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Accurate segmentation of large choroidal vessels using optical coherence
tomography (OCT) images enables unprecedented quantitative analysis to
understand choroidal diseases. In this paper, we propose a novel multi-scale
and fine-grained network called MFGNet. Since choroidal vessels are small
targets, long-range dependencies need to be considered, therefore, we
developed a two-branch fine-grained feature extraction module that can mix
the long-range information extracted by TransFormer with the local information
extracted by convolution in parallel, introducing information exchange between
the two branches. To address the problemof low contrast and blurred boundaries
of choroidal vessels in OCT images, we developed a large kernel and multi-scale
attention module, which can improve the features of the target area through
multi-scale convolution kernels, channel mixing and feature refinement. We
quantitatively evaluated the MFGNet on 800 OCT images with large choroidal
vessels manually annotated. The experimental results show that the proposed
method has the best performance compared to the most advanced
segmentation networks currently available. It is noteworthy that the large
choroidal vessels were reconstructed in three dimensions (3D) based on the
segmentation results and several 3D morphological parameters were calculated.
The statistical analysis of these parameters revealed significant differences
between the healthy control group and the high myopia group, thereby
confirming the value of the proposed work in facilitating subsequent
understanding of the disease and clinical decision-making.
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1 Introduction

As the main blood supply structure to the outer retinal layer and the anterior nerve of
the cribriform plate, the choroid is the most densely packed part of the body’s blood vessels.
It provides nutrients to the retina to maintain normal light-sensitive function while
secreting growth factors and regulating body temperature (Nickla and Wallman, 2010).
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The vascular structure of the choroid is very complex and can be
divided into three sublayers: the capillary layer near the retina
(choriocapillaris), the middle vascular layer (Sattler’s layer), and
the large vascular layer near the sclera (Haller’s layer).

Optical coherence tomography (OCT) represents the most
widely utilised innovative technology in recent years for the
clinical diagnosis of retinal diseases. It is a non-contact, non-
invasive, high-resolution imaging technique that is capable of
displaying clear structural maps of the choroid and its sublayers
of blood vessels (Huang et al., 1991). At present, the analysis of the
choroid in OCT images is a widely employed methodology for
investigating the aetiology of associated pathologies.

Clinical studies have shown that changes in the vascular
morphology of the choroidal Haller layer are closely related to
the pathological processes of many ocular diseases. For example,
in patients with high myopia (HM), the thickness of the Haller layer
blood vessels may become thinner; Patients with high myopia may
also experience changes in Haller vessel density (Wang et al., 2015).
In patients with intermediate-stage age-related macular
degeneration (AMD), Haller’s layer vascular thickness is reduced;
The thickness variation of the Haller layer may be related to the
development of AMD (Torzicky et al., 2012). In patients with
diabetes retinopathy, the diameter of the blood vessels in the
Haller layer changes; The changes in the diameter of Haller’s
layer blood vessels may reflect changes in the choroidal
microcirculation (Gulshan et al., 2016). In conclusion, further
research into the changes in the blood vessels of Haller’s layer is
of potential value in understanding, screening and diagnosing
these diseases.

Recently, total choroidal thickness is considered an important
parameter for diagnosis because it is highly related to several
pathological conditions (Zhang et al., 2012; Garvin et al., 2008;
Hu et al., 2013; Li et al., 2005; Sui et al., 2017; He et al., 2021; Zhang
et al., 2020; Chai et al., 2020; Yan et al., 2023; Wu et al., 2022). With
the continuous development of OCT imaging technology, imaging
within the choroid has become clearer, and many studies have
focused on the relationship between changes in choroidal sublayer
thickness and diseases. However, this method does not fully reflect
the characteristics of the choroid and can occasionally result in an
invalid diagnosis. For instance, it has been reported that glaucoma
can lead to either thinning or thickening of the choroid at different
stages (Mwanza et al., 2011). One hypothesis that can explain this
inconsistency is that different changes occur in the vascular system
of each sublayer of the choroid (Yin et al., 1997). In addition, the
overall and sublayer thickness changes of the choroid are caused by
the dilation or atrophy of the blood vessels within the choroid.
Previous studies have shown that choroidal blood flow is reduced in
patients with high myopia, AMD and other diseases (Akyol et al.,
1996). To better explain the properties of choroidal vessels, Agrawal
et al. (Agrawal et al., 2016b) proposed a new quantitative parameter,
choroidal vascular index (CVI), and reported the application of CVI
in a variety of ocular diseases in many studies, including diabetic
retinopathy (Agrawal et al., 2016d), central serous
chorioretinopathy (Agrawal et al., 2016a) and polypoid
chorioretinopathy (Agrawal et al., 2016c). Therefore, automatic
segmentation of the large choroidal vessels is beneficial to
efficiently observe changes in choroidal vessels and blood flow in
more patients. By focusing on the vascular changes within the

choroid and visualizing them in 3D, we can more directly
examine the relationship between morphological changes
and disease.

