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Introduction:Hepatocellular carcinoma (HCC) is themost common primary liver
cancer, with microvascular invasion (MVI) identified as a major predictor of early
recurrence. However, the intratumor cellular heterogeneity of MVI, the
identification of pertinent biomarkers, and the role of intercellular signalling
interactions in MVI progression are unclear. This study aims to explore these
aspects using single-cell transcriptomic analysis.

Methods: The present study utilized single-cell transcriptomic data from public
databases to conduct an in-depth transcriptome analysis of tumour tissues and
adjacent nontumor tissues from five patients with hepatocellular carcinoma, with
a particular focus on samples from three patients exhibiting microvascular
invasion. Bioinformatics tools were employed to analyze gene expression
patterns and signalling pathways.

Results: The findings indicated that MVI-positive malignant cells activate multiple
signalling pathways to facilitate invasion and metastasis. Specific malignant cell
subtypes strongly associated with MVI were identified, exhibiting distinctive gene
expression patterns related to proliferation, invasion, and metabolic
reprogramming of tumour cells. Further analysis revealed that the laminin and
VEGF signalling pathways are crucial for remodelling the tumour
microenvironment and angiogenesis associated with MVI. The MARCKSL1 gene
was predominantly expressed in MVI-positive malignant cells and may contribute
to MVI progression by interacting with the PTN signalling network. Additionally,
MARCKSL1 is linked to tumour resistance to multiple anticancer drugs.

Discussion: This study sheds light on the molecular characteristics and functional
heterogeneity of MVI-associated malignant cell subpopulations. The single-cell
transcriptome and bioinformatics analyses provided insights into the mechanisms
driving MVI, potentially aiding the development of targeted diagnostic and
therapeutic strategies. Future research should further validate the role of
MARCKSL1 in MVI progression and explore its potential clinical applications.
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1 Introduction

Hepatocellular carcinoma (HCC) is the third leading cause of
cancer-related death worldwide, with the number of deaths and
diagnoses expected to increase by more than 55% globally by 2040
(Marrero et al., 2018; Rumgay et al., 2022). Currently, the primary
treatments are liver resection and liver transplantation. However,
the recurrence rates remain high after treatment, with 5-year
recurrence rates of 70% and 35% after liver resection and liver
transplantation, respectively (Xu et al., 2019). In recent years,
significant attention has been given to the role of microvascular
invasion (MVI) in HCC. MVI, defined as the invasion of tumour
cells into the spaces between vascular endothelial cells, including
portal veins, hepatic arteries, and lymphatic vessels, is an
independent risk factor for early postoperative recurrence and
poor prognosis in HCC patients (Gouw et al., 2011). Notably, for
patients with a solitary small HCC lesion less than 5 cm in diameter,
the presence of MVI significantly reduces recurrence-free survival
(RFS) and overall survival (OS) rates (Sheng et al., 2020; Hong et al.,
2021; Xiong et al., 2022; Sumie et al., 2008). Thus, there is an urgent
need for more specific molecular biomarkers with prognostic and
therapeutic significance.

The rapid advancement of single-cell RNA sequencing
(scRNA-seq) technology in recent years has revolutionized the
understanding of cellular heterogeneity in various pathological
tissues (Ramachandran et al., 2019; Kuppe et al., 2021). ScRNA-seq
has led to significant discoveries in liver cancer research. Studies
have shown that tumour-associated macrophages (TAMs) in liver
cancer are closely linked to poor patient prognosis, and they have
identified critical genes in the inflammatory response of TAMs,
such as SLC40A1 and GPNMB (Ma et al., 2019; Zhang et al., 2019).
Additionally, scRNA-seq has been used to map various immune
cell subpopulations within liver cancer tissues, including T cells
and dendritic cells. Each subpopulation plays a unique role in the
liver cancer microenvironment. For example, LAMP3-positive
dendritic cells mediate immune suppression, while TREM2-
positive TAMs inhibit the infiltration of CD8+ T cells into
tumour tissue (Zhang et al., 2019; Zheng et al., 2017; Tan
et al., 2023).

Despite these findings, a comprehensive understanding of the
expression profiles of malignant cells in hepatocellular carcinoma,
particularly during the progression of MVI, is lacking, and their
specific roles in tumours are unclear. The present study investigated
the expression profiles of malignant cells in hepatocellular
carcinoma, systematically classified these cells, and detailed the
cellular heterogeneity associated with MVI, as well as the
molecular biological features of specific malignant
subpopulations. A machine learning approach was used to
construct a prognostic model based on signature genes of
malignant cells, which not only enhanced the prognostic utility
of the signature gene but also identified a previously unreported
molecule, namely, MARCKSL1. Further studies indicated that
MARCKSL1 may promote the development of MVI through
interactions with the PTN signalling network. The present
findings suggested that MARCKSL1, a potential therapeutic
target for hepatocellular carcinoma and MVI progression, may be
crucial for improving therapeutic strategies and clinical outcomes,
particularly for patients with MVI.

2 Materials and methods

2.1 Data collection

TCGA-LIHC data were sourced from UCSC Xena (https://
xenabrowser.net/datapages/), and scRNA-seq data were obtained
from the GEO database (accession number GSE242889). The
dataset included samples from five patients diagnosed with
HCC, three of whom had MVI, and two without MVI. For each
patient, both HCC tissue and adjacent non-tumor tissue were
collected. After stringent quality control, we analyzed a total of
42,070 cells, which included 4,070 high-quality sequenced cells.
The dataset underwent single-cell sequencing using the Illumina
NovaSeq 6,000 platform.

