kan, Y. W. (1996). NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. *Proc. Natl. Acad. Sci.* 93, 13943–13948. doi:10.1073/pnas.93.24.13943

Chen, G., Ke, Z., Xu, M., Liao, M., Wang, X., Qi, Y., et al. (2012). Autophagy is a protective response to ethanol neurotoxicity. *Autophagy* 8, 1577–1589. doi:10.4161/auto.21376

Chen, X., Guo, J., Lei, Y., Zou, J., Lu, X., Bao, Y., et al. (2010). Global DNA hypomethylation is associated with NTD-affected pregnancy: a case-control study. *Birth Defects Res. Part A Clin. Mol. Teratol.* 88, 575–581. doi:10.1002/bdra.20670

Chen, Y.-I., Wei, P.-C., Hsu, J.-L., Su, F.-Y., and Lee, W.-H. (2015). NPGPx (GPx7): a novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. *Am. J. Transl. Res.* 8, 1626–1640.

Chen, Z., Keaney, J. F., Schulz, E., Levison, B., Shan, L., Sakuma, M., et al. (2004). Decreased neointimal formation in Nox2-deficient mice reveals a direct role for NADPH oxidase in the response to arterial injury. *Proc. Natl. Acad. Sci.* 101, 13014–13019. doi:10.1073/pnas.0405389101

Cheng, N., Zhang, W., Chen, W., Jin, J., Cui, X., Butte, N. F., et al. (2011). A mammalian monothiol glutaredoxin, Grx3, is critical for cell cycle progression during embryogenesis. *FEBS J.* 278, 2525–2539. doi:10.1111/j.1742-4658.2011.08178.x

Cho, Y. M., Kwon, S., Pak, Y. K., Seol, H. W., Choi, Y. M., Park, D. J., et al. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. *Biochem. Biophys. Res. Commun.* 348, 1472–1478. doi:10.1016/j.bbrc.2006.08.020

Cobbaut, M., and Lint, J. V. (2018). Function and regulation of protein kinase D in oxidative stress: a tale of isoforms. *Oxidative Med. Cell. Longev.* 2018, 2138502. doi:10.1155/2018/2138502

Conrad, M., Jakupoglu, C., Moreno, S. G., Lippl, S., Banjac, A., Schneider, M., et al. (2004). Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. *Mol. Cell. Biol.* 24, 9414–9423. doi:10.1128/mcb.24.21.9414-9423.2004

Corona, J. C. (2020). Role of oxidative stress and neuroinflammation in attentiondeficit/hyperactivity disorder. *Antioxidants* 9, 1039. doi:10.3390/antiox9111039

Costenbader, K. H., and Karlson, E. W. (2006). Cigarette smoking and autoimmune disease: what can we learn from epidemiology? *Lupus* 15, 737-745. doi:10.1177/0961203306069344

Dalton, T. P., Dieter, M. Z., Yang, Y., Shertzer, H. G., and Nebert, D. W. (2000). Knockout of the mouse glutamate cysteine ligase catalytic subunit (gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. *Biochem. Biophys. Res. Commun.* 279, 324–329. doi:10.1006/bbrc.2000.3930

Danielsson, B., Vargesson, N., and Danielsson, C. (2023). Teratogenicity and Reactive Oxygen Species after transient embryonic hypoxia: experimental and clinical evidence with focus on drugs causing failed abortion in humans. *Reprod. Toxicol.* 122, 108488. doi:10.1016/j.reprotox.2023.108488

Deepa, S. S., Bhaskaran, S., Espinoza, S., Brooks, S. V., McArdle, A., Jackson, M. J., et al. (2017). A new mouse model of frailty: the Cu/Zn superoxide dismutase knockout mouse. *GeroScience* 39, 187–198. doi:10.1007/s11357-017-9975-9

DeFreitas, M. J., Katsoufis, C. P., Benny, M., Young, K., Kulandavelu, S., Ahn, H., et al. (2022). Educational review: the impact of perinatal oxidative stress on the developing kidney. *Front. Pediatr.* 10, 853722. doi:10.3389/fped.2022.853722

Deluao, J. C., Winstanley, Y., Robker, R. L., Pacella-Ince, L., Gonzalez, M. B., and McPherson, N. O. (2022). Oxidative Stress and Reproductive Function: reactive oxygen

species in the mammalian pre-implantation embryo. *Reproduction* 164, F95–F108. doi:10.1530/rep-22-0121

Demicheli, V., Moreno, D. M., and Radi, R. (2018). Human Mn-superoxide dismutase inactivation by peroxynitrite: a paradigm of metal-catalyzed tyrosine nitration *in vitro* and *in vivo*. *Metallomics* 10, 679–695. doi:10.1039/c7mt00348j

Dennery, P. A. (2007). Effects of oxidative stress on embryonic development. Birth Defects Res. Part C. Embryo Today Rev. 81, 155–162. doi:10.1002/bdrc.20098

Dennery, P. A. (2010). Oxidative stress in development: nature or nurture? *Free Radic. Biol. Med.* 49, 1147–1151. doi:10.1016/j.freeradbiomed.2010.07.011

Derme, M., Briante, M., Ceccanti, M., Giannini, G., Vitali, M., Messina, M. P., et al. (2024). Prenatal alcohol exposure and metabolic disorders in pediatrics: the role of the oxidative stress—a review of the literature. *Children* 11, 269. doi:10.3390/children11030269

Diniz, M. S., Magalhães, C. C., Tocantins, C., Grilo, L. F., Teixeira, J., and Pereira, S. P. (2023). Nurturing through nutrition: exploring the role of antioxidants in maternal diet during pregnancy to mitigate developmental programming of chronic diseases. *Nutrients* 15, 4623. doi:10.3390/nu15214623

Donkó, Á., Ruisanchez, É., Orient, A., Enyedi, B., Kapui, R., Péterfi, Z., et al. (2010). Urothelial cells produce hydrogen peroxide through the activation of Duox1. *Free Radic. Biol. Med.* 49, 2040–2048. doi:10.1016/j.freeradbiomed.2010.09.027