In the last decade, some studies focused on segmentation of
choroidal macrovessels on OCT images. These methods can be
broadly classified into traditional hand-based approaches (Duan
et al., 2013; Kajić et al., 2013; Zhang et al., 2012; Srinath et al., 2014;
Nasar et al., 2019) and deep learning-based approaches (Khaing
et al., 2021; Zheng et al., 2021; Ronneberger et al., 2015; Zhu et al.,
2022a; Liu et al., 2019; Huang et al., 2023). Traditional methods can
only demonstrate the visual impact of large choroidal vessels
segmentation, lacking a gold standard for quantitative assessment
through manual annotation. Deep learning methods have inductive
biases such as local correlation and translation during the
calculation process and lack global modeling capabilities, making
it difficult to achieve high-precision blood vessel segmentation.
Moreover, there is a notable absence of disease correlation
analysis based on the comprehensive three-dimensional
morphological features of the choroidal vasculature, which could
facilitate a deeper understanding of associated disease progression
and inform clinical decision-making.

Consequently, we present a novel deep neural network,
namely, a multiscale and fine-grained network (MFGNet), for
automated segmentation of choroidal vessels in OCT images.
Specifically, MFGNet uses U-Net as the backbone. Since
choroidal vessels are small targets, long-range dependencies
need to be considered, therefore, we developed a two-branch
fine-grained feature extraction module that can mix the long-
range information extracted by TransFormer with the local
information extracted by convolution in parallel, introducing
information exchange between the two branches. To address
the problem of low contrast and blurred boundaries of
choroidal vessels in OCT images, we developed a large kernel
and multi-scale attention module, which can improve the features
of the target area through multi-scale convolution kernels, channel
mixing and feature refinement.

Our contributions to the work are summarized as follows:

• In response to the low contrast and blurred boundaries of the
choroidal vessels in OCT images, we developed the Large
Kernel and Multi Scale Attention (LKSA) module. It achieves
precise segmentation of choroidal vessels by using large
kernels and multiscale perception of changes in vascular
structural information.

• We developed a dual-branch fine-grained feature extraction
(DFG) module to address the small and widely distributed
choroidal vessels. The DFG module uses a parallel design to
mix the remote information extracted by TransFormer with
the local information extracted by convolution and introduce
information exchange between the two branches.

• Based on the results of the segmentation process, a
comprehensive three-dimensional reconstruction of the
choroidal vasculature was performed. A statistical analysis
of the morphological parameters derived from the
reconstructed three-dimensional vascular network of
clinical data indicates that the proposed methodology can
facilitate subsequent disease understanding and clinical
decision-making.
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2 Related works

Below we will briefly discuss the associated work on the
segmentation of large choroidal vessels.

Traditional methods for segmenting large blood vessels in the
choroid typically require prior knowledge and the use of pre- or
post-processing to denoise the input image to improve
segmentation results. Duan et al. (2013) and Kajić et al. (2013)
applied a multiscale adaptive thresholding method to segment
large blood vessels in the choroid. After segmenting the choroidal
vessels, it calculates the depth-related signal-to-noise ratio based
on the ideal vascular response based on registration and multi-
scale filtering and performs a three-dimensional reconstruction of
the vessels to obtain three-dimensional statistical data. Zhang
et al. (2012) proposed to use a 3D tube model to fit the large blood
vessels of the choroid, and then optimize the segmented choroidal
blood vessel boundaries through multi-scale Hessian filters and
threshold processing results. Likewise, 3D reconstruction of large
blood vessels enables a more intuitive representation of vascular
information. Srinath et al. (2014) proposed a method in which the
upper and lower boundaries of the choroid are first identified and
then the blood vessels are iteratively segmented by applying level
sets to the detected choroidal layer. By extracting the choroid, they
can improve the detection of blood vessels and their subsequent
segmentation. Nasar et al. (2019) chose centerline-based TEASAR
estimation to calculate the normals and cross sections of blood
vessels. They then iteratively moved the centerline to the centroid
of the existing cross-section and smoothed it using a three-
dimensional tensor until the changes between the two
iterations were not significant. However, all of the above
methods only show the visual effects of large vessel
segmentation of the choroid, lacking a gold standard for
quantitative evaluation through manual annotation. Therefore,
determining accuracy and reproducibility presents certain
challenges.