2.2 Data processing

For preprocessing, quality control, normalization, and
dimensionality reduction clustering of the single-cell data, we
employed Seurat v4.3.0. Potential doublets were identified and
removed using DoubletFinder v2.0.3. The quality control criteria
included the expression of at least 400 genes per cell and a
mitochondrial gene threshold of 20%. Subsequent
normalization, identification of highly variable genes, and
dimensionality reduction clustering were performed using
Seurat’s default parameters and standard workflow. Harmony
v1.2.3 was utilized to integrate data from different samples. Cell
cluster naming was conducted by aggregating marker genes from
the literature and through manual annotations. The
FindAllMarkers function was employed to identify differentially
expressed genes between cell subgroups using the Wilcoxon test,
with selection criteria of an adjusted p-value <0.05 and
|log2FC| > 0.5.

2.3 Cell type identification

We performed differential expression analysis of all genes
within cell clusters using Seurat’s FindAllMarkers function to
identify marker genes for each cluster. Criteria for identifying
marker genes included an adjusted P value <0.05, expression
percentage >0.25, and |log2[fold change (FC)]| > 0.25.
Subsequently, different cell clusters were identified and
annotated using the singleR packages, based on the
compositional patterns of the marker genes. These annotations
were manually validated and corrected with reference to the
CellMarker database.

2.4 Cell-cell communication

The ‘CellChat’ R package v1.1.3 was utilized to infer cellular
communication within the tumor microenvironment based on
receptor-ligand interactions (Gupta et al., 2021). This involved
counting the number of links and collecting communication
probabilities to calculate communication networks. The
interaction time and the total strength of interactions between
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two arbitrary cell populations were visualized. Scatter plots were
drawn to illustrate the primary sender (source of signals) and
receiver cells (targets) within a two-dimensional space. This
visualization helps identify the most significant contributors to
the outgoing or incoming signals among a group of immune
cells. We employed a pattern recognition approach, the global
communication model, to discern how various immune cell types
and signaling pathways operate in concert.

2.5 Pseudotemporal trajectory analysis

Cellular pseudotemporal trajectories were constructed using
the Monocle two algorithm, an R package developed by Qiu et al.
for single-cell trajectories (Huang et al., 2019). This algorithm
employs machine learning techniques to reduce the high-
dimensional expression spectrum into a low-dimensional space,
organizing it into trajectories with branching points. Dynamic
expression heatmaps were constructed using the plot_
pseudotime_heatmap function. Integrated Machine Learning-
Based Approach to Derive Feature Signatures: We integrated up
to 10 machine learning algorithms, including Random Survival
Forest (RSF), Elastic Net (Enet), Lasso, Ridge, Stepwise Cox,
CoxBoost, Partial Least Squares Regression for Cox (plsRcox),
Supervised Principal Components (SuperPC), Generalized
Augmented Regression Model (GBM), and Survival Support
Vector Machine (survival-SVM). Based on these approaches, a
consensus model was generated. In total, 101 algorithm
combinations were executed to match the predictive model
based on the leave-one-out cross-validation (LOOCV)
framework. The TCGA-LIHC dataset was divided into training
and test datasets.

2.6 Immune infiltration assessment

We utilized the CIBERSORT algorithm to quantitatively assess
the level of immune cell infiltration in patients with pancreatic
adenocarcinoma (PAAD), exploring differences in cell abundance
between high-risk and low-risk patient groups (Malumbres and
Barbacid, 2009). Additionally, we calculated and analyzed the
Pearson correlation between immune cell abundance and risk
scores. To further delineate potential differences in immune
function, we applied enrichment scores obtained from single-
sample gene set enrichment analysis (ssGSEA) (He et al., 2021).
Subsequently, we used the Wilcoxon test to compare immune
function between the high-risk and low-risk groups.

2.7 Statistical analysis

All statistical analyses and data visualization were conducted
using R software (version 4.1.3). Pearson’s correlation coefficient
was used to assess the relationship between two continuous
variables. For quantitative data, values were compared between
subgroups using two-tailed, unpaired Student’s t-test or one-way
analysis of variance (ANOVA) with Tukey’s multiple comparison
test. A P-value <0.05 was considered statistically significant.

3 Results

3.1 Single-cell sequencing and cytotyping of
cancerous and paracancerous tissues

The present study analysed 10 samples from the
GSE242889 dataset, which included five patients with HCC.
Among these patients, three patients exhibited MVI, while two
patients did not exhibit MVI. HCC tissue and adjacent nontumor
tissue were collected from each patient for single-cell RNA
sequencing. After performing stringent quality control and
removing duplicate cells, 42,070 cells were retained for analysis.
These cells were categorized into 30 distinct clusters, and the origin
of each cell was visualized (Figure 1A; Supplementary Figure S1A,
B). The cell clusters were annotated using classical cell marker
genes (Li et al., 2024), and they were classified them into 9 cell
types, illustrating the distribution of cells in both cancerous and
paracancerous samples (Figures 1B, C; Supplementary Figure S1C,
D, average number of detected genes per defined cell
type(Supplymentary Data.xlsx)). The following cell types were
identified: myeloid cells with high LYZ expression; malignant
cells with high TF expression; T cells with high CD3D and
CD3G expression; B cells with high CD79A expression; NK
cells with high NKG7 and KLRD1 expression; endothelial cells
with high PECAM1, CLDN5, and FLT1 expression; mesenchymal
cells with high ACTA2 expression; and haematopoietic progenitor
cells (HPCs) with high EPCAM, KIT, MS4A2, and
GATA2 expression (Figure 1D). The heatmap in Figure 1E
displays the top 50 genes highly expressed in each cell type,
highlighting the specificity of their compartmentalization. In
this dataset, myeloid cells constituted the largest proportion of
cells, followed by T cells (Supplementary Figures S1A–B). Figures
1F, G show the proportions of the cell types in different samples, in
which the proportions of myeloid cells, malignant cells, and T cells
were greater. Moreover, the malignant cells were almost
exclusively derived from tumour tissues, demonstrating
significant heterogeneity between samples.