Ducsay, C. A., Goyal, R., Pearce, W. J., Wilson, S., Hu, X.-Q., and Zhang, L. (2018). Gestational hypoxia and developmental plasticity. *Physiol. Rev.* 98, 1241–1334. doi:10.1152/physrev.00043.2017

Dunwoodie, S. L. (2009). The role of hypoxia in development of the mammalian embryo. *Dev. Cell.* 17, 755–773. doi:10.1016/j.devcel.2009.11.008

Dutta, S., Henkel, R., Sengupta, P., and Agarwal, A. (2020). Physiological role of ROS in sperm function. *Androl. ART Antioxidants*, 337–345. doi:10.1007/978-3-030-32300-4_27

Erickson, J. C., Hollopeter, G., Thomas, S. A., Froelick, G. J., and Palmiter, R. D. (1997). Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. *J. Neurosci.* 17, 1271–1281. doi:10.1523/jneurosci.17-04-01271.1997

Facucho-Oliveira, J. M., and John, J. C.St. (2009). The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. *Stem Cell. Rev. Rep.* 5, 140–158. doi:10.1007/s12015-009-9058-0

Fathollahipour, S., Patil, P. S., and Leipzig, N. D. (2019). Oxygen regulation in development: lessons from embryogenesis towards tissue engineering. *Cells Tissues Organs* 205, 350–371. doi:10.1159/000493162

Ferreira, C., Bucchini, D., Martin, M.-E., Levi, S., Arosio, P., Grandchamp, B., et al. (2000). Early embryonic lethality of H Ferritin gene deletion in mice. *J. Biol. Chem.* 275, 3021–3024. doi:10.1074/jbc.275.5.3021

Florian, S., Krehl, S., Loewinger, M., Kipp, A., Banning, A., Esworthy, S., et al. (2010). Loss of GPx2 increases apoptosis, mitosis, and GPx1 expression in the intestine of mice. *Free Radic. Biol. Med.* 49, 1694–1702. doi:10.1016/j.freeradbiomed.2010.08.029

Fomenko, D. E., Novoselov, S. V., Natarajan, S. K., Lee, B. C., Koc, A., Carlson, B. A., et al. (2009). MsrB1 (Methionine-R-sulfoxide reductase 1) knock-out mice roles of Msrb1 in redox regulation and identification of A novel selenoprotein form. J. Biol. Chem. 284, 5986–5993. doi:10.1074/jbc.m805770200

Gallorini, M., Carradori, S., Panieri, E., Sova, M., and Saso, L. (2024). Modulation of NRF2: biological dualism in cancer, targets and possible therapeutic applications. *Antioxid. Redox Signal.* 40, 636–662. doi:10.1089/ars.2022.0213

García-Sanz, P., Mirasierra, M., Moratalla, R., and Vallejo, M. (2017). Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy. *Sci. Rep.* 7, 389. doi:10.1038/s41598-017-00334-1

Gavazzi, G., Banfi, B., Deffert, C., Fiette, L., Schappi, M., Herrmann, F., et al. (2006). Decreased blood pressure in NOX1-deficient mice. *FEBS Lett.* 580, 497–504. doi:10.1016/j.febslet.2005.12.049

Geiszt, M., Witta, J., Baff, J., Lekstrom, K., and Leto, T. L. (2003). Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. *FASEB J.* 17, 1–14. doi:10.1096/fj.02-1104fje

Gholipourmalekabadi, M., Zhao, S., Harrison, B. S., Mozafari, M., and Seifalian, A. M. (2016). Oxygen-generating biomaterials: a new, viable paradigm for tissue engineering? *Trends Biotechnol.* 34, 1010–1021. doi:10.1016/j.tibtech.2016.05.012

Glanzner, W. G., Sousa, L. R., Gutierrez, K., Macedo, M. P., Currin, L., Perecin, F., et al. (2024). NRF2 attenuation aggravates detrimental consequences of metabolic stress on cultured porcine parthenote embryos. *Sci. Rep.* 14, 2973. doi:10.1038/s41598-024-53480-8

González-Flores, D., Márquez, A., and Casimiro, I. (2024). Oxidative effects in early stages of embryo development due to alcohol consumption. *Int. J. Mol. Sci.* 25, 4100. doi:10.3390/ijms25074100

Grasberger, H., Deken, X. D., Mayo, O. B., Raad, H., Weiss, M., Liao, X.-H., et al. (2012). Mice deficient in dual oxidase maturation factors are severely hypothyroid. *Mol. Endocrinol.* 26, 481–492. doi:10.1210/me.2011-1320 Gurjar, M. V., Deleon, J., Sharma, R. V., and Bhalla, R. C. (2001). Role of reactive oxygen species in IL-1 beta-stimulated sustained ERK activation and MMP-9 induction. *Am. J. Physiol.-Hear. Circ. Physiol.* 281, H2568–H2574. doi:10.1152/ajpheart.2001.281.6.h2568

Hansen, J. M. (2006). Oxidative stress as a mechanism of teratogenesis. *Birth Defects Res. Part C. Embryo Today Rev.* 78, 293–307. doi:10.1002/bdrc.20085

Harris, C., and Hansen, J. M. (2012). Nrf2-Mediated resistance to oxidant-induced redox disruption in embryos. *Birth Defects Res. Part B Dev. Reprod. Toxicol.* 95, 213–218. doi:10.1002/bdrb.21005

Harrison, B. S., Eberli, D., Lee, S. J., Atala, A., and Yoo, J. J. (2007). Oxygen producing biomaterials for tissue regeneration. *Biomaterials* 28, 4628–4634. doi:10.1016/j.biomaterials.2007.07.003

He, C., Larson-Casey, J. L., Gu, L., Ryan, A. J., Murthy, S., and Carter, A. B. (2015). Cu,Zn–Superoxide dismutase–mediated redox regulation of jumonji domain containing 3 modulates macrophage polarization and pulmonary fibrosis. *Am. J. Respir. Cell. Mol. Biol.* 55, 58–71. doi:10.1165/rcmb.2015-01830c

Hernebring, M., Brolén, G., Aguilaniu, H., Semb, H., and Nyström, T. (2006). Elimination of damaged proteins during differentiation of embryonic stem cells. *Proc. Natl. Acad. Sci.* 103, 7700–7705. doi:10.1073/pnas.0510944103