As it is the most well-known technology in the field of medical
image segmentation, some studies have attempted to apply deep
learning methods to the segmentation of large blood vessels in the
choroid of OCT images. In a seminal contribution to the field,
Khaing et al. (2021) developed an end-to-end architectural
framework, designated as ChoroidNet, which integrates
convolutional neural networks (CNN) and advanced
convolutions for the efficient segmentation of the choroidal layer
and its associated vasculature. Zheng et al. (2021) achieved the
segmentation and quantification of choroidal vessels in OCT images
by adding residual modules to the U-Net network (Ronneberger
et al., 2015). However, because it is a gold standard image, it cannot
classify the morphology of vascular structures well, which increases
the difficulty of subsequent vascular reconstruction work. Zhu et al.
(2022a) introduced a multi-task learning network, designated as
CUNet, which employs a shared encoder and three decoders for the
joint segmentation of choroidal layers and vessels. In a recent study,
Liu et al. (2019) proposed an end-to-end model for training and
testing large blood vessel segmentation in the choroid, which does
not require any pre- or post-processing steps. This method is
appropriate for the segmentation of large blood vessels in the
choroid, which typically comprise a multitude of areas with
intricate patterns that are challenging to analyse manually.

However, this method requires a substantial quantity of
annotated data, which presents a challenge in achieving accurate
segmentation on small datasets. Huang et al. (2023) put forth a 3D
convolutional neural network (CNN) approach, designated as SAN,
which employs anisotropic downsampling and upsampling
operations to construct a 3D U-shaped network backbone.
Additionally, it incorporates an auxiliary output branch to
predict a novel choroidal vessel shape representation, generated
through the application of labels.

3 Proposed method

In this section, we present the overall structure of the proposed
multi-scale and fine-grained choroidal vessel segmentation network
(MFGNet). MFGNet consists of two key module designs: (1) using a
large kernel and multi-scale attention module (LKSAmodule) in the
low-level (stem) phase; (2) In the downsampling phase, a two-
branch fine-grained feature extraction module (DFG module) with
convolution and TransFormer is used. They extract fine-grained
features through large-nuclei fusion and multi-scale perception of
structural information changes in blood vessels, as well as global and
local bidirectional fusion.

The overall structure is shown in Figure 1, with MFGNet
using U-Net as the backbone. It includes a stem layer and four
downsampling layers for progressive feature extraction, while
using corresponding upsampling blocks for feature
reconstruction. Below, the Stem layer contains two Conv-BN-
ReLU units and LKSA module in the middle. And Each of the
remaining encoder layers contains two DFG modules. In the
decoder stage, the feature reconstruction layer includes bilinear
interpolation for upsampling and two Conv-BN-ReLU
structures for feature reconstruction. We continued U-Net’s
skip connections to make it easier to merge feature information.
The specific information for the LKSA module and DFG module
is as follows.

3.1 Large kernel and multi-scale
attention module

In the low-level stage of neural networks, the network tends to
extract more detailed information such as contours for feature
extraction. On OCT, the contrast of the choroidal macrovessels is
low and the boundaries are blurred. For this reason, we developed a
large kernel and multi-scale attention module to extract local and
contour information of blood vessels to address this problem. The
specific details of the LKSA module are shown in the orange dashed
box in Figure 1. The LKSAmodule initially includes two Depth-wise
convolutions for multi-scale feature extraction between individual
feature channels with convolution kernels of 3 × 3 and 7 × 7,
respectively. Then two 1 × 1 convolutions merge this feature
information in the channel dimension. We concatenate the
feature maps in the channel dimension and perform mean
pooling and max pooling. The pooled feature map keeps its
spatial dimension unchanged while its channel dimension is
compressed to 1. The compressed pooled feature maps were
concatenated and mapped using the Sigmoid function to obtain
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multi-scale attention weights. We perform feature correction on the
input feature map using attention weights. The advantage of this
operation is to improve the features of the target area through multi-
scale convolution kernels, channel mixing and feature refinement.
The formula is as follows:

AvgPoolw � AvgPool Concat Conv1×1 Conv3×3 X( )( ),((
Conv1×1 Conv7×7 X( )( ))) (1)

MaxPoolw � MaxPool Concat Conv1×1 Conv3×3 X( )( ),((
Conv1×1 Conv7×7 X( )( ))) (2)

Attention � Sigmoid Concat AvgPoolw +MaxPoolw( )( ) (3)
Out � X +X × Attention (4)

where X represents the input feature map, and AvgPoolw and
MaxPoolw refer to the weight maps obtained via AvgPool
and MaxPool.

3.2 Dual-branch fine-grained feature
extraction module

Due to the small and widely distributed blood vessels in the
choroid, it is necessary for the network to extract both local
information and long-range dependency information to
accurately identify the target area. We have developed a novel
dual-branch fine-grained feature extraction module (DFG). The
DFGmodule uses a parallel design to mix the remote information
extracted by TransFormer with the local information extracted

by convolution and introduce information exchange between the
two branches. TransFormer’s self-attention mechanism can
effectively model long-range information, but its ability to
model channel information is limited due to information
flattening during the calculation process. We introduced a
nested network in the DFG module, which includes four
downsampling blocks and the corresponding upsampling
blocks. Simply put, this is a simplified version of the U-shaped
structure. Each convolution block contains a Conv-BN-ReLU
structure. Although this nested network stack can model fine-
grained feature information, it lacks the ability to model global
spatial information due to the exclusive use of convolution. In
summary, we have introduced information exchange between the
two feature extraction branches.

First, we use a SE block to extract channel attention weights at
the output layer of the nested network to compensate for the
shortcomings of TransFormer in modeling channel information.
Second, a spatial attention block is introduced into the bottleneck
layer of the nested network. This spatial attention block includes
7× 7 convolution, BN, ReLU, 1× 1 convolution and sigmoid
function, where the stride of 7× 7 convolution is 4 to take into
account the spatial dimension of the nested network bottleneck
layer. Finally, we link the self-attention gained by interacting with
feature information to the output of the nested network. The Feed
forward network (FFN) layer is used to effectively fuse the outputs
of double branches, consisting of a fully connected layer, a 3 ×
3 Depth-wise convolution, GELU, and a second fully
connected layer.

FIGURE 1
The overall structure diagram of our MFGNet.
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3.3 Loss function

To overcome the problem of blurred boundaries of large
choroidal vessels, we use a mixed cross-entropy (LCE) and Dice
(LDICE) loss function, which can better deal with the ambiguity and
class inequality of the target area in the image. Specifically as follows:

L � α · LCE + 1 − α( ) · LDICE (5)
where α is set as 0.5 in our task.

4 Experimental settings

4.1 Dataset

In this work, The dataset we used is the publicly available dataset
OCHID in our previous work. The introduction of the dataset can
refer to (Yan et al., 2024). The code link can be found on https://
github.com/iMED-Lab/MFGNet.

4.2 Implementation

The network architecture was implemented using the PyTorch
library, which is a Python library for machine learning and artificial
intelligence. All experiments were conducted on a workstation
equipped with a single NVIDIA GeForce GTX 3090 GPU with
24 GB of memory. The proposed network was trained for
400 epochs, with the following hyperparameters set: The Adam
optimisation method was employed, with an initial learning rate of
0.0007 and a batch size of 4. In order to facilitate comparison, the
training strategy outlined in the original paper was adopted for all
other methods.

4.3 Evaluation metrics

We use Dice, IoU and Pre as evaluation metrics for large
choroidal vessel segmentation as follows:

Dice � 2 · TP
2 · TP + FP + FN

(6)

IoU � TP

TP + FP + FN
(7)

Pre � TP

2 · TP + FP
(8)

where TP, FP and FN represent true positives, false positives and
false negatives, respectively.