3.2 Malignant tumour cells with MVI exhibit
increased invasive and metastatic potential

The differences in the expression of various cell types were
analysed between cancerous tissues and their adjacent
noncancerous counterparts using the Wilcoxon rank sum test.
Genes associated with lipid metabolism, such as APOA2, APOC3,
APOC1, and APOE, were significantly upregulated in multiple cell
types of hepatocellular carcinoma, indicating enhanced lipid
metabolic activities (Figure 2A). Additionally, using the Augur
algorithm in conjunction with the random forest model (Squair
et al., 2021), the cell types that exhibited significant transcriptomic
perturbations across different biological states were identified.
Among the nine identified cell types, malignant cells showed
the most significant transcriptomic changes (area under the
curve (AUC) = 0.955), followed by endothelial cells (AUC =
0.866) and T cells (AUC = 0.851) (Figure 2B). In particular, the
changes in endothelial cells were important. The DEGs in both
states were analysed, and protein‒protein interaction (PPI)
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FIGURE 1
(A) Visualization of single-cell RNA-seq data from the GSE242889 dataset using UMAP. The left panel displays cluster subclustering, and the right
panel shows the sample source for each cell. (B)UMAP plot illustrating the distribution of 9 cell types, with cells colour-coded according to their type. (C)
UMAP plot depicting the distribution of cell types in the nontumor (NT) and tumour groups, with cells colour-coded according to their type. (D) Violin plot
demonstrating the specificity of cell type annotations by marker. (E) Heatmap showing the specificity of cell type annotations with the names of
different cell types labelled at the bottom. (F) Stacked bar graph displaying the percentages of different cell types in each sample. (G) Stacked bar graph
illustrating the proportional distribution of each cell type in the NT group and tumour group.
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FIGURE 2
(A) Differential gene expression in each cell type was analysed using the Wilcoxon rank-sum test. “High” represents an adjusted p value less than 0.05,
and “Low” indicates an adjusted p value less than 0.1. (B) AUC scores of transcriptomic perturbations were determined using the random forest framework,
indicating more intense transcriptomic perturbations in cells from the NT and tumour groups. (C) Volcano plots showing differentially expressed genes in
endothelial cells between theNT and tumour groups, with DC representing the strength of the PPI network interactions based on the STRINGdatabase.
(D) GO and KEGG enrichment analyses of differentially expressed genes. (E) t-SNE visualization of each cell type in tumours with and without MVI; the right
panel shows the proportion of cell types in each tumour sample. (F) AUC values of transcriptomic perturbations were assessed in a random forest framework,
with higher AUC values indicating more significant transcriptomic perturbations occurring in cells from the tumours with and without MVI. (G–I) The GSEA
calculations based on differentially expressed genes from the tumour groups with and without MVI are shown for relevant pathways.
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network mapping was performed using the STRING database
(Figure 2C). Subsequent Gene Ontology (GO) and Kyoto
Encyclopaedia of Genes and Genomes (KEGG) analyses of
these genes revealed alterations in cellular connectivity and
pathways related to oxidative phosphorylation (Figure 2D;
Supplementary Figure S2).

The cell type distribution was compared between tumour
tissues with MVI (1T_C21, 2T_C24, and 3T_C25) and those
without MVI (4T_C29 and 5T_C36). There was a greater
abundance of T cells, B cells, and NK cells in tumours with
MVI than in those without MVI, suggesting a more active
immune microenvironment in these samples (Figure 2E;
Supplementary Figure S3A). Myeloid cells were the most
numerous, and there was a significant preference for the
distribution of different malignant cell subtypes based on MVI

status (Supplementary Figures S3B–D). Furthermore, the
Augur algorithm indicated that malignant cells experienced
the greatest transcriptome perturbation in both MVI and non-
MVI tumours (AUC = 0.914, Supplementary Figure S2F),
underscoring a significantly active immune microenvironment
(Supplementary Figures S2E, F). Gene set enrichment
analysis (GSEA) on the differentially expressed genes in
malignant cells from MVI and non-MVI tumours was
performed. The anchoring junction, focal adhesion, and cell-
substrate junction pathways were significantly activated in
MVI-positive malignant cells, confirming their increased
invasiveness and metastatic potential (Figures 2G–I). These
findings highlighted the critical role of MVI in the progression
of hepatocellular carcinoma and identified potential targets for
future therapeutic strategies.

FIGURE 3
(A) t-SNE plot illustrating the results of malignant cell segmentation, with different colours representing various cell types. The left plot shows the
group with MVI, and the right plot shows the group without MVI. (B) Stacked bar graph displaying the proportions of malignant cell subgroups in each
group. (C) Stacked bar graph illustrating the proportion of malignant cell subgroups in each sample. (D) Left: A series of graphs illustrating the dynamic
patterns of representative differentially expressed genes (DEGs) across each malignant cell population. Middle panel: Heatmap showing
representative DEGs between each cell cluster. Right panel: Representative enriched Gene Ontology (GO) terms for each cluster. (E) Expression levels of
MET, TNFSF10, CDK1, and CYP3A4 in each malignant cell subgroup.
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FIGURE 4
(A)Copy number variations in eachmalignant cell subtype according to the inferCNV analysis using T cells, B cells, andNK cells as references. (B) The
CNV scores of each cell are mapped onto the malignant cell t-SNE map, with varying shades of colour representing the CNV scores. (C) Box line plots
depicting CNV scores for nine different malignant cell subtypes. (D) GSEA heatmap of the 50 marker gene sets from the MSigDB database, with each
subgroup of malignant cells presented according to their status in the groups with and without MVI. (E)Quantitative analysis of pathway differences
in the MCs_4 subtype with and without MVI. (F) Quantitative analysis of pathway differences in the MCs_6 subtype with and without MVI.
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3.3 Gene expression heterogeneity of
different malignant cell subtypes in
microvascular invasion

A detailed reclassification of malignant cells in tumour tissues
was performed, which identified nine distinct cell subtypes
(Figure 3A). Analysis of the distribution of these subtypes in
samples with and without MVI elucidated that the MCs_
1 subtype was predominantly found in samples without MVI,
whereas the MCs_2 toMCs_6 andMCs_9 subtypes were present in
samples with MVI (Figures 3B, C). To further explore gene
expression patterns, the gene expression scores were calculated
for individual cells, which reflected their relative gene expression
levels. These scores were used to employ an unsupervised
clustering approach to visualize the unique gene expression
patterns across different subtypes (Figure 3D).