Hitchler, M. J., and Domann, F. E. (2007). An epigenetic perspective on the free radical theory of development. *Free Radic. Biol. Med.* 43, 1023–1036. doi:10.1016/j.freeradbiomed.2007.06.027

Ho, Y.-S., Magnenat, J.-L., Bronson, R. T., Cao, J., Gargano, M., Sugawara, M., et al. (1997). Mice deficient in cellular glutathione peroxidase develop normally and show No increased sensitivity to hyperoxia. *J. Biol. Chem.* 272, 16644–16651. doi:10.1074/jbc.272.26.16644

Ho, Y.-S., Xiong, Y., Ho, D. S., Gao, J., Chua, B. H. L., Pai, H., et al. (2007). Targeted disruption of the glutaredoxin 1 gene does not sensitize adult mice to tissue injury induced by ischemia/reperfusion and hyperoxia. *Free Radic. Biol. Med.* 43, 1299–1312. doi:10.1016/j.freeradbiomed.2007.07.025

Ho, Y.-S., Xiong, Y., Ma, W., Spector, A., and Ho, D. S. (2004). Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. *J. Biol. Chem.* 279, 32804–32812. doi:10.1074/jbc.m404800200

Huang, T.-T., Carlson, E. J., Kozy, H. M., Mantha, S., Goodman, S. I., Ursell, P. C., et al. (2001). Genetic modification of prenatal lethality and dilated cardiomyopathy in Mn superoxide dismutase mutant mice. *Free Radic. Biol. Med.* 31, 1101–1110. doi:10.1016/s0891-5849(01)00694-3

Hussain, T., Murtaza, G., Metwally, E., Kalhoro, D. H., Kalhoro, M. S., Rahu, B. A., et al. (2021). The role of oxidative stress and antioxidant balance in pregnancy. *Mediat. Inflamm.* 2021, 9962860. doi:10.1155/2021/9962860

Ikegami, T., Suzuki, Y., Shimizu, T., Isono, K., Koseki, H., and Shirasawa, T. (2002). Model mice for tissue-specific deletion of the manganese superoxide dismutase (MnSOD) gene. *Biochem. Biophys. Res. Commun.* 296, 729–736. doi:10.1016/s0006-291x(02)00933-6

Imai, H., Hirao, F., Sakamoto, T., Sekine, K., Mizukura, Y., Saito, M., et al. (2003). Early embryonic lethality caused by targeted disruption of the mouse PHGPx gene. *Biochem. Biophys. Res. Commun.* 305, 278–286. doi:10.1016/s0006-291x(03)00734-4

Impellizzeri, P., Nascimben, F., Fabrizio, D. D., Antonuccio, P., Antonelli, E., Peri, F. M., et al. (2020). Pathogenesis of congenital malformations: possible role of oxidative stress. *Am. J. Perinatol.* 39, 816–823. doi:10.1055/s-0040-1721081

Iskander, K., Barrios, R. J., and Jaiswal, A. K. (2008). Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to radiation-induced myeloproliferative disease. *Cancer Res.* 68, 7915–7922. doi:10.1158/0008-5472.can-08-0766

Iuchi, Y., Okada, F., Tsunoda, S., Kibe, N., Shirasawa, N., Ikawa, M., et al. (2009). Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. *Biochem. J.* 419, 149–158. doi:10.1042/bj20081526

Jackson, M., Krassowska, A., Gilbert, N., Chevassut, T., Forrester, L., Ansell, J., et al. (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. *Mol. Cell. Biol.* 24, 8862–8871. doi:10.1128/mcb.24.20.8862-8871.2004

Jiang, X., Bar, H. Y., Yan, J., West, A. A., Perry, C. A., Malysheva, O. V., et al. (2012). Pregnancy induces transcriptional activation of the peripheral innate immune system and increases oxidative DNA damage among healthy third trimester pregnant women. *PLoS One* 7, e46736. doi:10.1371/journal.pone.0046736

Jin, B., Tao, Q., Peng, J., Soo, H. M., Wu, W., Ying, J., et al. (2008). DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. *Hum. Mol. Genet.* 17, 690–709. doi:10.1093/hmg/ddm341

Jochum, W., Passegué, E., and Wagner, E. F. (2001). AP-1 in mouse development and tumorigenesis. *Oncogene* 20, 2401–2412. doi:10.1038/sj.onc.1204389

Johnson, K. R., Marden, C. C., Ward-Bailey, P., Gagnon, L. H., Bronson, R. T., and Donahue, L. R. (2007). Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. *Mol. Endocrinol.* 21, 1593–1602. doi:10.1210/me.2007-0085

Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., et al. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. *Arch. Toxicol.* 97, 2499–2574. doi:10.1007/s00204-023-03562-9

Jones, D. P. (2006). Disruption of mitochondrial redox circuitry in oxidative stress. Chem.-Biol. Interact. 163, 38–53. doi:10.1016/j.cbi.2006.07.008

Joo, E. H., Kim, Y. R., Kim, N., Jung, J. E., Han, S. H., and Cho, H. Y. (2021). Effect of endogenic and exogenic oxidative stress triggers on adverse pregnancy outcomes: preeclampsia, fetal growth restriction, gestational diabetes mellitus and preterm birth. *Int. J. Mol. Sci.* 22, 10122. doi:10.3390/ijms221810122

Joshi, S., Peck, A. B., and Khan, S. R. (2013). NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys. *Oxidative Med. Cell. Longev.* 2013, 462361. doi:10.1155/2013/462361

Khan, M. A., Alam, K., Dixit, K., and Rizvi, M. M. A. (2016). Role of peroxynitrite induced structural changes on H2B histone by physicochemical method. *Int. J. Biol. Macromol.* 82, 31–38. doi:10.1016/j.ijbiomac.2015.10.085

Khattak, S. F., Chin, K., Bhatia, S. R., and Roberts, S. C. (2007). Enhancing oxygen tension and cellular function in alginate cell encapsulation devices through the use of perfluorocarbons. *Biotechnol. Bioeng.* 96, 156–166. doi:10.1002/bit.21151