5 Experimental results

To validate the effectiveness of the proposed method in
segmenting large choroidal vessels, we conducted a
comprehensive comparative study. For choroidal vessel
segmentation, we selected 11 CNN and Transformer-based
models with generalization capabilities: U-Net (Ronneberger
et al., 2015), CE-Net (Gu et al., 2019), Seg-Net (Badrinarayanan

et al., 2017), ResUNet (Zheng et al., 2021), ChoroidNet (Khaing
et al., 2021), TransUNet (Chen et al., 2021), SegFormer (Xie et al.,
2021), PoolFormer (Yu et al., 2022), LawinFormer (Kajić et al.,
2013), Swin-Transformer (Liu et al., 2021) and CLA-net (Yan
et al., 2024).

5.1 Qualitative results

Figure 2 shows the visualization results of various segmentation
networks in the segmentation stage of large choroidal vessels. The red
area in the figure is the over-segmentation area and the blue area is the
under-segmentation area. As observed in the ground truth, the spatial
distribution of large vesselmorphology in theHaller layer is unpredictable.
Therefore, the segmentation results based onCNNorTransformermodels
all indicate under-segmentation or over-segmentation. Comparedwith the
real label map, MFGNet’s segmentation results do not have excessive
segmentation, which ensures the authenticity of segmentation, and also do
not have large areas of insufficient segmentation, which ensures the
accuracy of subsequent feature analysis. Overall, MFGNet achieved the
best performance in large vessel segmentation, which could further
facilitate 3D reconstruction of choroidal vessels.

5.2 Quantitative results

Table 1 shows the quantitative results of different methods in
segmenting large blood vessels in the choroid. It can be observed that
MFGNet has the best performance in Dice, IoU and Pre evaluation
metrics. Taking the Dice metric as an example, MFGNet achieved a
segmentation result of 76.2%, which is 2.40% higher than U-Net.
The main advantage of MFGNet in large vessel segmentation tasks is
the design of a large-kernel and multi-scale attention module at the
low-level, which focuses more on feature extraction of detailed
information such as contours. From a quantitative perspective,
the accuracy and suitability of MFGNet for large choroidal
vessels segmentation were also validated.

5.3 Ablation studies

In order to better understand the role of LKSA and DFGmodules
in MFGNet, a series of relevant ablation experiments were conducted
for verification in this section, as shown in Table 2. MFGNet (LKSA)
added to U-Net with LKSA module showed an improvement of 1.9%
on Dice, 2.4% on IoU, and 6.7% on Pre compared to U-Net. MFGNet
(DFG) with added DFGmodule increased Dice by 2.0%, IoU by 2.5%
and Pre by 3.5% compared to U-net. Compared to U-net, MFGNet
(LKSA +DFG) increased Dice by 2.4%, IoU by 3.1%, and Pre by 5.7%.
The above experimental results show that the LKSA and DFG
modules are effective and can significantly improve the algorithm
performance.

6 Clinical applications

The thickness characteristics of the choroid have become an
important observation factor for the diagnosis and treatment of high
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myopia in clinical practice, but information about the thickness
alone is not enough to fully reflect the changes in the overall
morphology of the choroidal structure. The most common
vascular structural features in the choroid have not received
much attention due to their difficulty in extraction. In addition,
most related studies are based on two-dimensional morphological

indicators (Li et al., 2021; Zhu et al., 2022b) without in-depth
analysis of three-dimensional features. For three-dimensional
vascular structures and ocular structures, it is difficult to analyze
them exclusively from a two-dimensional perspective to provide
guarantees for clinical research and disease diagnosis and treatment.
Therefore, this article aims to study the correlation between the
three-dimensional vascular characteristics of the choroid and high
myopia from the perspective of three-dimensional structure,
reconstruct the large blood vessels of the choroid in three
dimensions, and analyze the correlation between multiple
characteristics such as three-dimensional vascular density, three-
dimensional analysis dimension as well as three-dimensional
vascular curvature and high myopia, and provide new ideas for
understanding the pathogenesis of high myopia and subsequent
prevention and treatment.

This section used 50 OCT volume data collected by the
Spectrails OCT2 device from Heidelberg, which included
18 highly myopic patients and 32 healthy controls. The subjects
were aged between 20 and 30 years old, and all subjects collected
monocular images. Each volume data contained 512 B-Scan images
with a resolution of 378 × 379 pixels, covering an area of 3 × 3 ×
2 mm3 centered on the fovea centralis.

