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Autophagy is the major degradation process in cells and is involved in a variety of
physiological and pathological functions. Whilemacroautophagy, which employs
a series of molecular cascades to form ATG8-coated double membrane
autophagosomes for degradation, remains the well-known type of canonical
autophagy, microautophagy and chaperon-mediated autophagy have also been
characterized. On the other hand, recent studies have focused on the functions
of autophagy proteins beyond intracellular degradation, including noncanonical
autophagy, also known as the conjugation of ATG8 to single membranes (CASM),
and autophagy-related extracellular secretion. In particular, CASM is unique in
that it does not require autophagy upstream mechanisms, while the
ATG8 conjugation system is involved in a manner different from canonical
autophagy. There have been many reports on the involvement of these
autophagy-related mechanisms in neurodegenerative diseases, with
Parkinson’s disease (PD) receiving particular attention because of the
important roles of several causative and risk genes, including LRRK2. In this
review, we will summarize and discuss the contributions of canonical and
noncanonical autophagy to cellular functions, with a special focus on the
pathogenesis of PD.
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Introduction

Autophagy, the conserved cellular process discovered in the 1960s, plays an essential
role in cell survival and homeostasis by internalizing various endogenous and exogenous
materials into the lysosomes for degradation (Deter et al., 1967; Klionsky, 2007; Mizushima,
2007; Yamamoto et al., 2023). In particular, autophagy can selectively degrade misfolded
proteins and damaged organelles in situations such as under stress. Autophagy has been
classically classified into three major types: macroautophagy, microautophagy, and
chaperone-mediated autophagy (CMA). Although these three pathways are largely
different in terms of mechanism and function, some common molecules are involved
(Mizushima and Komatsu, 2011; Watanabe et al., 2023; Yamamoto and Matsui, 2024). In
macroautophagy, autophagosomes composed of double-membranes form (Baba et al.,
1994) and are finally degraded by fusion with lysosomes. In microautophagy, vesicles
incorporating cytoplasmic components form within lysosomes by membrane invagination,
and their contents are degraded by rupture of the membrane (Schuck, 2020; Kuchitsu and
Taguchi, 2024). In CMA, proteins are directly drawn into the lysosomes through the
functions of the chaperone protein HSC70 and the lysosomal membrane protein LAMP2A
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(lysosomal-associated membrane protein 2 A) (Bourdenx et al.,
2021). In recent years, however, it has become clear that the
roles of autophagic mechanisms are not limited to the promotion
of intracellular degradation. Of particular interest are the recently
established noncanonical autophagy, also known as conjugation of
ATG8 to single membranes (CASM) (Durgan et al., 2021; Durgan
and Florey, 2022), and autophagy-related extracellular secretion
(New and Thomas, 2019). Both of them uniquely require ATG
proteins, especially those in the ATG8 conjugation system, as will be
described later.

These autophagic and related mechanisms have been shown to
be involved in a variety of diseases (Mizushima and Levine, 2020),
including neurodegenerative diseases (Fleming et al., 2022; Nixon
and Rubinsztein, 2024), immune system disorders (Deretic, 2021),
and cancer (Debnath et al., 2023). Among these, Parkinson’s disease
(PD), a major neurodegenerative disease along with Alzheimer’s
disease, has accumulated such findings in the study of pathogenic
mechanisms. PD is characterized pathologically by the
dopaminergic neuron loss in the substantia nigra and the
accumulation of Lewy bodies, the intraneuronal inclusions
composed of fibrillated α-synuclein protein. Several PD-
associated genes have been shown to be deeply related to the
autophagic mechanisms, such as SNCA (PARK1/4), PRKN
(PARK2), PINK1 (PARK6), LRRK2 (PARK8), VPS35 (PARK17),
and the PD risk gene GBA1 (Blauwendraat et al., 2020; Ye et al.,
2023). In particular, a variety of findings have accumulated on
LRRK2 (leucine rich repeat kinase 2), which has been identified as a

kinase that phosphorylates a subset of Rab GTPases (Komori and
Kuwahara, 2023; Alessi and Pfeffer, 2024). Autophagy ultimately
leads to degradation in lysosomes regardless of its type, and there
have also been many reports on the relationship between PD and
lysosomes (Abe and Kuwahara, 2021; Morris et al., 2024). For
example, α-synuclein is at least partly degraded in lysosomes
through the activity of the lysosomal enzymes including
cathepsins (McGlinchey and Lee, 2015; Prieto Huarcaya et al.,
2022), and decreased activities of glucocerebrosidase (GCase)
(Balducci et al., 2007; Alcalay et al., 2015), cathepsin D (Parnetti
et al., 2014; Kang et al., 2021), β-glucocerebrosidase (Parnetti et al.,
2017), and α-gal (Alcalay et al., 2018; Wu et al., 2008) have been
reported in cerebrospinal fluid (CSF), plasma or blood of sporadic
PD patients. Mutation in the lysosomal membrane protein LIMP2
(lysosomal integral membrane protein 2) has been linked to PD
(Michelakakis et al., 2012), and LIMP2 overexpression was shown to
cause enhanced degradation of α-synuclein (Rothaug et al., 2014).
The cytoplasmic aggregates of α-synuclein are thought to be related
to neuronal loss, whether as its cause or result, and the involvement
of autophagy has been repeatedly discussed.

In this review, we first overview the latest findings on the three
classical autophagy machineries focusing on studies that have
reported associations with PD (Figure 1). Then, we will also
summarize and discuss recent knowledge on CASM and
extracellular secretion that are regulated by autophagy-related
mechanisms, since evidence is gradually accumulating on their
relevance to PD.