Khoodoruth, M. A. S., Khoodoruth, W. N. C., and Alwani, R. A. (2024). Exploring the epigenetic landscape: the role of 5-hydroxymethylcytosine in neurodevelopmental disorders. *Camb. Prism. Precis. Med.* 2, e5. doi:10.1017/pcm.2024.2

Kietzmann, T., Petry, A., Shvetsova, A., Gerhold, J. M., and Görlach, A. (2017). The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. *Br. J. Pharmacol.* 174, 1533–1554. doi:10.1111/bph.13792

Kim, J. J., Lee, S. B., Park, J. K., and Yoo, Y. D. (2010). TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). *Cell. Death Differ.* 17, 1420–1434. doi:10.1038/cdd.2010.19

Kim, M.-A., Cho, H.-J., Bae, S.-H., Lee, B., Oh, S.-K., Kwon, T.-J., et al. (2016). Methionine sulfoxide reductase B3-targeted *in utero* gene therapy rescues hearing function in a mouse model of congenital sensorineural hearing loss. *Antioxid. Redox Signal.* 24, 590–602. doi:10.1089/ars.2015.6442

Kim, M. H., Park, S.-J., Kim, J.-H., Seong, J. B., Kim, K.-M., Woo, H. A., et al. (2018). Peroxiredoxin 5 regulates adipogenesis-attenuating oxidative stress in obese mouse models induced by a high-fat diet. *Free Radic. Biol. Med.* 123, 27–38. doi:10.1016/j.freeradbiomed.2018.05.061

Klein, C. J., Botuyan, M.-V., Wu, Y., Ward, C. J., Nicholson, G. A., Hammans, S., et al. (2011). Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. *Nat. Genet.* 43, 595–600. doi:10.1038/ng.830

Kleinschnitz, C., Grund, H., Wingler, K., Armitage, M. E., Jones, E., Mittal, M., et al. (2010). Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. *PLoS Biol.* 8, e1000479. doi:10.1371/journal.pbio.1000479

Kusuma, G. D., Georgiou, H. M., Perkins, A. V., Abumaree, M. H., Brennecke, S. P., and Kalionis, B. (2022). Mesenchymal stem/stromal cells and their role in oxidative stress associated with preeclampsia. *Yale J. Biol. Med.* 95, 115–127.

Laforgia, N., Mauro, A. D., Guarnieri, G. F., Varvara, D., Cosmo, L. D., Panza, R., et al. (2018). The role of oxidative stress in the pathomechanism of congenital malformations. *Oxidative Med. Cell. Longev.* 2018, 7404082. doi:10.1155/2018/7404082

Lam, G., Apostolopoulos, V., Zulli, A., and Nurgali, K. (2015). NADPH oxidases and inflammatory bowel disease. *Curr. Med. Chem.* 22, 2100–2109. doi:10.2174/0929867322666150416095114

Lee, J., Cho, Y. S., Jung, H., and Choi, I. (2018). Pharmacological regulation of oxidative stress in stem cells. *Oxidative Med. Cell. Longev.* 2018, 4081890. doi:10.1155/2018/4081890

Lee, T.-H., Kim, S.-U., Yu, S.-L., Kim, S. H., Park, D. S., Moon, H.-B., et al. (2003). Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. *Blood* 101, 5033–5038. doi:10.1182/blood-2002-08-2548

Leslie, K., Whitley, G. S. J., Herse, F., Dechend, R., Ashton, S. V., Laing, K., et al. (2015). Increased apoptosis, altered oxygen signaling, and antioxidant defenses in first-trimester pregnancies with high-resistance uterine artery blood flow. *Am. J. Pathol.* 185, 2731–2741. doi:10.1016/j.ajpath.2015.06.020

Leung, L., Kwong, M., Hou, S., Lee, C., and Chan, J. Y. (2003). Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. *J. Biol. Chem.* 278, 48021–48029. doi:10.1074/jbc.m308439200

Lewis, A., Hayashi, T., Su, T.-P., and Betenbaugh, M. J. (2014). Bcl-2 family in interorganelle modulation of calcium signaling; roles in bioenergetics and cell survival. *J. Bioenerg. Biomembr.* 46, 1–15. doi:10.1007/s10863-013-9527-7

Li, D., Wan, C., Bai, B., Cao, H., Liu, C., and Zhang, Q. (2019). Identification of histone acetylation markers in human fetal brains and increased H4K5ac expression in neural tube defects. *Mol. Genet. Genom. Med.* 7, e1002. doi:10.1002/mgg3.1002

Li, L., Shoji, W., Takano, H., Nishimura, N., Aoki, Y., Takahashi, R., et al. (2007). Increased susceptibility of MER5 (peroxiredoxins III) knockout mice to LPS-induced oxidative stress. *Biochem. Biophys. Res. Commun.* 355, 715–721. doi:10.1016/j.bbrc.2007.02.022

Li, Y., Huang, T.-T., Carlson, E. J., Melov, S., Ursell, P. C., Olson, J. L., et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. *Nat. Genet.* 11, 376–381. doi:10.1038/ng1295-376

Li, Z., Wang, S., and Li, L. (2022). Advanced oxidative protein products drive trophoblast cells into senescence by inhibiting the autophagy: the potential implication of preeclampsia. *Front. Cell. Dev. Biol.* 10, 810282. doi:10.3389/fcell.2022.810282

Loeken, M. R. (2004). Free radicals and birth defects. J. Matern.-Fetal Neonatal Med. 15, 6–14. doi:10.1080/14767050310001650662

Longo, L., Vanegas, O. C., Patel, M., Rosti, V., Li, H., Waka, J., et al. (2002). Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. *EMBO J.* 21, 4229–4239. doi:10.1093/emboj/cdf426

Lopes, A. S., Lane, M., and Thompson, J. G. (2010). Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. *Hum. Reprod.* 25, 2762–2773. doi:10.1093/humrep/deq221

Lorda-Diez, C. I., Garcia-Riart, B., Montero, J. A., Rodriguez-León, J., Garcia-Porrero, J. A., and Hurle, J. M. (2015). Apoptosis during embryonic tissue remodeling is accompanied by cell senescence. *Aging (Albany NY)* 7, 974–985. doi:10.18632/aging.100844