The MET and TNFSF10 receptor tyrosine kinases, both highly
expressed in subtype 2, were closely associated with the proliferation,
survival, invasion, and metastasis of hepatocellular carcinoma cells.
Aberrant activation of MET has been shown to correlate with
progression and poor prognosis in hepatocellular carcinoma
(Comoglio et al., 2018; Gupta et al., 2021; Huang et al., 2019).
Moreover, high expression of CDK1 in subtype 5 is closely
associated with the development of many cancers, including
hepatocellular carcinoma (Malumbres and Barbacid, 2009). CYP3A4,
which is highly expressed in subtypes 4 and 6, is the most abundant
cytochrome P450 enzyme in the liver. Targeting CYP3A4 in oxidative
metabolism has been reported to be an important strategy for
enhancing the sensitivity of hepatocellular carcinoma cells to
chemotherapeutic drugs (Figure 3E) (He et al., 2021; Özkan et al.,
2021). Together, these findings revealed that each malignant cell
subtype exhibits distinct functional characteristics. Subtypes with
high expression of oncogenes are significantly correlated with MVI-
positive samples, highlighting their potential role in the aggressive
behaviour of these tumours.

3.4 Activation of angiogenic and
mesenchymal transition pathways in
malignant cell subtypes with MVI

To investigate the differences between malignant cell
subtypes with MVI in hepatocellular carcinoma, copy number
variation (CNV) analyses were conducted for subgroups of
malignant cells with or without MVI. The inferCNV tool was
used to perform a detailed assessment of intratumoral CNV
heterogeneity in the subgroups. As anticipated, the CNVs
exhibited significant heterogeneity among the different
malignant cell subgroups (Figure 4A). Chromosomes four and
nine showed significant copy number amplifications in some
subgroups, whereas chromosomes 6 and 13 had significant
deletions. The CNVs of each cell were visualized by a t-SNE
plot (Figure 4B), and the quantitative CNV scores of each
malignant cell subtype were visualized using a boxplot
(Figure 4C). The CNV levels of the MCs_4 subtype were
greater than those of the other subtypes, suggesting a more
malignant phenotype. Similarly, the MCs_2 and MCs_
6 subtypes also displayed elevated CNV levels.

Further analysis of the cancer signature gene sets (hallmark gene
sets) from MSigDB was performed to assess the expression of each
malignant cell subtype across different pathways (Figure 4D). The
MCs_1 subtype significantly upregulated the angiogenesis and
epithelial–mesenchymal transition (EMT) pathways in tumours
with MVI, which indicated that a distinct gene expression
pattern promoted tumour angiogenesis. In contrast, the MCs_
4 and MCs_6 subtypes upregulated multiple pathways.

A differential expression analysis for MCs_4 andMCs_6 with or
without MVI was conducted using limma. The Myc target pathway
was significantly activated in both subtypes with MVI, suggesting
rapid proliferation and metabolic reprogramming of tumour cells,
which may contribute to their invasive and metastatic capacities in
MVI. Moreover, the upregulation of the Wnt/Beta-Catenin and E2F
Targets pathways further confirmed the high growth and invasive
potential of these tumour cells (Figures 4E, F). Differences in the
remaining malignant cell subpopulations are detailed in
Supplementary Figure S4.

3.5 Single-cell trajectory analysis of MVI
malignant cell subpopulations in
hepatocellular carcinoma patients

To analyse the changes in different malignant cell subtypes with
and without MVI, the Monocle software package was used to
perform a time-series analysis of the nine malignant cell
subtypes, which identified five distinct cell states. The state
without MVI was identified as the starting point of the trajectory,
while the state with MVI marked the endpoints of two
differentiation trajectories (Figures 5A–C). The MCs_4 and
MCs_6 cell subtypes predominantly focused on one of the
trajectory endpoints, whereas the MCs_2 and MCs_3 cell
subtypes focused on the other, suggesting that these subtypes
may represent two distinct fates (Figure 5D). Further analysis
explored changes in gene differentiation trajectories before and
after node 1, and the top 30 and top 200 genes were identified
(Figure 4E; Supplementary Figure S5A). By tracking the dynamic
changes in the expression of genes along the trajectories (Figure 4F),
two distinct expression patterns among the top 30 genes were
identified, as determined by two statistical approaches for
identifying DEGs. This finding was partially validated by BEAM
analyses at node 2 (Supplementary Figures S5B, C).

Intersection analysis of these top 30 genes identified MET,
TIMP1, and VTN as key genes for progression along the
trajectory, with consistent findings using both statistical methods.
These genes were highly expressed in theMCs_4, MCs_5, andMCs_
6 cell subtypes, as well as in states four and 5 (Figure 4G;
Supplementary Figure S5D). Research has shown that MET
activates signalling pathways, such as the PI3K/AKT and RAS/
MAPK pathways, promoting the proliferation, survival, and
migration of hepatocellular carcinoma cells, as well as influencing
vascular endothelial cells to promote neointimal formation
(Bussolino et al., 1992; Bladt et al., 1995; Huh et al., 2004).
TIMP1 regulates the remodelling of the extracellular matrix by
inhibiting metalloproteinase activity, which helps tumour cells
adapt to changes in the matrix, thereby enhancing cell survival
by inhibiting apoptosis (Guccini et al., 2021; Justo and Jasiulionis,
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2021), potentially affecting blood vessel formation during MVI.
Vitronectin (VTN) promotes tumour cell migration and invasion
by enhancing adhesion to the stroma and interactions with cell
surface integrins, possibly supporting tumour nutrient and oxygen
supply by influencing vascular endothelial function and promoting

neointimal formation (Wei et al., 2018; Zhu et al., 2015). In
conclusion, the present study highlighted the critical roles of
MET, TIMP1, and VTN in the progression of MVI in
hepatocellular carcinoma, underscoring their previously
unreported contributions to this process (Figures 5E–F).