FIGURE 1
Canonical forms of autophagy and the involvement of PD-associated proteins. The three forms (macroautophagy, microautophagy, CMA) and
mitophagy as a form of macroautophagy are schematically illustrated. In macroautophagy, double-membrane autophagosomes fuse with lysosomes to
degrade proteins and damaged organelles such asmitochondria (mitophagy), while proteins are directly incorporated into lysosomes inmicroautophagy
or CMA. LRRK2, VPS35 and RIT2 are involved in the upregulation of macroautophagy, while Parkin, PINK1, KAT8, KANSL1 and LRRK2 are involved in
mitophagy. TIGAR, LRRK2, UCHL1, VPS35 and GCase are involved in CMA. α-Synuclein can be degraded by these pathways, possibly depending on its
folding state. Abbreviations: ESCRT: endosomal sorting complex required for transport, GCase: β-glucocerebrosidase, KANSL1: KAT8 regulatory NSL
complex subunit 1, KAT8: K (lysine) acetyltransferase 8, LAMP2A: lysosomal membrane protein 2A, LRRK2: leucine rich repeat kinase 2, PINK1: PTEN
induced kinase 1, RIT2: Ras like without CAAX 2, SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptors, TIGAR: TP53-induced
glycolysis and apoptosis regulator, UCHL1: ubiquitin carboxy-terminal hydrolase L1, VPS35: vacuolar protein sorter-35. This figure was created in
BioRender. Kuwahara, T. (2025) https://BioRender.com/f65q052.
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Macroautophagy and PD

Macroautophagy is well known to be triggered by starvation, and
many proteins involved have been identified, as described next
(Dikic and Elazar, 2018; Yamamoto and Matsui, 2024). In
nutrient-rich conditions, ATG13 and ULK1/2 (unc-51 like
autophagy activating kinase 1/2) are phosphorylated by the
mammalian target of rapamycin complex 1 (mTORC1), whereas
starvation leads to their separation from mTORC1 and resultant
dephosphorylation. The autophagy initiation complex (the ULK
complex) consisting of ULK1/2, FIP200, ATG13 and ATG101 is
activated, and AMBRA1 (activating molecule in BECN1-regulated
autophagy protein 1) phosphorylated by ULK1 binds to Beclin1,
resulting in the activation of the class III phosphatidylinositol 3-
kinase (PI3K) complex composed of VPS34, Beclin1, ATG14,
AMBRA1, and p115. Activation of these complexes then initiates
autophagosome formation. Membrane elongation leads to the
lipidation of ubiquitin-like ATG8 with phosphatidylethanolamine
(PE) via the involvement of ATG7, an E1-like enzyme, and ATG3,
an E2-like enzyme (Taherbhoy et al., 2011; Fang et al., 2021; Liu
et al., 2024). Also, the E3-like ATG12–ATG5-ATG16L1 complex
forms via ATG7 and ATG10, the latter being another E2-like
enzyme (Ichimura et al., 2000; Kuma et al., 2002). This
ATG12–ATG5-ATG16L1 complex stabilizes ATG8 lipidation on
target membranes (Mizushima et al., 1998; Hanada et al., 2007),
while ATG4 promotes dissociation of ATG8 from PE and regulates
the next round of autophagosome formation by promoting
ATG8 recycling (Abreu et al., 2017). Autophagosomes fuse with
lysosomes and are degraded by the action of SNAREs: STX17
(syntaxin 17), SNAP29 (synaptosome associated protein 29), and
VAMP8 (vesicle associated membrane protein 8) (Itakura
et al., 2012).

Impairment of macroautophagy has been suggested to
contribute to neurodegeneration or its aggravation processes in
PD (Johnson et al., 2019), and PD animal models and patients
indeed show decreased macroautophagy. For example, PD model
mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) have been reported to show decreased lysosomal activity
and accumulation of autophagosomes, while dopaminergic cell
death was suppressed by treatment with rapamycin, an inducer
of macroautophagy, or thioredoxin-1, a redox regulating protein
(Dehay et al., 2010; Liu T. et al., 2023; Gu et al., 2024). In an
ATG7 conditional knockout (cKO) mouse brain where autophagy is
suppressed, a decrease in tyrosine hydroxylase (TH)-positive
neurons and the aggregation of α-synuclein were observed
(Ahmed et al., 2012). In addition, increased mTOR and
decreased ATG7 were observed in the brains of dementia with
Lewy bodies (DLB) patients and α-synuclein transgenic mice, with
colocalization of α-synuclein and LC3 (Crews et al., 2010). Four
novel variants of ATG7 were also identified in five sporadic PD
patients, but not in the controls (Chen et al., 2013). On the other
hand, it has been reported that extracellular secretion of α-synuclein
with exosomes is enhanced in cells where macroautophagy is
suppressed by the knockdown of ATG5, resulting in the
suppression of α-synuclein-mediated cell death (Fussi et al.,
2018). Despite this report, many of the studies suggest that
decreased degradation of aggregated α-synuclein by inhibition of
macroautophagy may lead to neurodegeneration.

On the other hand, some reports suggested that α-synuclein
aggregation is the cause of macroautophagy failure. For example,
macroautophagy is suppressed in α-synuclein overexpressing cells,
and overexpression of RAB1A caused a rescuing effect through
omegasome formation by ATG9 (Winslow et al., 2010). Microglia
overexpressing α-synuclein showed enhanced phosphorylation of
p38 and AKT and change of Akt/mTOR signaling, and the
inhibition of autophagy in microglia led to dopaminergic neuron
degeneration and behavioral abnormalities. Other reports have
shown that activation of macroautophagy can rescue α-synuclein-
mediated neuronal abnormalities (Tu et al., 2021). Aggregation of α-
synuclein was reduced when autophagy was promoted by rapamycin
in SH-SY5Y cells treated with α-synuclein pre-formed fibrils (PFF),
but was increased when inhibited by chloroquine, a lysosome
inhibitor (Gao et al., 2019). Overexpression of Beclin1 reduced
intracellular aggregation of α-synuclein and rescued axon
elongation (Spencer et al., 2009). Activation of the NLRP3 (NLR
family pyrin domain containing 3) inflammasome occurred in
MPTP-treated PD model mice, and the promotion of autophagic
degradation of NLRP3 prevented neurodegeneration (Han et al.,
2019). NLRP3 was also activated in dopamine neurons from parkin-
depleted mice or PD patients and prevention of its activation was
suppressed neurodegeneration (Panicker et al., 2022).