Lu, J., Sharma, L. K., and Bai, Y. (2009). Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. *Cell. Res.* 19, 802–815. doi:10.1038/cr.2009.69

Lu, Y., Shao, Y., Cui, W., Jia, Z., Zhang, Q., Zhao, Q., et al. (2024). Excessive lipid peroxidation in uterine epithelium causes implantation failure and pregnancy loss. *Adv. Sci.* 11, 2302887. doi:10.1002/advs.202302887

Lucchi, L., Banni, S., Botti, B., Cappelli, G., Medici, G., Melis, M. P., et al. (1993). Conjugated diene fatty acids in patients with chronic renal failure: evidence of increased lipid peroxidation? *Nephron* 65, 401–409. doi:10.1159/000187520

Ma, Q. (2013). Role of Nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401-426. doi:10.1146/annurev-pharmtox-011112-140320

Magnani, F., and Mattevi, A. (2019). Structure and mechanisms of ROS generation by NADPH oxidases. Curr. Opin. Struct. Biol. 59, 91–97. doi:10.1016/j.sbi.2019.03.001

Mandal, S., Lindgren, A. G., Srivastava, A. S., Clark, A. T., and Banerjee, U. (2011). Mitochondrial function controls proliferation and early differentiation potential of embryonic stem cells. *Stem Cells* 29, 486–495. doi:10.1002/stem.590

Mandic-Maravic, V., Mitkovic-Voncina, M., Pljesa-Ercegovac, M., Savic-Radojevic, A., Djordjevic, M., Pekmezovic, T., et al. (2019). Autism spectrum disorders and perinatal complications—is oxidative stress the connection? *Front. Psychiatry* 10, 675. doi:10.3389/fpsyt.2019.00675

Maraldi, T., Prata, C., Caliceti, C., Sega, F. V. D., Zambonin, L., Fiorentini, D., et al. (2010). VEGF-induced ROS generation from NAD(P)H oxidases protects human leukemic cells from apoptosis. *Int. J. Oncol.* 36, 1581–1589. doi:10.3892/ijo_00000645

Masters, B. A., Kelly, E. J., Quaife, C. J., Brinster, R. L., and Palmiter, R. D. (1994). Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. *Proc. Natl. Acad. Sci.* 91, 584–588. doi:10.1073/pnas.91.2.584

Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T., Yodoi, J., et al. (1996). Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. *Dev. Biol.* 178, 179–185. doi:10.1006/dbio.1996.0208

Matsuno, K., Yamada, H., Iwata, K., Jin, D., Katsuyama, M., Matsuki, M., et al. (2005). Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. *Circulation* 112, 2677–2685. doi:10.1161/circulationaha.105.573709

McConnachie, L. A., Mohar, I., Hudson, F. N., Ware, C. B., Ladiges, W. C., Fernandez, C., et al. (2007). Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. *Toxicol. Sci.* 99, 628–636. doi:10.1093/toxsci/kfm165

Menezo, Y. J. R., Silvestris, E., Dale, B., and Elder, K. (2016). Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. *Reprod. Biomed. Online* 33, 668–683. doi:10.1016/j.rbmo.2016.09.006

Mentch, S. J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., et al. (2015). Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. *Cell. Metab.* 22, 861–873. doi:10.1016/j.cmet. 2015.08.024

Merta, M., Reiterová, J., Rysavá, R., Tesar, V., Závada, J., Jáchymová, M., et al. (2003). Role of endothelin and nitric oxide in the pathogenesis of arterial hypertension in autosomal dominant polycystic kidney disease. *Physiol. Res.* 52, 433–437. doi:10.33549/physiolres.930324

Michiels, C. (2004). Physiological and pathological responses to hypoxia. Am. J. Pathol. 164, 1875-1882. doi:10.1016/s0002-9440(10)63747-9

Mihalik, J., Kreheľová, A., Kovaříková, V., Solár, P., Domoráková, I., Pavliuk-Karachevtseva, A., et al. (2020). GPx8 expression in rat oocytes, embryos, and female genital organs during preimplantation period of pregnancy. *Int. J. Mol. Sci.* 21, 6313. doi:10.3390/ijms21176313

Milkovic, L., Gasparovic, A. C., Cindric, M., Mouthuy, P.-A., and Zarkovic, N. (2019). Short overview of ROS as cell function regulators and their implications in therapy concepts. *Cells* 8, 793. doi:10.3390/cells8080793 Mistry, H. D., and Williams, P. J. (2011). The importance of antioxidant micronutrients in pregnancy. *Oxidative Med. Cell. Longev.* 2011, 841749. doi:10.1155/2011/841749

Mohyeldin, A., Garzón-Muvdi, T., and Quiñones-Hinojosa, A. (2010). Oxygen in stem cell biology: a critical component of the stem cell niche. *Cell. Stem Cell.* 7, 150–161. doi:10.1016/j.stem.2010.07.007

Monfort, A., and Wutz, A. (2013). Breathing-in epigenetic change with vitamin C. *EMBO Rep.* 14, 337–346. doi:10.1038/embor.2013.29

Morales, E., García-Serna, A. M., Larqué, E., Sánchez-Campillo, M., Serrano-Munera, A., Martinez-Graciá, C., et al. (2022). Dietary patterns in pregnancy and biomarkers of oxidative stress in mothers and offspring: the NELA birth cohort. *Front. Nutr.* 9, 869357. doi:10.3389/fnut.2022.869357

Morrison, J. L. (2008). Sheep models of intrauterine growth restriction: fetal adaptations and consequences. *Clin. Exp. Pharmacol. Physiol.* 35, 730–743. doi:10.1111/j.1440-1681.2008.04975.x

Moskovitz, J., Bar-Noy, S., Williams, W. M., Requena, J., Berlett, B. S., and Stadtman, E. R. (2001). Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. *Proc. Natl. Acad. Sci.* 98, 12920–12925. doi:10.1073/pnas.231472998

Motohashi, H., and Yamamoto, M. (2004). Nrf2-Keap1 defines a physiologically important stress response mechanism. *Trends Mol. Med.* 10, 549-557. doi:10.1016/j.molmed.2004.09.003