FIGURE 5
(A–D) Monocle analysis for inferring the trajectory of malignant cell subsets, coloured by (A) MVI status, (B) time of inference fitting, (C) assumed
status during Monocle fitting, and (D) origin of the malignant cell subset. (E) Pseudotemporal heatmap displaying the BEAM analysis of the top 30 genes
showing significant changes before and after node 1. (F) Pseudotemporal heatmap highlighting the top 30 genes that underwent significant changes
along the trajectory. (G) Expression levels of MET, TIMP1, and VTN, coloured bymalignant cell subgroup category and inferred developmental status
as pseudotime progressed.
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FIGURE 6
Single-cell Transcriptomic Analysis Reveals Heterogeneous Characteristics of Lymphoid and Myeloid Cells: (A) UMAP dimensionality reduction plot
of lymphoid cell subpopulations, identifying ten major subtypes: CD4+ T cells (CD4T), Plasma cells, Activated NK cells (aNK), Proliferating lymphocytes
(ProL), Naive B cells (nB), Cytotoxic lymphocytes (CTL), IgL + Plasma cells (IgL-PC), CD8+ T cells (CD8T), Regulatory T cells (Treg), and Secretory B cells
(secB). (B) Expression profiles of characteristic marker genes for each lymphoid cell subpopulation, used for cell identity confirmation. (C) Stacked
bar plot showing the proportion distribution of lymphoid cell subtypes in tumor and normal groups. (D) Transcriptional perturbation analysis using Augur.
(E, F) Gene set enrichment analysis of differentially expressed genes in CD8T cells comparing Tumor vs. Normal, separately analyzed for (E) upregulated
and (F) downregulated genes. (G) UMAP dimensionality reduction plot of myeloid cell subpopulations, identifying seven major subtypes: tissue-resident

(Continued )
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3.6 Immune cell dynamics and MVI-
dependent alterations in HCC
microenvironment

To comprehensively understand the alterations in the tumor
immune microenvironment, we conducted a systematic analysis of
lymphoid and myeloid cells in our dataset. Using unsupervised
clustering methods, we initially classified lymphoid cells into
10 distinct subpopulations and annotated their cell types based
on subgroup-specific highly expressed genes (Figures 6A, B). Cell
abundance analysis revealed significant enrichment of proliferating
lymphocytes (ProL) and IgL-expressing plasma cells (IgL-Plasma) in
the tumor group, while the proportion of CD4+ T cells (CD4T) was
notably decreased. Interestingly, in tumors positive for
microvascular invasion (MVI), secretory B cells (secB) were
significantly reduced compared to MVI-negative tumors, whereas
CD4T showed an opposite trend, indicating a close relationship
between MVI status and immune cell composition (Figure 6C).
Transcriptomic analysis demonstrated that CD8+ T cells (CD8T)
exhibited the most significant transcriptional changes in tumor
versus normal tissue comparisons, while CD4T showed the most
prominent alterations in MVI-related comparisons (Figure 6D).
Detailed analysis revealed that genes related to oxidative
phosphorylation and energy transfer were significantly
upregulated in tumor CD8T, while cytoplasmic ribosome-related
pathway genes were downregulated, suggesting metabolic
reprogramming and functional state changes (Figure 6E). In
MVI-positive samples, upregulated genes in CD4T were
primarily enriched in cytoplasmic translation and focal adhesion
pathways, indicating a potentially highly activated state (Figure 6F).

In the myeloid cell analysis, we identified seven distinct
subpopulations and performed detailed analysis of their
functional marker expression profiles (Figures 6G, H). The tumor
group showed decreased proportion of monocytes (Mono) but
increased proportions of tissue-resident macrophages (TRM) and
activated macrophages (actMac) (Figure 6I). Notably, in MVI-
positive tumors, the proportion of type 1 conventional dendritic
cells (cDC1) was significantly lower than in MVI-negative tumors
(Supplementary Figure S6I). Transcriptomic analysis indicated that
TRM underwent the most significant transcriptional remodeling.
Specifically, in tumor TRM, genes related to lipid metabolism and
transport (such as APOA1) and nutrient metabolism and transport
(such as RBP4, FABP5) were significantly upregulated, suggesting
these cells may have acquired special metabolic functions and
participate in nutrient redistribution within the tumor
microenvironment. Meanwhile, the downregulation of antigen
presentation molecules (HLA-A/B) and immunoglobulin (IGKC)
suggested potentially suppressed immune functions, facilitating
tumor immune escape (Figures 6J, K). Assessment of cell
subpopulation functional states using MSigDB gene sets revealed

that myeloid cell subpopulations in normal tissue generally
exhibited low pathway activity levels, while differences in MVI
status were reflected in the activation levels of multiple functional
pathways, further supporting the association between microvascular
invasion and immune cell functional changes (Figure 6L). These
findings reveal the dynamic characteristics of immune cells in the
hepatocellular carcinoma microenvironment and highlight the
crucial role of microvascular invasion in reshaping the tumor
immune microenvironment, providing new insights for
understanding HCC progression mechanisms and developing
immunotherapy strategies.