There are also several reports on the relationship between PD-
associated genes other than α-synuclein and macroautophagy. As
for LRRK2, it has been reported that expression levels of
LRRK2 were increased in ATG5 or ATG7 cKO mice and KO
MEF (mouse embyonic fibroblast) cells (Friedman et al., 2012).
In neurons overexpressing G2019S mutant LRRK2 or G2019S
knock-in mouse neurons, autophagosome trafficking was delayed
because of mutant LRRK2-mediated recruitment of the motor
adaptor JNS-interacting protein 4 (JIP4) (Boecker et al., 2021).
As for another PD causative gene product VPS35, which is
closely related to LRRK2, the PD-associated D620N mutation
impaired its binding to the WASH complex and inhibited
ATG9A trafficking, thereby suppressing macroautophagy
(Zavodszky et al., 2014). More recent studies point to the
involvement of RIT2 (Ras like without CAAX 2), a PD risk gene
product and a small GTPase, in macroautophagy. RIT2 has been
shown to activate LRRK2 (Obergasteiger et al., 2023), and
vulnerability of RIT2-underexpressing dopaminergic neurons has
been reported from analysis of postmortem brains of PD patients
(Wang et al., 2024). RIT2 also regulates lysosomal function;
RIT2 KO cells exhibited suppression of macroautophagy, while
overexpression resisted α-synuclein aggregation (Gao et al.,
2024). Since not only intracellular α-synuclein but also
extracellular species are degraded by lysosomes after intracellular
uptake (Sacino et al., 2017), the macroautophagy regulation shown
by the above studies may influence overall α-synuclein dynamics,
which may contribute to PD pathogenesis.

Mitophagy and PD

Macroautophagy includes mechanisms that selectively degrade
intracellular organelles, and among these, mitophagy has been
strongly implicated in PD. Mitophagy acts to degrade damaged
mitochondria and is essential for maintaining cell survival and
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homeostasis (Palikaras et al., 2018; Picca et al., 2023). There are two
known pathways, ubiquitin-dependent and ubiquitin-independent
(Khaminets et al., 2016), the latter employing protein-protein
interaction motifs, ubiquitin-like modifiers, and sugar- or lipid-
based signals. The ubiquitin-dependent pathway, on the other hand,
employs two proteins responsible for autosomal recessive early-
onset PD: phosphatase and tensin homologue (PTEN)-induced
kinase (PINK1) and Parkin (Li et al., 2023; Narendra and Youle,
2024). Under normal conditions, PINK1 is transported to the
mitochondrial inner membrane, where it is cleaved and degraded
by proteases. However, when mitochondria are depolarized under
stress, PINK1 accumulates on the mitochondrial surface and is
activated by autophosphorylation to recruit Parkin, an
E3 ubiquitin ligase, to the mitochondrial outer membrane. Parkin
then ubiquitinates VDAC1 (voltage dependent anion channel 1) on
the mitochondrial surface, which is essential for mitophagy(Geisler
et al., 2010; Narendra et al., 2010; Ham et al., 2020). PINK1 also
phosphorylates ubiquitin to activate Parkin and the phosphorylated
ubiquitin chain further serves as a scaffold for adapter proteins to
amplify mitophagy signals. Finally, the ubiquitin-binding adaptor
p62/SQSTM1 mediates the recruitment of the LC3-localized
phagophore to the ubiquitin-coated damaged mitochondria for
degradation. Parkin also activates the ubiquitin-proteasome
system to degrade mitochondrial outer membrane proteins,
which is another critical process in mitophagy.

Parkin and PINK1mutations associated with early-onset PD are
known as PARK2 and PARK6, respectively (Hattori et al., 1998;
Kitada et al., 1998; Leroy et al., 1998). In Drosophila harboring
mutations in PINK1 or Parkin, neuronal loss and muscle
degeneration have been reported (Greene et al., 2003; Clark et al.,
2006; Yang et al., 2006). Although Parkin KO in mice did not show
signs of neurodegeneration, utilization of a mouse model that
accumulates dysfunctional mitochondria revealed that Parkin KO
in this model resulted in dopaminergic neuron degeneration with
PD-like phenotypes (Pickrell et al., 2015). In Pink1 KO mice,
intestinal infection with Gram-negative bacteria caused activation
of autoimmune system and PD-like phenotypes such as
dopaminergic axonal loss and motor dysfunction (Matheoud
et al., 2019). In humans, phosphorylated ubiquitin signaling as a
downstream of the PINK1-Parkin pathway was elevated in the
substantia nigra dopaminergic neurons of sporadic PD patients,
whereas this was not evident in those of PARK2 PD patients (Shiba-
Fukushima et al., 2017). Phosphorylated ubiquitin in human brains
was also shown to increase in an age- and Lewy body pathology-
dependent manner, and colocalization of α-synuclein and
phosphorylated ubiquitin in neurites was observed (Hou et al.,
2018; Hou et al., 2023).

Of note, the role of PINK1/Parkin in mitophagy may somewhat
differ between in vitro and in vivo; while these proteins are essential
for mitophagy in cultured cells, mitophagy is still reported to occur
in Pink1 KO mouse brains and in PINK1/Parkin-deficient
Drosophila (Lee J. J. et al., 2018; McWilliams et al., 2018). The
possible reasons for this difference between in vitro and in vivomay
be that more acute mitophagy stimuli are applied in vitro compared
to chronic stimuli in vivo, and that other pathways independent of
PINK1/Parkin compensate for mitophagy in rodents where the
expression level of PINK1 is low (Han et al., 2023). Indeed, a set
of other proteins have been known as mediators of Parkin-

independent mitophagy (Onishi et al., 2021). Recently, a PINK1
KO monkey model that exhibits neuronal loss in substantia nigra
and cortex has been established (Yang et al., 2019; Yang et al., 2022).
Since PINK1 expression is likely higher in primate brains than in
rodents, studies using such models would be helpful to uncover the
involvement of PINK1/Parkin-dependent mitophagy in PD.

As for the involvement of other proteins, cell-based knockdown
screening of PD-associated genes identified KAT8 (lysine
acetyltransferase 8) and KANSL1 (KAT8 Regulatory NSL
Complex Subunit 1) as regulators of mitophagy. Both proteins
interact with each other as the components of the non-specific
lethal (NSL) complex, and their deficiency increased phosphorylated
ubiquitin signaling in human iPSC-derived neurons (Soutar et al.,
2022). In addition, a relationship between LRRK2 and mitophagy
has also been suggested, as mitophagy was decreased in R1441C
LRRK2 transgenic rats and iPSC-derived dopaminergic neurons
from patients with LRRK2 R1441C mutation (Williamson et al.,
2023). DJ-1, which is associated with PARK7, has been reported as
an essential downstream of PINK1/parkin-mediated mitophagy
(Imberechts et al., 2022). These findings suggest that disruption
of mitochondrial homeostasis by impaired mitophagy may
contribute to neurodegeneration.