Murata, T., Kyozuka, H., Fukuda, T., Imaizumi, K., Isogami, H., Kanno, A., et al. (2024). Urinary 8-hydroxy-2'-deoxyguanosine levels and preterm births: a prospective cohort study from the Japan Environment and Children's Study. *BMJ Open* 14, e063619. doi:10.1136/bmjopen-2022-063619

Musson, R., Gasior, Ł., Bisogno, S., and Ptak, G. E. (2022). DNA damage in preimplantation embryos and gametes: specification, clinical relevance and repair strategies. *Hum. Reprod. Updat.* 28, 376–399. doi:10.1093/humupd/dmab046

Nakajima, S., and Kitamura, M.(2013). Bidirectional regulation of NF-κB by reactive oxygen species: A role of unfolded protein response. *Free Radic. Biol. Med.* 65, 162–174. doi:10.1016/j.freeradbiomed.2013.06.020

Närvä, E., Pursiheimo, J.-P., Laiho, A., Rahkonen, N., Emani, M. R., Viitala, M., et al. (2013). Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels. *PLoS ONE* 8, e78847. doi:10.1371/journal.pone.0078847

Neumann, C. A., Krause, D. S., Carman, C. V., Das, S., Dubey, D. P., Abraham, J. L., et al. (2003). Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. *Nature* 424, 561–565. doi:10.1038/nature01819

Nisimoto, Y., Diebold, B. A., Cosentino-Gomes, D., Constentino-Gomes, D., and Lambeth, J. D. (2014). Nox4: a hydrogen peroxide-generating oxygen sensor. *Biochemistry* 53, 5111–5120. doi:10.1021/bi500331y

Noblanc, A., Peltier, M., Damon-Soubeyrand, C., Kerchkove, N., Chabory, E., Vernet, P., et al. (2012). Epididymis response partly compensates for spermatozoa oxidative defects in snGPx4 and GPx5 double mutant mice. *PLoS ONE* 7, e38565. doi:10.1371/journal.pone.0038565

Olson, G. E., Whitin, J. C., Hill, K. E., Winfrey, V. P., Motley, A. K., Austin, L. M., et al. (2010). Extracellular glutathione peroxidase (Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. *Am. J. Physiol.-Ren. Physiol.* 298, F1244–F1253. doi:10.1152/ajprenal.00662.2009

Ornoy, A. (2007). Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. *Reprod. Toxicol.* 24, 31–41. doi:10.1016/j.reprotox.2007.04.004

Ortega, J. A., Sirois, C. L., Memi, F., Glidden, N., and Zecevic, N. (2016). Oxygen levels regulate the development of human cortical radial glia cells. *Cereb. Cortex* 27, 3736–3751. doi:10.1093/cercor/bhw194

Oyefeso, F. A., Muotri, A. R., Wilson, C. G., and Pecaut, M. J. (2021). Brain organoids: a promising model to assess oxidative stress-induced central nervous system damage. *Dev. Neurobiol.* 81, 653–670. doi:10.1002/dneu.22828

Ozsurekci, Y., and Aykac, K. (2016). Oxidative stress related diseases in newborns. Oxidative Med. Cell. Longev. 2016, 2768365. doi:10.1155/2016/2768365

Paffenholz, R., Bergstrom, R. A., Pasutto, F., Wabnitz, P., Munroe, R. J., Jagla, W., et al. (2004). Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. *Genes. Dev.* 18, 486–491. doi:10.1101/gad.1172504

Pagé, E. L., Chan, D. A., Giaccia, A. J., Levine, M., and Richard, D. E. (2008). Hypoxiainducible Factor-1a Stabilization in Nonhypoxic Conditions: Role of Oxidation and Intracellular Ascorbate Depletion. *Mol. Biol. Cell* 19, 86–491. doi:10.1091/mbc.e07-06-0612

Pangrazzi, L., Balasco, L., and Bozzi, Y.(2020). Oxidative stress and immune system dysfunction in autism spectrum disorders. *Int. J. Mol. Sci.* 21, 3293. doi:10.3390/ijms21093293

Pasparakis, M., Luedde, T., and Schmidt-Supprian, M. (2006). Dissection of the NFkappaB signalling cascade in transgenic and knockout mice. *Cell. Death Differ.* 13, 861–872. doi:10.1038/sj.cdd.4401870

Pham, C., Thomson, S., Chin, S.-T., Vuillermin, P., O'Hely, M., Burgner, D., et al. (2023). Maternal oxidative stress during pregnancy associated with emotional and

behavioural problems in early childhood: implications for foetal programming. *Mol. Psychiatry* 28, 3760–3768. doi:10.1038/s41380-023-02284-9

Poss, K. D., and Tonegawa, S. (1997). Heme oxygenase 1 is required for mammalian iron reutilization. *Proc. Natl. Acad. Sci.* 94, 10919–10924. doi:10.1073/pnas.94.20.10919

Rains, M. E., Muncie, C. B., Pang, Y., Fan, L.-W., Tien, L.-T., and Ojeda, N. B. (2021). Oxidative stress and neurodevelopmental outcomes in rat offspring with intrauterine growth restriction induced by reduced uterine perfusion. *Brain Sci.* 11, 78. doi:10.3390/brainsci11010078

Redza-Dutordoir, M., and Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. *Biochim. Biophys. Acta (BBA) - Mol. Cell. Res.* 1863, 2977–2992. doi:10.1016/j.bbamcr.2016.09.012

Ribeiro, J. H., Altinisik, N., Rajan, N., Verslegers, M., Baatout, S., Gopalakrishnan, J., et al. (2023). DNA damage and repair: underlying mechanisms leading to microcephaly. *Front. Cell. Dev. Biol.* 11, 1268565. doi:10.3389/fcell.2023.1268565

Rommel, A.-S., Milne, G. L., Barrett, E. S., Bush, N. R., Nguyen, R., Sathyanarayana, S., et al. (2020). Associations between urinary biomarkers of oxidative stress in the third trimester of pregnancy and behavioral outcomes in the child at 4 years of age. *Brain, Behav. Immun.* 90, 272–278. doi:10.1016/j.bbi.2020.08.029