3.7 Upregulated laminin and VEGF signalling
pathways in the MVI malignant subgroups

The three malignant cell subpopulations with high CNV,
namely, MCs_2, MCs_4, and MCs_6, are potentially associated
with the progression of MVI in hepatocellular carcinoma. To
further explore the communication between these malignant cells
and other cell types, the myeloid cells that exhibited the highest
percentage of interaction were subdivided (Supplementary Figures
S5E, F) and subjected to CellChat analysis (Supplementary Figure
S6A). Significant intercellular communication was identified within
all three malignant cell subpopulations (Supplementary Figures
S6B–E). Notably, the MCs_2 subtype demonstrated the most
extensive receptor‒ligand interactions among the three subtypes,
engaging both the ApoA and complement signalling pathways, as
well as acting as both a receiver and a sender of signals. The VTN,
CypA, and VEGF signalling pathways were significantly activated in
these subpopulations, underscoring the enhanced invasiveness and
angiogenic capacity of these tumour cells (Figure 7A). Among the
receptor‒ligand interactions, the laminin and VEGF signalling
pathways were the most significantly activated, suggesting
remodelling of the tumour microenvironment and the
extracellular matrix.

By binding to cell surface integrins, laminin activates multiple
downstream pathways that significantly influence cell attachment,
migration, and survival. This mechanism is crucial for maintaining
tissue architecture and promoting tumour invasiveness and
metastasis (Rick et al., 2019). Single-cell data analysis revealed
that two malignant cell subpopulations, namely, MCs_4 and
MCs_6, were the primary emitters of laminin signalling, with the
MCs_4 subtype delivering stronger signals, particularly to the
endothelial cell population (Figure 7B). The MCs_4 subtype was
the dominant signaller of endothelial cells, and all three malignant
cell subpopulations were identified as key influencers of this
pathway (Figures 7D, F). The expression of laminin signalling-
related molecules is depicted in Figure 7H. Moreover, the VEGF
signalling pathway, which is known to support tumour growth and

FIGURE 6 (Continued)

macrophages (TRM), Conventional Dendritic Cells (cDC), Activated Macrophages (actMac), Monocytes (Mono), Type 1 cDC (cDC1), Activated DC
(actDC), and Plasmacytoid DC (pDC). (H) Expression profiles of characteristic marker genes for each myeloid cell subpopulation. (I) Stacked bar plot
showing the proportion distribution of myeloid cell subtypes in tumor and normal groups. (J) Transcriptional perturbation analysis using Augur. (K) Violin
plots showing representative gene expression. (L) Heatmap of GSEA enrichment analysis based on 50 characteristic gene sets from MSigDB,
displaying functional features of myeloid cell subpopulations across different groups.
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FIGURE 7
(A) Line graphs demonstrating receptor‒ligand interactions involving the MCs_2, MCs_4, and MCs_6 subtypes as both signal senders and receivers.
(B, C) Hierarchical diagrams depicting inferred intercellular communication networks for (B) laminin signalling and (C) VEGF signalling. Interactions are
categorized into sources and targets, marked with solid and hollow circles, respectively, with the width of the connecting lines indicating the probability
of communication. (D, E)Dot plots showing the (D) senders and receivers of the laminin signalling pathway, as well as the (E) senders and receivers of
the VEGF signalling pathway. The X- and Y-axes represent the total outgoing and incoming communication probabilities associated with each group,
respectively. The size of the dots correlates positively with the number of inferred links (efferent and afferent) associated with each cell block, and the
colours of the dots represent different cell groups. (F, G)Heatmaps showing network centrality scores for (F) laminin signalling and (G) VEGF signalling. (H,
I) Violin plots illustrating the expression of molecules involved in (H) laminin signalling and (I) VEGF signalling across all cell types.
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FIGURE 8
(A)Development and validation of the consensus characterizationMRSmodel through an integratedmachine learning-based procedure involving a
total of 101 prognosticmodels using the LOOCV framework. TheC-index of eachmodel was calculated for all training and validation datasets. (B) Kaplan‒
Meier (K–M) survival curves of the MRS prognostic models in the training set. (C) ROC curves for the training set, evaluating the performance of the
models using 1-year, 3-year, and 5-year AUC values. (D, E) K‒M survival curves and ROC curves for the MRS prognostic models in the validation set.
(F, G) K‒M survival curves and ROC curves for the MRS prognostic model across all samples. (H) Identification of immune infiltration in the high- and low-
risk groups differentiated by themodel using the CIBERSORT approach. The box plot shows the immune cell infiltration for each type of immune cell. (I) *
represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.
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metastasis by promoting angiogenesis through vascular endothelial
cell proliferation, migration, and neointima formation (Carmeliet,
2005), was also highlighted. The present study demonstrated that
the endothelial cells were the primary receivers of VEGF signalling,
with the MCs_4 and MCs_6 subtypes acting as the main emitters
(Figures 7C, E). All three malignant cell subpopulations were
identified as potential effectors of VEGF signalling (Figure 7G).
Analysis of the expression of molecules in the VEGF pathway
(Figure 7I) revealed that VEGFA was highly expressed in the
MCs_4 and MCs_6 subtypes, whereas VEGFB was
predominantly expressed in the MCs_2 subtype.

The patterns of afferent and efferent signals across all malignant
cell subpopulations were analysed using cophenetic- and silhouette-
based methods (Supplementary Figures S6F, G). In all malignant cell
subgroups, the MCs_5 subtype emerged as the most significant
signalling efferent, followed by the MCs_2 and MCs_4 subtypes.
Conversely, the MCs_2 subtype was the most significant signalling
afferent, followed by the MCs_3 and MCs_5 subtypes. The MCs_2,
MCs_4, and MCs_6 subtypes displayed similar afferent and efferent
patterns, suggesting a potential association (Supplementary
Figures S7B–D).