Microautophagy and PD

Microautophagy is another mode of autophagy reported in the
1980s (Marzella et al., 1981; Mortimore et al., 1983), where proteins
are directly incorporated into lysosomes and undergo degradation.
Like other types of autophagy, protein degradation by
microautophagy is dependent on lysosomal pH and is inhibited
by pH elevation by drugs such as chloroquine (Ahlberg and
Glaumann, 1985; Ahlberg et al., 1985). There are at least two
known pathways for microautophagy: the invagination pathway
and the protrusion pathway (Mijaljica et al., 2011; Oku and Sakai,
2018; Wang L. et al., 2023). The invagination pathway requires the
ESCRT complex, but the involvement of ATG proteins is limited
and only the ATG8 and ATG12 conjugation systems are thought to
be involved. On the other hand, the protrusion pathway requires
ATG proteins and SNAREs, although the detailed molecular
mechanism is still unclear. Microautophagy takes place on
lysosomal and endosomal membranes and involves membrane
engulfment, vesicle formation, and degradation. Endosomal
microautophagy (eMI), like CMA described below, is triggered by
the recognition of the KFERQ motif by HSC70 and works
complementarily with CMA, although eMI selectively requires
BAG6 (Krause et al., 2023). Currently, two types of eMI are
believed to exist: ESCRT-dependent eMI and nSMase2-dependent
eMI. Microautophagy is thought to be involved not only in protein
degradation but also in the secretion of extracellular vesicles. The
resultant regulation of cellular functions is diverse, and, for example,
it has been reported that the cGAS-STING innate immune pathway
is terminated through the degradation of STING bymicroautophagy
(Kuchitsu et al., 2023).

Microautophagy has been less studied because it involves some
of the same molecules as macroautophagy, and little has been
reported on its effect on PD. Since several synaptic proteins have
been reported to be degraded by eMI (Uytterhoeven et al., 2015), it is
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possible that α-synuclein undergoes degradation as well, and
STK38-regulated microautophagy has been reported to prevent
aging (Ogura et al., 2023), so further studies are warranted on
the relationship between microautophagy and PD.

CMA and PD

Chaperone-mediated autophagy (CMA) was first reported in the
1980s (Kaushik and Cuervo, 2018), and CMA substrates commonly
harbor a unique sequence, the KFERQ motif (Dice, 1990). This
motif is recognized by the chaperon HSC70 and the substrates are
recruited to the lysosomes (Terlecky et al., 1992; Bandyopadhyay
et al., 2008). Substrate-bound HSC70 then translocates into the
lysosomal lumen via binding to the lysosomal membrane protein
LAMP2A (Terlecky et al., 1992; Bandyopadhyay et al., 2008). CHIP
and HSP40 further interact with HSC70 and facilitate the
recruitment of substrates to the lysosomes (Agarraberes and
Dice, 2001; Ferreira et al., 2013). This transport machinery to the
lysosome is quite unique in that it does not involve dynamic
membrane changes such as invagination or fusion, and
multimerized LAMP2A forming a 700 kDa complex has been
reported to mediate the translocation to the lumen
(Bandyopadhyay et al., 2010). It should be noted, however, that
the actual channel formation of LAMP2A has not been confirmed by
means of structural analysis or in vitro reconstitution approaches
(Neel et al., 2024).

CMA has been reported to be associated with several
neurodegenerative diseases including PD, and α-synuclein has
been demonstrated as a substrate of CMA (Cuervo et al., 2004;
Vogiatzi et al., 2008; Liu Y. et al., 2023). The VKKDQ motif is
present in α-synuclein, and its degradation is suppressed by
lysosome inhibitors but not by macroautophagy inhibition. In
addition, the expression level of LAMP2A was increased in the
brains of α-synuclein transgenic mice, and the colocalization of α-
synuclein with LAMP2A was also increased (Mak et al., 2010;
Malkus and Ischiropoulos, 2012). Other studies have shown that
the overexpression of LAMP2A reduced α-synuclein-induced
neurotoxicity in cultured cells and in rat brains (Xilouri et al.,
2013), while substantia nigra neuronal loss and behavioral
abnormalities have been observed in rats following CMA
suppression by inhibition of LAMP2A (Xilouri et al., 2016). In
humans, decreased protein levels of LAMP2A and HSC70 were
observed in the substantia nigra, amygdala and anterior cingulate
cortex of PD patients (Alvarez-Erviti et al., 2010; Murphy et al.,
2014), while there was no decrease in the levels of LAMP2B or
LAMP2C in these patient brains (Murphy et al., 2015). In astrocytes
derived from patients, the evidence of CMA abnormality was found,
and pharmacological upregulation of CMA suppressed α-synuclein
aggregation in co-cultured neurons (di Domenico et al., 2019).
These findings suggest that suppression of CMA due to causes
such as decreased LAMP2A levels may lead to PD.

Other PD-associated gene products have also received attention
for their association with CMA. It has been reported that
LRRK2 acts to inhibit the overall protein degradation by CMA
(Orenstein et al., 2013). In the brains of R1441G LRRK2 knock-in
mice, LAMP2A and HSC70 accumulated with age along with
decreased CMA activity, and treatment with an activator of CMA