6.1 3D reconstruction of large
choroidal vessels

The three-dimensional reconstruction of large blood vessels in
the choroid is based on the proposed MFGNet for segmentation and
extraction of large blood vessel structures from the dataset. Due to
the scattered location and irregular shape of large blood vessels, it is
not possible to use the same reconstruction method as the layered
structure, which may result in many points being eliminated as
outliers. In this chapter, the 2D segmentation result image is saved as
a 3D binary image represented by a 0–1 value array. A mesh
generation method (Si and Gärtner, 2005) is applied to create a
triangular mesh corresponding to the voxel resolution with
boundaries. It is then applied to the resampled surface mesh
based on the specified surface mesh density. In the 3D

FIGURE 2
The large choroidal vessel segmentation results by different methods. Note, the red denotes over-segmentation, and blue denotes under-
segmentation.

TABLE 1 Large choroidal vessel segmentation results by different methods.

Methods Dice ↑ IoU ↑ Pre ↑

U-Net 0.738±0.055 0.588±0.067 0.694±0.884

CE-Net 0.749±0.060 0.602±0.075 0.694±0.084

Seg-Net 0.729±0.054 0.576±0.065 0.665±0.096

ResUNet 0.736±0.058 0.586±0.071 0.691±0.090

ChoroidNet 0.731±0.063 0.580±0.076 0.695±0.096

TransUNet 0.750±0.054 0.603±0.068 0.708±0.089

SegFormer 0.744±0.052 0.596±0.065 0.706±0.088

PoolFormer 0.733±0.056 0.581±0.068 0.674±0.081

LawinFormer 0.737±0.056 0.586±0.069 0.670±0.090

Swin-Transformer 0.745±0.060 0.596±0.062 0.704±0.077

CLA-net 0.760±0.051 0.616±0.065 0.729±0.080

MFGNet 0.762±0.060 0.619±0.079 0.751±0.090

The values in bold represent the best of all the comparative experimental results.

TABLE 2 Ablation studies for large choroidal vessel segmentation.

Methods Dice ↑ IoU ↑ Pre ↑

U-Net 0.738±0.055 0.588±0.067 0.694±0.884

MFGNet (LKSA) 0.757±0.060 0.612±0.073 0.761±0.074

MFGNet (DFG) 0.758±0.060 0.613±0.074 0.729±0.089

MFGNet 0.762±0.060 0.619±0.079 0.751±0.090

The values in bold represent the best of all the comparative experimental results.
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reconstruction of large blood vessels, the surface mesh density is
set to 0.8.

In the process of 3D surface reconstruction, various topological
defects may exist, such as: E.g., isolated vertices, repeated triangles,
non-manifold vertices, etc. (Fang and Boas, 2009). Therefore, in this
chapter, to ensure the accuracy of the final reconstruction effect,
mesh inspection and repair were carried out before the final
reconstruction. For surface smoothing and optimization, the
Laplacian operator is used, which acts directly on the topological
domain and produces smooth grids in several iterations. His
smoothing method is specifically presented as follows:

p′ � p + λ

n
∑
n−1

i�0
qi − p( ) (9)

Where, λ represents the weighting factor, n the number of iterations,
p the vertex before smoothing, p′ the new position after smoothing
and qi the neighboring points of the original vertex. For three-
dimensional reconstruction of large choroidal vessels, λ is set to
0.9 and n to 10.

Finally, using the subregion labeling algorithm to generate
internal points, a 3D multi-region tetrahedral network with a
certain grid density is created, resulting in the 3D reconstruction
of large blood vessels. Figure 3 illustrates the reconstruction
principle from a two-dimensional perspective. The final three-

dimensional reconstruction of the macrovascular structure of the
choroid is shown in Figure 4.

6.2 Feature extraction and analysis

6.2.1 Three-dimensional fractal dimension (3D-FD)
The three-dimensional fractal dimension is used to measure the

spatial complexity of three-dimensional fractal shapes and the
symmetry and irregularity of vessel fractals. In general, the larger
the three-dimensional fractal dimension, the more complex the
fractal is, indicating that the fractal has more asymmetry and
randomness. It can be expressed as: 3D − FD � lim logNr

log(1/r), where
r is the length of the box’s side, N indicates the total number of
boxes, which cover all vessel regions.