3.8 MVI malignant cell subpopulation-
related traits predict patient survival

Data from TCGA-LIHC were utilized to fit matched prognostic
data, and the data were screened for genes associated with patient
prognosis using one-way Cox regression, which resulted in
673 genes (p < 0.0001). The genes specifically expressed in the
MCs_2, MCs_4, and MCs_6 subtypes were intersected with those
obtained by one-way Cox regression, which resulted in 452 genes.
These models were fitted into 101 predictive models within the
LOOCV framework. TCGA-HCC dataset was divided into training
and validation sets at a 1:1 ratio, and the C-index was calculated for
eachmodel in both sets. The model combination of StepCox[both] +
plsRcox yielded the highest average C-index (0.751), utilizing
174 features for survival prediction. However, the StepCox
[backward] + Enet[alpha = 0.9] strategy, using only 27 features,
achieved an average C-index of 0.722 (Figure 8A). Subsequently, an
MVI malignant cell-related feature (MRS) model was constructed
using the latter strategy.

In both the training and validation sets of TCGA-LIHC cohort,
the low-risk group exhibited significantly longer OS (Figures 8B, D;
OS, p < 0.0001). In the training set, theMRSmodel determined AUC
values of 0.8 (71.72–87.48), 0.81 (73.53–87.82), and 0.85
(76.85–92.72) for 1-, 3-, and 5-year OS, respectively. Due to
sample size limitations, the 1-year AUC was not calculated in the
validation set, but the AUC values for 3-, 5-, and 7-year OS were 0.78
(63.19–84.47), 0.74 (56.93–93.97), and 0.75 (88.22-NA), respectively
(Figures 8C, E). These results demonstrated that the MRS model,
which is based on MVI malignant cell subtypes, is an effective
predictive tool with satisfactory specificity and sensitivity. When
combining the training and validation sets, the low-risk group
consistently had significantly longer OS than the high-risk group
across all samples (Figure 8F), with AUC values of 0.78
(70.27–86.29), 0.78 (71.64–83.36), and 0.79 (72.82–85.62) for at
1, 3, and 5 years, respectively (Figure 8G). Additionally, the

CIBERSORT algorithm was used to analyse the proportion of
infiltrating immune cells and the correlation between high- and
low-risk samples in TCGA-HCC dataset (Figures 8H, I). There was a
significantly greater proportion of infiltratedM0macrophages in the
high-risk group (P < 0.01) and a significantly lower proportion of
mast cells in the resting state (P < 0.001).

3.9 MARCKSL1 promotes MVI progression
through PTN-Related networks

The 27 signature genes in the MRS model were analysed, which
identified MARCKSL1, a gene involved in various cellular processes,
including cell migration, cytoarchitectural adjustments, and
signalling. The role of MARCKSL1 has not been extensively
demonstrated in hepatocellular carcinoma (Zhao et al., 2023;
Chen et al., 2021; Yadav et al., 2024). Based on our preliminary
findings, we hypothesized that MARCKSL1 plays a significant role
in MVI and tumour progression in hepatocellular carcinoma.
MARCKSL1 was primarily expressed in the MCs_2, MCs_4, and
MCs_5 subtypes, indicating the potential association with MVI and
cancer malignancy (Figure 9A). MARCKSL1-positive
(MARCKSL1(+)) expression was almost exclusively found in
tumours with MVI, while MARCKSL1-negative (MARCKSL1(−))
expression lacked this specificity (Figure 9B). Differential gene
analysis between MARCKSL1(+) and MARCKSL1(−) malignant
cells was performed, and the identified genes, along with
differential ploidy, were used to conduct GSEA. This analysis
revealed a significant increase in the number of anchoring
junction entries in MARCKSL1(+) cells (NES = 2.64, p value =
0.001) (Figure 9C).

To further explore the interactions between malignant
MARCKSL1(+) and MARCKSL1(−) cells and immune cells,
CellChat tools were used to analyse all receptor‒ligand pairs,
which indicated that MARCKSL1(+) cells delivered significant
PTN signals to other cells (Figures 9D–F). PTN-related signals
are known to promote angiogenesis and extracellular matrix
remodelling through MMPs (Papadimitriou et al., 2022; Perez-
Pinera et al., 2008; Mentlein, 2007). The present study
demonstrated that MARCKSL1(+) cells were involved in other
signalling pathways, including LAMC1 and PRSS3 signalling
pathways, distinguishing these cells from MARCKSL1(−) cells
(Figure 9G). Thus, these findings suggested that
MARCKSL1 influences the progression of MVI and cancer
malignancy through PTN-related signalling, which is supported
by immunohistochemistry results from the Human Protein Atlas
showing greater expression of MARCKSL1 in cancerous tissues than
in adjacent noncancerous tissues (Figure 9H).

To further explore the therapeutic value of MARCKSL1 in cancer
treatment, data from drug sensitivity analyses were collected using the
NCI-60 cell line panel and RNA sequencing data from cell lines in the
National Cancer Institute (NCI) database. In total, 75 clinical trials and
188 FDA-approved drugs were reviewed to investigate the relationship
betweenMARCKSL1 expression levels and the IC50s of these drugs by
calculating Pearson’s correlation coefficients (Figures 10A, B). The
abundance of MARCKSL1 was correlated with tumour cell resistance
to several drugs, including hypothemycin, vemurafenib, AP-26113,
acrichine, erlotinib, and dabrafenib.
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FIGURE 9
(A) MARCKSL1 expression across various malignant cell subgroups. (B) t-SNE plot displaying malignant cells coloured according to
MARCKSL1 expression, whereMARCKSL1 (+) represents cells expressingMARCKSL1 andMARCKSL1 (−) represents cells lackingMARCKSL1 expression. (C)
GSEA plot indicating activation of the anchoring junction pathway in the MARCKSL1(+) group. (D) Circular plots illustrating the number of interactions
between the indicated MARCKSL1 subgroups and immune cells. (E) Circular plots of the intensity of interactions of all cells involved in the PTN
signalling pathway. (F) Hierarchical plot displaying the interaction intensity of PTN signalling pathway components with other cell types in MARCKSL1(+)
cells. (G) Illustration of receptor‒ligand interactions generated by the MARCKSL1(+) and MARCKSL1(−) malignant cell signal senders. (H) Based on the
Human Protein Atlas database, increased expression of MARCKSL1 was found in hepatocellular carcinoma tissue compared to normal tissue.
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4 Discussion