was shown to reduce the amount of α-synuclein in the brain (Ho
et al., 2020). In adipocytes of mice overexpressing TIGAR (TP53-
induced glycolysis and apoptosis regulator), an inhibitor of the
glycolytic pathway, increased levels of LRRK2 and RAB7B as well
as LRRK2 activity-dependent suppression of CMA and
macroautophagy were detected (Zhang et al., 2024). A PARK5
gene product UCHL1 (ubiquitin carboxyl-terminal hydrolase L1)
harboring PD-associated mutations has been reported to show
aberrant interaction with CMA machinery components (Kabuta
et al., 2008; Andersson et al., 2011). As for PARK17 gene product
VPS35 whose D620N mutation is associated with PD, LAMP2A-
positive vesicles were reduced while α-synuclein-positive vesicles
were increased in dopaminergic neurons from VPS35 knockout
mice and D620N VPS35 overexpressing cells, due to enhanced
degradation of LAMP2A in lysosomes (Tang et al., 2015).
HDAC6 (histone deacetylase 6) has been suggested to regulate
the pathologies of synucleinopathies including PD (Lemos and
Stefanova, 2020), possibly by deacetylating HSP90 that regulates
α-synuclein degradation by CMA (Du et al., 2021). Mutations in
GBA1, the most common PD risk gene encoding the lysosomal
enzyme glucocerebrosidase (GCase), have been shown to cause
suppression of CMA as a result of mislocalization of mutant
GCase to the lysosomal surface, thereby causing α-synuclein
aggregation (Kuo et al., 2022). These reports collectively suggest
the involvement of CMA in the degradation of α-synuclein, but as
described above, the role of macroautophagy has also been
suggested, and the contribution of each pathway would require
further clarification.

CASM and PD

In macroautophagy, the conjugation of ubiquitin-like
ATG8 proteins (termed ATG8ylation) occurs on double-
membrane autophagosomes with the aid of the E3-like
ATG12–ATG5-ATG16L1 complex. ATG8ylation has long been
considered a specific marker and essential mechanism for
autophagy. Recently, however, ATG8ylation has also been shown
to occur on the single membranes of endolysosomes, which is
collectively termed CASM (conjugation of ATG8 to single
membranes) (Durgan and Florey, 2022; Wang et al., 2022).
Currently, CASM is classified into two pathways: the VAIL
(V-ATPase-ATG16L1-induced LC3 lipidation) pathway and the
STIL (sphingomyelin-TECPR1-induced LC3 lipidation) pathway,
each utilizing a different E3-like complex for ATG8 conjugation to
single membranes (Deretic et al., 2024; Figueras-Novoa et al.,
2024) (Figure 2).

VAIL, also known as the V-ATPase-ATG16L1 axis, is known to
employ the ATG12–ATG5-ATG16L1 complex as E3 as in
macroautophagy, but is more unique in that it requires the
WD40 domain of ATG16L1, a domain not required for
macroautophagy (Fletcher et al., 2018). Association of the
V1 and V0 domains of V-ATPase, a proton pump on lysosomal
membranes, triggers the recruitment of ATG16L1 onto the
lysosomal membranes, resulting in the activation of VAIL
(Hooper et al., 2022). Several endocytic events that have been
named are included in VAIL, and LAP (LC3-associated
phagocytosis) and LANDO (LC3-associated endocytosis) are
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known to be such specific types. LAP is characterized by
LC3 lipidation on phagolysosomes that incorporate various
pathogens or pathogen mimetics, such as the yeast cell wall
preparation Zymosan (Sanjuan et al., 2007), influenza A virus
(Beale et al., 2014; Fletcher et al., 2018; Wang et al., 2021), and
Helicobacter pylori VacA toxin (Florey et al., 2015). Although the
physiological roles of LAP are not necessarily clear, the acceleration
of phagosomal maturation (Sanjuan et al., 2007) and antigen
presentation (Ma et al., 2012; Romao et al., 2013; Fletcher et al.,
2018) have been suggested. LANDO is characterized by the
recruitment of LC3 onto endosomes that contain protein
aggregates, although the physiological role of LANDO is still
poorly defined (Peña-Martinez et al., 2022). In addition to these
specific types, VAIL is known to be activated by various chemical
compounds that act on lysosomes, such as lysosomotropic agents
(e.g., chloroquine) (Florey et al., 2015), proton ionophores (e.g.,
monensin) (Florey et al., 2015), and the agonists of the lysosomal
cation channel TRPML1/MCOLN1 (Goodwin et al., 2021). It has
also been reported that VAIL is induced by activators of STING,
which is involved in the innate immune response following the
leakage of double-strand DNA into the cytoplasm (Gui et al., 2019;
Fischer et al., 2020).

On the other hand, STIL, also known as the sphingomyelin-
TECPR1 axis, is known to employ TECPR1 (tectonin beta-propeller
repeat containing 1) instead of ATG16L1 as the component of
functional E3 ligase complex containing ATG12–ATG5 (Boyle et al.,
2023; Corkery et al., 2023; Kaur et al., 2023; Wang Y. et al., 2023).
STIL is elicited upon lysosomal membrane damage caused by
L-leucyl-L-leucine methyl ester (LLOMe) treatment or by
infection with Salmonella or other bacteria. Lysosomal membrane
damage leads to the cytosolic exposure of sphingomyelin, which in

turn recruits TECPR1 by direct binding, resulting in
ATG8 lipidation. However, STIL has only recently been reported,
and its functions in vivo and relationship to disease are not yet clear.

For VAIL, possible links to PD or neurodegeneration have been
suggested, albeit not many. We and others have shown that the
VAIL pathway under CASM-causing stress induces the lysosomal
recruitment and activation of PD-causative kinase LRRK2 (Bentley-
DeSousa et al., 2025; Eguchi et al., 2024; Kuwahara and Iwatsubo,
2024). This activation causes the phosphorylation of its substrate
RAB GTPases and facilitates the lysosomal stress responses,
including the deflation of enlarged lysosomes and the exocytic
release of lysosomal contents (Eguchi et al., 2024). Although
papers from two groups have different views on the mechanism
of LRRK2 recruitment/activation by VAIL, one report suggests that
the ATG8 family member GABARAP recruits LRRK2 by direct
binding (Bentley-DeSousa et al., 2025). Since aberrant activation of
LRRK2 has been reported in idiopathic PD without
LRRK2 mutations (Di Maio et al., 2018; Petropoulou-Vathi et al.,
2022), the activation of the VAIL pathway may also be involved in
the pathogenetic process of PD. There have been other reports that
showed a link between VAIL and neurodegeneration, i.e., LANDO
and Alzheimer’s disease (AD). LANDO suppressed amyloid-β (Aβ)-
induced activation of microglia and deletion of LANDO
components in microglia exacerbated neuronal death in AD
model mice (Heckmann et al., 2019). Furthermore, the same
group also reported that the deletion of WD40 domain of
ATG16L1, essential for LANDO or VAIL, is sufficient for driving
spontaneous AD pathology including deposition of endogenous Aβ
and hyperphosphorylated tau, microgliosis and neurodegeneration
in aged (2 years old) mice in the absence of AD protein
overexpression (Heckmann et al., 2020) These findings suggest