6.2.2 Three-dimensional vascular density (3D-VD)
Three-dimensional vascular density refers to the density of the

vascular network in three-dimensional space, which canmeasure the
number and distribution of blood vessels and is used to evaluate the
health status of the vascular system and the subsequent detection of
vascular diseases. The three-dimensional reconstruction results of
large blood vessels based on the choroid are calculated by calculating
the length or quantity of blood vessels in each unit volume. The

FIGURE 3
Visual illustration of mesh reconstruction at the two-dimensional level (Si and Gärtner, 2005). (A) Two initial cavities separated by a constrained
segment; (B) construction of Delaunay triangles; (C) marking the triangles as “inside” or “outside”; (D) removing the “outside” triangles.

FIGURE 4
Three-dimensional reconstruction of choroidal major vessels. (A) 3D point cloud; (B) 3D mesh; (C) 3D vascular structure rendered with
curvature size.
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study of three-dimensional vascular density in the choroid is of great
importance for improving eye health and preventing eye diseases.

6.2.3 Three-dimensional vascular curvature
(3D-VC)

Three-dimensional vascular curvature refers to the degree of
curvature of blood vessels in three-dimensional space, which can
measure the shape and morphology of blood vessels, and can also be
used to assess the health status of blood vessels and diagnose
vascular diseases. The three-dimensional vascular curvature of
the choroid is determined by analyzing the three-dimensional
shape and curvature of the blood vessels.

The quantitative analysis results of the three-dimensional
characteristics of large blood vessels in the choroid are shown in
Table 3. According to Table 3, there is no significant difference in
the three-dimensional vessel curvature characteristics between the
healthy population and the highly myopic population, the t-test
value of the characteristic indicators for both groups is 0.693. As far
as three-dimensional fractal dimension and three-dimensional vascular
density are concerned, there is a statistical difference between the
healthy population and the severely myopic population. The average
three-dimensional vascular density of the healthy population is
12.0294 ± 3.6173, while the average three-dimensional fractal
dimension of the highly myopic population is 9.1604 ± 5.0237.
After testing and analyzing the two types of data, the value is 0.023,
indicating that the difference between the two is significant.

There are statistical differences in three-dimensional fractal
dimension and three-dimensional vascular density between highly
myopic individuals and healthy individuals. The main reason for this
is that the thickness of the choroid and retina is thinner in highlymyopic
people, and the choroidal blood vessels are in a certain degree of atrophy,
which reduces the complexity of the blood vessels in the entire three-
dimensional space three-dimensional fractal dimension. Similarly, as the
area occupied by blood vessels decreases throughout the choroidal
structure, the three-dimensional vascular density also decreases in
some sense. However, the curvature of three-dimensional blood
vessels is mainly influenced by vascular elasticity, so vascular
morphological curvature is more common in diseases such as
hypertension, which involve changes in the blood vessels themselves;
However, in highly myopic people there are no changes in vascular
pressure and vascular elasticity, so their vascular curvature does not show
any significant differences compared to healthy people.

7 Conclusion

Since choroidal vessels are small targets, long-range
dependencies need to be considered, therefore, we developed a

two-branch fine-grained feature extraction module that can mix
the long-range information extracted by TransFormer with the local
information extracted by convolution in parallel, introducing
information exchange between the two branches. To address the
problem of low contrast and blurred boundaries of choroidal vessels
in OCT images, we developed a large kernel and multi-scale
attention module, which can improve the features of the target
area through multi-scale convolution kernels, channel mixing and
feature refinement.

The proposedMFGNet was trained on highlymyopic and healthy
OCT samples and subjected to rigorous evaluation in order to
ascertain its efficacy. The experimental results demonstrate that
our MFGNet is superior to other competing approaches in both
choroidal sublayer and large vessel segmentation. Subsequently, the
large vessel segmentation results obtained from the MFGNet model,
which had undergone extensive training, were employed in the 3D
reconstruction process for further analysis. The 3D reconstruction
results of the large vessels demonstrate a high degree of agreement
with the en face images of the choroidal Haller layer, particularly in
terms of the morphology of the visible primary vessels. Furthermore,
three vascular-related parameters were calculated based on the 3D
reconstruction, and a comparison was made between high myopia
and healthy controls. The statistical analysis revealed significant
differences between highly myopic and healthy subjects in terms of
the 3D fractal dimension and 3D vascular density of large vessels.
These findings illustrate the significant clinical potential of further
investigation into choroidal vascular analysis.
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