The present study demonstrated significant differences in the
transcriptomes of malignant cells associated with the presence and
absence of MVI, particularly in terms of cell adhesion capacity and
enhanced tumour invasion and metastasis. While previous
research focused on the multicellular ecosystem and the roles of
immune and stromal cells in MVI formation (Li et al., 2024), our
study investigated the heterogeneity of MVI-associated malignant
cells, revealing key molecular mechanisms. Specifically, we
identified the upregulation of cell junction-related pathways
(e.g., cell junction, NES = 2.32, P value = 0.001; structural
molecule activity, NES = 2.49, P value = 0.001) and key
signaling pathways such as VEGF and laminin signaling, which

may promote tumour cell invasion along vessel walls (Leong et al.,
2022; Shenoy and Lu, 2016). These findings suggest that
malignant cells at the MVI stage may alter their cytoskeleton
and adhesion patches to more efficiently cross the extracellular
matrix and vessel walls. Additionally, we identified a
subpopulation of malignant cells (MCs_1) in non-MVI
hepatocellular carcinoma that exhibited activation of
detoxification-related pathways (e.g., detoxification of inorganic
compounds and copper ions), potentially enhancing resistance to
chemotherapeutic agents (Lee et al., 2012). Overall, our study
complements the multicellular ecosystem perspective by
providing insights into the intrinsic mechanisms of malignant
cells, offering a more comprehensive understanding of MVI
complexity.

FIGURE 10
(A) Boxplot illustrating the gene expression and sensitivity to six drugs obtained from theNCI-60 database based onmedianMARCKSL1 grouping. (B)
Investigation of the correlation between the MARCKSL1 expression level in tumour cells and drug sensitivity to six compounds.
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According to the inferCNV results, the MCs_4 and MCs_
6 subtypes were the two most malignant cell subtypes.
Comparison of the pathway changes in the MCs_4 and MCs_
6 subtypes in two different biological states, namely, presence of
MVI and absence of MVI, indicated that the Myc target pathway
was significantly activated in both subtypes in the absence of MVI.
Activation of Myc has been reported to promote the metabolic
activity and proliferation of endothelial cells by enhancing their
glycolysis and mitochondrial function, thereby effectively
promoting vascular growth and expansion (Wilhelm et al.,
2016). The present findings highlighted the impact of Myc-
related networks on MVI. Moreover, significant enhancements
in the G2M checkpoint and E2F target pathways were also found
in two subgroups of malignant cells in MVI-present tumours
compared to those in MVI-negative tumours. The G2/M
checkpoint is involved in cell cycle control, whereas E2F is a
key element in the regulation of the cell cycle and is associated
with DNA replication and cell division. The upregulation of these
pathways may be the molecular basis for the rapid proliferation
and invasiveness of MVI tumour cells. Additionally, the present
findings indicated downregulation of the apoptosis, coagulation,
and hypoxia pathways in MVI-present tumours, suggesting that
malignant MVI tumour cells may promote their survival and
proliferation by inhibiting natural cell death mechanisms,
adjusting interactions with the microenvironment, and
adapting to hypoxic conditions. These findings offer new
insights into how malignant MVI cells adapt and promote
tumour growth, invasion, and metastasis by regulating key
biological pathways.

In the present study, malignant cells were classified based
on MARCKSL1 expression into the MARCKSL1(+) and
MARCKSL1(−) cells. In addition to affecting the PTN
signalling pathway, MARCKSL1(+) cells exhibited enrichment
of GDF15-TGFBR2 in immune cells, a feature that distinguishes
them fromMARCKSL1(−) cells. TGF-β is known to play a critical
role in early embryonic development and adult homeostasis in
vivo (Xu et al., 2018). In cancer, overexpression of TGF-β is
closely associated with metabolic disorders, dysfunction,
epithelial–mesenchymal transition, immune deficits, and cancer
progression (Su et al., 2020; Liu et al., 2021). Xu and colleagues
reported that the TGF-β-associated pathway, through the
regulation of FOXC1, affects tumour EMT, thereby promoting
MVI (Xu et al., 2012). These findings suggested that the TGF-β
signalling pathway is one of the mechanisms through which
MARCKSL1 promotes MVI and the malignant progression
of hepatocellular carcinoma, a connection that has not
yet been reported and warrants further investigation.
Additionally, the interaction of LAMC1 (laminin C1) with
integrin subunits (e.g., ITGA9, ITGB1, ITGA6, and ITGA1)
involves extracellular matrix interactions and cell adhesion.
These interactions are also specific to MARCKSL1(+), which
functions as a receptor‒ligand pair and has been reported to
be critical for tumour cell migration, particularly in interactions
with vascular endothelial cells. These findings suggested that
this pathway is also involved in the regulation of MVI
by MARCKSL1.

The present study utilized single-cell analysis techniques to
investigate the functional switch of malignant cells in the
progression of MVI in hepatocellular carcinoma and its impact
on the immune microenvironment. For the first time, the present
study reported and highlighted the potential impact of the laminin-
and VEGF-related pathways on MVI. MARCKSL1, a molecule not
yet widely reported, was identified to be associated with PTN-related
signalling pathways. High expression of this gene was closely
associated with poor patient prognosis, suggesting that it may
become an important prognostic marker and therapeutic target.

5 Limitations of the study

The present study had several limitations. First, the single-cell and
prognostic data were obtained from public databases and involved a
limited number of patient samples; therefore, the present findings
need to be validated in larger clinical samples. Second, the present
study did not include in vitro or in vivo experimental validation.
Future studies will confirm the present results with additional
experiments and further investigate the role of MARCKSL1 in the
progression of MVI in hepatocellular carcinoma.
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