FIGURE 2
Two distinct mechanisms of CASM. VAIL and STIL, two recently reported mechanisms of CASM, are illustrated. In VAIL, the V-ATPase on lysosomes
first forms a full complex upon lysosomal pH elevation. TheWD40 domain of ATG16L1 then interacts with the V-ATPase, and the ATG12–ATG5-ATG16L1
complex recruits ATG8s onto lysosomes. In STIL, lysosomal membrane damage induces exposure of sphingomyelin and recruitment of TECPR1, which
interacts with ATG12–ATG5 to recruit ATG8s onto lysosomes. Among PD-associated factors, the involvement of LRRK2 in VAIL has been suggested.
Abbreviations: GABARAP: gamma-aminobutyric acid receptor-associated protein, TECPR1: tectonin beta-propeller repeat containing 1. This figure was
created in BioRender. Kuwahara, T. (2025) https://BioRender.com/q74y182.
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that CASM, especially the VAIL pathway, is involved in age-
associated neurodegenerative processes, which should be
further analyzed.

Autophagy-related secretion and PD

In recent years, it has gradually become known that the non-
autophagic functions of ATG proteins are more diverse, including not
only CASM but also extracellular secretion of endolysosomal
compartments. Also, such secretory mechanisms have been thought
to explain certain aspects of the neurodegenerative process in PD. There
are various types of extracellular secretion involving ATG proteins or
autophagy-related machineries, but the classification based on
differences in membrane dynamics can be divided into three major
types: lysosomal exocytosis, secretory autophagy, and exosomes/
extracellular vesicles (EVs) secretion (Buratta et al., 2020). Although
these three mechanisms are thought to overlap to some extent, a
possible link to PD has been suggested for all three (Figure 3).

The first type, lysosomal exocytosis, is a process whereby
lysosomes fuse with the plasma membrane and release their
contents to the extracellular space, and is usually triggered by an
increase in intracellular Ca2+ levels (Rodríguez et al., 1997; Martinez
et al., 2000; Reddy et al., 2001). Mechanistically, one study has
reported the crucial role of the ATG12–ATG5-ATG16L1 complex in
this process (Tan et al., 2018), although this study shows the
requirement of WD40 domain of ATG16L1, reminiscent of the

regulation by CASM. Other autophagy-related proteins involved in
this exocytosis process are transcription factor EB (TFEB) and the
lysosomal Ca2+ channel TRPML1 (transient receptor potential
mucolipin 1)/MCOLN1 (mucolipin TRP cation channel 1)
(Medina et al., 2011). In addition, VAMP7, syntaxin-4 and
synaptosome-associated protein of 23 kDa (SNAP23) work as
SNARE proteins, and RAB3 and RAB10 work as regulators of
membrane transport in lysosomal exocytosis (Rao et al., 2004;
Encarnacao et al., 2016). Lysosomal exocytosis plays an
important role in the regulation of diverse cellular functions,
including the maintenance of plasma membrane integrity,
extracellular matrix (ECM) remodeling, and defense against
pathogens (Blott and Griffiths, 2002; Andrews, 2000; Tancini
et al., 2020; Villeneuve et al., 2018; Neel et al., 2024). In addition,
lysosomal exocytosis appears to contribute to some intercellular
signaling by promoting the extracellular release of ATP (Zhang et al.,
2007). In relation to neurodegenerative diseases, lysosomal
exocytosis has been shown to mediate the extracellular release of
TDP-43 and huntingtin, both of which contain the KFERQ motif
and therefore possible substrates of CMA (Grochowska et al., 2023).
In the context of PD, loss of ATP13A2/PARK9 has been shown to
cause impaired Ca2+-induced lysosomal exocytosis and
accumulation of α-synuclein in cultured human dopaminergic
neurons (Tsunemi et al., 2019). Pathogenic α-synuclein was
released from neurons via Ca2+-induced lysosomal exocytosis
(Xie et al., 2022). Furthermore, although the mechanism may be
different, α-synuclein aggregates can be secreted from

FIGURE 3
Extracellular secretion from endolysosomes regulated by autophagy-related proteins. Secretion modes regulated by non-autophagic functions of
autophagy-related proteins were classified into three types based on the differences in membrane dynamics: lysosomal exocytosis, secretory autophagy
and exosome/EV secretion. In lysosomal exocytosis, lysosomes fuse with the plasma membrane (PM) and lysosomal enzymes are released. In secretory
autophagy, autophagosomes are responsible for the release of IL-1β and other proteins. In exosome/EV secretion, MBVs fuse with PM to release
vesicles. SNAP23, STX, VAMP7, Rab3, Rab10, TRPML1 and TFEB are involved in lysosomal exocytosis, while SNAP23/29, STX3/4, Sec22b, and Rab8 are
involved in secretory autophagy, and ESCRTs are involved in exosome/EV secretion. α-Synuclein has been suggested to be secreted in these modes.
Abbreviations: EV: extracellular vesicle, MVB: multivesicular body, SNAP23: synaptosomal-associated protein 23, STX4: syntaxin 4, TFEB: transcription
factor EB, TRPML1: transient receptor potential mucolipin 1, VAMP7: vesicle-associated membrane protein 7. This figure was created in BioRender.
Kuwahara, T. (2025) https://BioRender.com/o81z371.
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endolysosomes via the mechanism called MAPS (misfolding-
associated protein secretion), which employs the deubiquitinase
USP19 and HSC70 co-chaperone DNAJC5/CSPα (Lee et al.,
2016; Lee J. et al., 2018; Wu et al., 2023).