Ruder, E. H., Hartman, T. J., Blumberg, J., and Goldman, M. B. (2008). Oxidative stress and antioxidants: exposure and impact on female fertility. *Hum. Reprod. Updat.* 14, 345–357. doi:10.1093/humupd/dmn011

Ryan, H. E., Lo, J., and Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. *EMBO J.* 17, 3005–3015. doi:10.1093/emboj/17.11.3005

Salim, S. (2014). Oxidative stress and psychological disorders. Curr. Neuropharmacol. 12, 140-147. doi:10.2174/1570159x11666131120230309

Sasaki, H., Hamatani, T., Kamijo, S., Iwai, M., Kobanawa, M., Ogawa, S., et al. (2019). Impact of oxidative stress on age-associated decline in oocyte developmental competence. *Front. Endocrinol.* 10, 811. doi:10.3389/fendo.2019.00811

Sasaki, M., Knobbe, C. B., Itsumi, M., Elia, A. J., Harris, I. S., Chio, I. I. C., et al. (2012). D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. *Genes. Dev.* 26, 2038–2049. doi:10.1101/gad.198200.112

Scarpato, R., Testi, S., Colosimo, V., Crespo, C. G., Micheli, C., Azzarà, A., et al. (2020). Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. *Mutat. Res.Rev. Mutat. Res.* 783, 108295. doi:10.1016/j.mrrev.2019.108295

Schieber, M., and Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. *Curr. Biol.* 24, R453–R462. doi:10.1016/j.cub.2014.03.034

Schoppa, A. M., Chen, X., Ramge, J.-M., Vikman, A., Fischer, V., Haffner-Luntzer, M., et al. (2022). Osteoblast lineage Sod2 deficiency leads to an osteoporosis-like phenotype in mice. *Dis. Model. Mech.* 15, dmm049392. doi:10.1242/dmm.049392

Scortegagna, M., Ding, K., Oktay, Y., Gaur, A., Thurmond, F., Yan, L.-J., et al. (2003). Multiple organ pathology, metabolic abnormalities and impaired homeostasis of reactive oxygen species in Epas1–/– mice. *Nat. Genet.* 35, 331–340. doi:10.1038/ng1266

Seino, T., Saito, H., Kaneko, T., Takahashi, T., Kawachiya, S., and Kurachi, H. (2002). Eight-hydroxy-2'-deoxyguanosine in granulosa cells is correlated with the quality of oocytes and embryos in an *in vitro* fertilization-embryo transfer program. *Fertil. Steril.* 77, 1184–1190. doi:10.1016/s0015-0282(02)03103-5

Serra-Juhé, C., Cuscó, I., Homs, A., Flores, R., Torán, N., and Pérez-Jurado, L. A. (2015). DNA methylation abnormalities in congenital heart disease. *Epigenetics* 10, 167–177. doi:10.1080/15592294.2014.998536

Shiraki, N., Shiraki, Y., Tsuyama, T., Obata, F., Miura, M., Nagae, G., et al. (2014). Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. *Cell. Metab.* 19, 780–794. doi:10.1016/j.cmet.2014.03.017

Sogut, I., Oglakci, A., Kartkaya, K., Ol, K. K., Sogut, M. S., Kanbak, G., et al. (2015). Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. *Exp. Ther. Med.* 9, 1023–1027. doi:10.3892/etm.2014.2164

Song, Y., Li, Z., Wang, B., Xiao, J., Wang, X., and Huang, J. (2014). Phospho-Cdc25 correlates with activating G2/M checkpoint in mouse zygotes fertilized with hydrogen peroxide-treated mouse sperm. *Mol. Cell. Biochem.* 396, 41–48. doi:10.1007/s11010-014-2140-1

Song, Y., Quan, S., Tian, J., Li, H., Chen, S., and Xing, F. (2009). Relationship between protein oxidation levels in the follicular fluid and the outcome parameters of *in vitro* fertilization-embryo transplantation. *Nan fang yi ke xue xue bao South. Méd. Univ.* 29, 160–163.

Steffann, J., Monnot, S., and Bonnefont, J.-P. (2015). mtDNA mutations variously impact mtDNA maintenance throughout the human embryofetal development. *Clin. Genet.* 88, 416–424. doi:10.1111/cge.12557

Suzuki, K. (2018). The developing world of DOHaD. J. Dev. Orig. Heal. Dis. 9, 266-269. doi:10.1017/s2040174417000691

Szanto, I., Pusztaszeri, M., and Mavromati, M. (2019). H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. *Antioxidants* 8, 126. doi:10.3390/antiox8050126

Takahashi, M. (2012). Oxidative stress and redox regulation on *in vitro* development of mammalian embryos. *J. Reprod. Dev.* 58, 1–9. doi:10.1262/jrd.11-138n

Takeshima, T., Usui, K., Mori, K., Asai, T., Yasuda, K., Kuroda, S., et al. (2021). Oxidative stress and male infertility. *Reprod. Med. Biol.* 20, 41–52. doi:10.1002/rmb2.12353

Torres-Cuevas, I., Parra-Llorca, A., Sánchez-Illana, A., Nuñez-Ramiro, A., Kuligowski, J., Cháfer-Pericás, C., et al. (2017). Oxygen and oxidative stress in the perinatal period. *Redox Biol.* 12, 674–681. doi:10.1016/j.redox.2017.03.011

Tovar, J. A. (2012). Congenital diaphragmatic hernia. Orphanet J. Rare Dis. 7, 1. doi:10.1186/1750-1172-7-1

Urbaniak, S. K., Boguszewska, K., Szewczuk, M., Kaźmierczak-Barańska, J., and Karwowski, B. T. (2020). 8-Oxo-7,8-Dihydro-2'-Deoxyguanosine (8-oxodG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as a potential biomarker for gestational diabetes mellitus (GDM) development. *Molecules* 25, 202. doi:10.3390/molecules25010202

Vanreusel, I., Taeymans, J., Craenenbroeck, E. V., Segers, V. F. M., Berendoncks, A. V., Briedé, J. J., et al. (2023). Elevated oxidative stress in patients with congenital heart disease and the effect of cyanosis: a meta-analysis. *Free Radic. Res.* 57, 470–486. doi:10.1080/10715762.2023.2284639