The second type of secretion, secretory autophagy, is originally
considered as a mechanism whereby double-membrane
autophagosomes directly fuse with the plasma membrane for the
exocytic disposal of their contents. It should be noted, however, that
there is no conclusive evidence for the fusion of autophagosomes with
the plasma membrane, and it is also possible that autophagosomes are
involved in steps preceding fusion (Dupont et al., 2011; Ejlerskov et al.,
2013; Zhang et al., 2015; Neel et al., 2024). IL-1β is one of the few known
proteins secreted via secretory autophagy (Dupont et al., 2011; Nakahira
et al., 2011; Zhou et al., 2011). Amino acid starvation or treatment with
NLRP3 inflammasome agonists has been shown to induce the
extracellular secretion of IL-1β via the action of ATG5 and RAB8A
(Dupont et al., 2011; Chang et al., 2024). Subsequent analyses have
further identified Sec22b, syntaxin-3/4, and SNAP23/29 as regulators of
secretory autophagy (Kimura et al., 2017; Chang et al., 2024). Also, as a
specific type of secretory autophagy, SALI (secretory autophagy during
lysosome inhibition) (Debnath and Leidal, 2022; Solvik et al., 2022) is
reported to occur upon lysosome inhibition and MAD (migratory
autolysosome disposal) (Sho et al., 2024) upon lysosome damage
induction. The former occurs after autophagosomes fuse with late
endosomes/multivesicular bodies (MVBs) to become amphisomes,
and the latter occurs after they fuse with lysosomes to become
autolysosomes. Given that these are not secretions from
autophagosomes and that a set of ATG proteins are commonly
involved, there may be some overlap with other secretion
mechanisms including exosomal secretion and lysosomal exocytosis.
In relation to PD, one study has shown that the extracellular secretion of
α-synuclein is mediated by exophagy, a mode of secretion from an
autophagy intermediate produced by impaired autophagosome-
lysosome fusion, similar to secretory autophagy, and that this
secretion is enhanced by overexpression of the tubulin
polymerization-promoting protein (TPPP/p25α) (Ejlerskov et al.,
2013). Another recent study has shown that neuronal activity-
dependent enhancement of α-synuclein release is mediated by
secretory autophagy (Nakamura et al., 2024). However, since these
and other papers that suggest the involvement of secretory autophagy
often show the secretion with exosomes/EVs, it may be difficult tomake
a clear distinction from the mechanism described next.

The third type of secretion involving autophagy-related
machineries is mediated by exosomes or EVs, the former
typically defined as vesicles 50–150 nm in diameter (Welsh et al.,
2024). Exosomal secretion occurs when the endosomal membrane is
invaginated to form intraluminal vesicles (ILVs), which are then
secreted from the cell instead of being degraded in lysosomes. There
are at least two pathways for exosome biogenesis: ESCRT-dependent
and ESCRT-independent pathways (Catalano and O’Driscoll, 2020).
Although the exact site of action of ATG proteins is not necessarily
clear, one study has reported that ATG5 and ATG16L1 de-acidify
MVBs via dissociation of the V1V0-ATPase to induce exosome
release (Guo et al., 2017). Several studies have suggested a link to
PD mechanisms; for example, inhibition of autophagy by treatment
with bafilomycin A1 or chloroquine has been shown to enhance α-
synuclein secretion via EVs harboring a hybrid autophagosome-
exosome-like phenotype (Minakaki et al., 2018). TPPP/P25α-

mediated exophagy of α-synuclein was accompanied by exosome
secretion (Ejlerskov et al., 2013), and neuronal activity-mediated
secretion of α-synuclein was found in both exosome associated and
free forms (Nakamura et al., 2024) in the studies involving secretory
autophagy described above as well. Another study has shown that
extracellular secretion of α-synuclein as well as its propagation is
enhanced when autophagy is suppressed by S-nitrosylation of p62
(Oh et al., 2022). In our study, treatment of microglia incorporating
α-synuclein fibrils with lysosomotropic agents resulted in the
secretion of insoluble α-synuclein, which was dependent on
Rab10 phosphorylation by LRRK2 (Abe et al., 2024). This
secretion was accompanied by the release of lysosomal luminal
proteins, and CASM was responsible for the release by mediating
LRRK2 activation (Eguchi et al., 2018; Eguchi et al., 2024). These
findings collectively suggest that the extracellular secretion of
endolysosomal contents, which is regulated by non-autophagic
functions of autophagy-related proteins, may be involved in the
pathomechanism of PD.

Discussion and future perspectives

As reviewed thus far, recent studies have uncovered various
forms of autophagy and related mechanisms as well as their
association with PD (summarized in Table 1). Importantly, some
autophagy-related mechanisms, especially the ATG8 conjugation
system, play additional roles other than intracellular degradation
(Nakamura et al., 2020; Wang et al., 2021; Wang et al., 2022).
Therefore, the previously reported relationships between PD and
autophagy mechanisms would need to be reconsidered,
incorporating the latest information, to determine whether the
findings really imply the involvement of intracellular degradation
in the disease mechanisms. For example, when elevated
LC3 lipidation is detected in PD or its model animals/cells, one
must consider the possibility that CASM is activated, not simply that
macroautophagy is activated. There are also two types of CASM,
VAIL and STIL (Deretic et al., 2024; Figueras-Novoa et al., 2024),
and such classifications may increase further in the future.

In addition, the three cellular activities described so
far—intracellular degradation, CASM, and extracellular
secretion—are seemingly distinct events, but they do not necessarily
function independently; rather, they are assumed to work in
coordination around the lysosome. In particular, when lysosomal
pH is elevated due to some dysfunction of lysosomes, autophagic
flux is inhibited and CASM is induced, while extracellular release
from endolysosomes also occurs (Bentley-DeSousa et al., 2025;
Eguchi et al., 2024). Such lysosomal dysfunction is generally known
to be accelerated by aging, as accumulation of intralysosomal granules
such as lipofuscin is often observed in aging tissues (Goyal, 1982; Gray
and Woulfe, 2005). Since PD is an age-associated disorder, lysosomal
dysfunction is likely to be involved in the pathomechanism, and
lysosomal activation would be one of the therapeutic strategies.

However, lysosomal activation involves complicated molecular
mechanisms as described above, and in terms of drug discovery, it is
important to determine which mechanism to activate and how to
activate it. Therefore, further studies on autophagy and its related
mechanisms are warranted. Additionally, the application to PD
therapy requires model animals and cells that faithfully reflect
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TABLE 1 Selected list of evidence suggesting a link between the autophagic pathway and PD. α-syn: α-synuclein, cKO: conditional knockout, DA:
dopaminergic, DLB: dementia with Lewy bodies, KD: knockdown, MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, OE: overexpression, p-Ub:
phosphorylated ubiquitin, Tg: transgenic, TH: tyrosine hydroxylase, Trx: thioredoxin-1, ↑: increase, ↓: decrease.