Voss, A. K., and Strasser, A. (2020). The essentials of developmental apoptosis. *F1000Research* 9. doi:10.12688/f1000research.21571.1

Wakabayashi, N., Itoh, K., Wakabayashi, J., Motohashi, H., Noda, S., Takahashi, S., et al. (2003). Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. *Nat. Genet.* 35, 238–245. doi:10.1038/ng1248

Wang, B., Li, Z., Wang, C., Chen, M., Xiao, J., Wu, X., et al. (2013). Zygotic G2/M cell cycle arrest induced by ATM/Chk1 activation and DNA repair in mouse embryos fertilized with hydrogen peroxide-treated epididymal mouse sperm. *PLoS One* 8, e73987. doi:10.1371/journal.pone.0073987

Wang, G., Wang, B., and Yang, P. (2022a). Epigenetics in congenital heart disease. J. Am. Hear. Assoc. 11, e025163. doi:10.1161/jaha.121.025163

Wang, H., Dou, Q., Jeong, K. J., Choi, J., Gladyshev, V. N., and Chung, J.-J. (2022b). Redox regulation by TXNRD3 during epididymal maturation underlies capacitationassociated mitochondrial activity and sperm motility in mice. *J. Biol. Chem.* 298, 102077. doi:10.1016/j.jbc.2022.102077

Wang, X., Phelan, S. A., Forsman-Semb, K., Taylor, E. F., Petros, C., Brown, A., et al. (2003). Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. *J. Biol. Chem.* 278, 25179–25190. doi:10.1074/jbc.m302706200

Wei, P.-C., Hsieh, Y.-H., Su, M.-I., Jiang, X., Hsu, P.-H., Lo, W.-T., et al. (2012). Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease. *Mol. Cell.* 48, 747–759. doi:10.1016/j.molcel.2012.10.007

Wei, Z., Wang, Y., Wang, S., Xie, J., Han, Q., and Chen, M. (2022). Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. *Toxicology* 465, 153059. doi:10.1016/j.tox.2021.153059

White, K., Kim, M.-J., Han, C., Park, H.-J., Ding, D., Boyd, K., et al. (2018). Loss of IDH2 accelerates age-related hearing loss in male mice. *Sci. Rep.* 8, 5039. doi:10.1038/s41598-018-23436-w

Winkle, L. J. V., and Ryznar, R. (2019). One-carbon metabolism regulates embryonic stem cell fate through epigenetic DNA and histone modifications: implications for transgenerational metabolic disorders in adults. *Front. Cell. Dev. Biol.* 7, 300. doi:10.3389/fcell.2019.00300

Winkler, A., Njålsson, R., Carlsson, K., Elgadi, A., Rozell, B., Abraham, L., et al. (2011). Glutathione is essential for early embryogenesis – analysis of a glutathione synthetase knockout mouse. *Biochem. Biophys. Res. Commun.* 412, 121–126. doi:10.1016/j.bbrc.2011.07.056

Wong, J. L., and Wessel, G. M. (2008). Free-radical crosslinking of specific proteins alters the function of the egg extracellular matrix at fertilization. *Development* 135, 431–440. doi:10.1242/dev.015503

Wu, H., Lin, L., Giblin, F., Ho, Y.-S., and Lou, M. F. (2011). Glutaredoxin 2 knockout increases sensitivity to oxidative stress in mouse lens epithelial cells. *Free Radic. Biol. Med.* 51, 2108–2117. doi:10.1016/j.freeradbiomed.2011.09.011

Xu, D., Guo, H., Xu, X., Lu, Z., Fassett, J., Hu, X., et al. (2011). Exacerbated pulmonary arterial hypertension and right ventricular hypertrophy in animals with loss of function of extracellular superoxide dismutase. *Hypertension* 58, 303–309. doi:10.1161/hypertensionaha.110.166819

Xu, D.-X., Chen, Y.-H., Zhao, L., Wang, H., and Wei, W. (2006). Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice. *Am. J. Obstet. Gynecol.* 195, 1707–1714. doi:10.1016/j.ajog.2006.03.047

Yamamoto, M., Kensler, T. W., and Motohashi, H. (2018). The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. *Physiol. Rev.* 98, 1169–1203. doi:10.1152/physrev.00023.2017

Yant, L. J., Ran, Q., Rao, L., Remmen, H. V., Shibatani, T., Belter, J. G., et al. (2003). The selenoprotein GPX4 is essential for mouse development and protects from radiation

and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502. doi:10.1016/s0891-5849(02)01360-6

Yao, H., Arunachalam, G., Hwang, J., Chung, S., Sundar, I. K., Kinnula, V. L., et al. (2010). Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. *Proc. Natl. Acad. Sci.* 107, 15571–15576. doi:10.1073/pnas.1007625107

Yu, W., Tu, Y., Long, Z., Liu, J., Kong, D., Peng, J., et al. (2022). Reactive oxygen species bridge the gap between chronic inflammation and tumor development. *Oxidative Med. Cell. Longev.* 2022, 2606928. doi:10.1155/2022/2606928

Zhang, J., Tripathi, D. N., Jing, J., Alexander, A., Kim, J., Powell, R. T., et al. (2015). ATM functions at the peroxisome to induce pexophagy in response to ROS. *Nat. Cell. Biol.* 17, 1259–1269. doi:10.1038/ncb3230 Zhang, M., Brewer, A. C., Schröder, K., Santos, C. X. C., Grieve, D. J., Wang, M., et al. (2010). NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. *Proc. Natl. Acad. Sci.* 107, 18121–18126. doi:10.1073/pnas. 1009700107

Zorov, D. B., Juhaszova, M., and Sollott, S. J. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. *Physiol. Rev.* 94, 909–950. doi:10.1152/physrev.00026.2013

Zurub, R. E., Cariaco, Y., Wade, M. G., and Bainbridge, S. A. (2024). Microplastics exposure: implications for human fertility, pregnancy and child health. *Front. Endocrinol.* 14, 1330396. doi:10.3389/fendo.2023. 1330396