Reported phenotypes Analyzed systems/models References

Macroautophagy

autophagosome accumulation ↑ MPTP-treated mice Dehay et al. (2010)

TH-positive neurons ↓/α-syn accumulation ↑ MPTP-treated mice Liu et al. (2023a)

TH-positive neurons ↑/α-syn clearance ↑ Trx-1 OE in MTPT-treated mice Gu et al. (2024)

TH-positive neurons ↓/α-syn accumulation ↑ ATG7 cKO mice Ahmed et al. (2012)

mTOR ↑/ATG7 ↓ DLB brains and α-syn Tg mice Crews et al. (2010)

α-syn extracellular secretion ↑ ATG5 KD cells Fussi et al. (2018)

Omegasome formation ↑ Rab1A and α-syn OE neuroblastoma Winslow et al. (2010)

α-syn-mediated autophagy inhibition ↓ BV-2 cells and microglia with Akt/mTOR suppression Tu et al. (2021)

α-syn accumulation ↓ Rapamycin-treated SH-SY5Y cells Gao et al. (2019)

α-syn accumulation ↓ Beclin1 OE B103 cells Spencer et al. (2009)

Neurodegeneration by autophagic degradation of NLRP3 ↓ BV2 cells and microglia Han et al. (2019)

LRRK2 expression ↑ ATG5 or ATG7 cKO mice Friedman et al. (2012)

autophagosome trafficking ↓ LRRK2 mutant neurons Boecker et al. (2021)

ATG9A trafficking ↓ VPS35 mutant HeLa and SH-SY5Y cells Zavodszky et al. (2014)

autophagy ↓ RIT2 KO SH-SY5Y cells Gao et al. (2024)

Mitophagy ↓ Parkin KO Drosophila Greene et al. (2003)

Mitophagy ↓ PINK1 mutant/KD Drosophila Clark et al. (2006), Yang et al. (2006)

PD-like phenotype Parkin KO mice Pickrell et al. (2015)

p-Ub signaling ↑ PD dopaminergic neurons Shiba-Fukushima et al. (2017)

p-Ub structures ↑ Lewy body disease brains Hou et al. (2018)

p-Ub structures ↑ DLB brains with SNCA mutations/multiplications Hou et al. (2023)

PINK1-dependent mitophagy ↓ KAT8, KANSL1 KD iNeurons Soutar et al. (2022)

Mitophagy ↓ LRRK2 mutant rats and iPS-neurons Williamson et al. (2023)

Mitophagy ↓ DJ-1-deficient fibroblasts and neurons Imberechts et al. (2022)

CMA

LAMP2 expression ↑ α-syn Tg mice Mak et al. (2010)

LAMP2 expression ↑ α-syn mutant mice Malkus and Ischiropoulos (2012)

α-syn-induced neurotoxicity ↓ LAMP2A OE primary neurons Xilouri et al. (2013)

LAMP2A expression ↓ PD brains Alvarez-Erviti et al. (2010), Murphy et al. (2014)

α-syn aggregation ↑ LAMP2A KD astrocytes di Domenico et al. (2019)

CMA ↓ LRRK2 OE HEK293 cells Orenstein et al. (2013)

α-syn aggregation ↓ LRRK2 mutant mice Ho et al. (2020)

CMA ↓ TIGAR OE adipocytes Zhang et al. (2024)

CMA ↓ VPS35 KO mice, mutant DA neurons Tang et al. (2015)

CMA ↓ HDAC6 inhibitor-treated mice Du et al. (2021)

CMA ↓ GBA1 mutant NIH3T3 cells Kuo et al. (2022)

(Continued on following page)
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the pathogenesis of PD, but unfortunately, these model systems are
still under development. For example, although cellular models that
show significant deposition of α-synuclein aggregates have been
developed, would it be therapeutic if the deposition were reduced by
the activation of autophagy or related pathways? A well supported
view is that PD pathology develops via extracellular release of α-
synuclein aggregates and their cell-to-cell propagation. If a decrease
in intracellular accumulation of α-synuclein promotes its
extracellular release, the modulatory effect on the pathogenesis
needs to be carefully discussed. Ultimately, it will be essential to
develop and usemodels that can comprehensively assess α-synuclein
accumulation and neurodegeneration throughout tissues.

In summary, it is desirable to promote a comprehensive
understanding of the autophagy-lysosome system and to further
improve models of PD, and the combination of these findings and
technologies is expected to lead to novel therapeutic
strategies for PD.
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TABLE 1 (Continued) Selected list of evidence suggesting a link between the autophagic pathway and PD. α-syn: α-synuclein, cKO: conditional knockout,
DA: dopaminergic, DLB: dementia with Lewy bodies, KD: knockdown, MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, OE: overexpression, p-Ub:
phosphorylated ubiquitin, Tg: transgenic, TH: tyrosine hydroxylase, Trx: thioredoxin-1, ↑: increase, ↓: decrease.

Reported phenotypes Analyzed systems/models References

CASM

activation of LRRK2 by VAIL pathway under lysosomal
stress

RAW264.7 cells Eguchi et al. (2024)

activation of LRRK2 by VAIL pathway RAW264.7 cells Bentley-DeSousa et al. (2025)

Autophagy-related secretion

lysosomal exocytosis ↓/α-syn accumulation ↑ ATP13A2 mutant DA neurons Tsunemi et al. (2019)

SNARE-dependent α-syn secretion A53Τ α-syn Tg mice Xie et al. (2022)

α-syn secretion by late endosomes (independent of CMA) ↑ USP19 OE COS-7 cells Lee et al. (2016), Lee et al. (2018a)

α-syn secretion ↑ DNAJC OE HEK293T cells Wu et al. (2023)

α-syn secretion ↑ TPPP OE PC12 cells Ejlerskov et al. (2013)

lysosomal secretion under lysosomal stress ↓ LRRK2, ATG5, ATG16L1 KD RAW264.7 cells Eguchi et al. (2018), Eguchi et al. (2024)

α-syn secretion under lysosomal stress ↓ LRRK2 KD microglial cells Abe et al. (2024)
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