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Introduction: Acute myeloid leukemia (AML), a highly heterogeneous
hematological malignancy, remains a major challenge in adult oncology. Stem
cell research has highlighted the crucial role of long noncoding RNA (lncRNA) in
regulating cellular differentiation and self-renewal processes, which are pivotal in
AML pathogenesis and therapy resistance.

Methods: This study explores the relationship between cuproptosis-related
lncRNAs and AML prognosis, providing novel insights into their impact on
hematopoietic stem and progenitor cells.

Results: We collected clinical information from 214 AML patients in our center
and analyzed the association between granulocyte recovery after chemotherapy,
cuproptosis, and prognosis. Additionally, we developed a prognostic model—the
cuproptosis-associated long noncoding RNA prognostic model (CRLPM)—y
analyzing data from The Cancer Genome Atlas (TCGA). Patients were stratified
into high- and low-risk groups based on CRLPM, revealing significant survival
differences. High-risk patients demonstrated lower sensitivity to
chemotherapeutic agents such as Axitinib, GSK429286A, Navitoclax, and ZM-
447439, underscoring the need for alternative therapeutic strategies.

Discussion: CRLPM offers a promising framework for integrating stem cell-
focused approaches into personalized treatment regimens, paving the way for
precision medicine in AML management.
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Introduction

Acute myeloid leukemia (AML), the most common form of acute leukemia in adults, is
a highly aggressive and heterogeneous hematologic malignancy, with increased incidence
with age. In 2024, there are 20,800 estimated new cases in the United States (Siegel et al.,
2024). AML is characterized by the rapid proliferation of immature myeloid cells, which
accumulate in the bone marrow and peripheral blood (Pimenta et al., 2021), leading to
impaired normal hematopoiesis and causing symptoms like anemia, thrombocytopenia,
and infections (Albrecht, 2014). AML exhibits significant genetic and molecular
heterogeneity, with a complex range of gene mutations and chromosomal
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abnormalities, including key alterations in genes such as FLT3,
NPM1, DNMT3A, and TP53 in AML patients (Ali and Salih,
2023). These complexities not only enhance the disease’s
aggressiveness but also pose significant treatment challenges
(Abaza et al., 2024). Moreover, AML originates from
hematopoietic stem and progenitor cells (HSPCs), where
dysregulated self-renewal and differentiation processes contribute
to leukemogenesis. This stem cell involvement underscores the
importance of targeting these cells in therapeutic strategies. The
genetic and epigenetic heterogeneity of AML results in wide
variations in treatment responses and survival outcomes and
therefore understanding the molecular mechanisms underlying
AML pathogenesis is critical to improving diagnosis and
treatment. Long-term survival for AML remains low, especially
for elderly and high-risk patients, despite the effectiveness of
traditional therapies (Chen et al., 2023). Recent advances in
precision medicine and targeted therapies have shown promise in
improving outcomes for certain patient subgroups. However, drug
resistance and relapse continue to be critical issues that need to be
addressed (Watts and Nimer, 2018).

Noncoding RNA, especially long noncoding RNA (lncRNA),
plays a key role in cancer progression and treatment responses by
regulating gene expression (Statello et al., 2020; Mattick et al., 2023).
lncRNA is also involved in key biological processes that drive the
pathogenesis of AML, such as chromatin remodeling,
transcriptional regulation, and signaling pathway regulation
(Gourvest et al., 2019; Mer et al., 2018). Studies have shown that
dysregulated lncRNAs affect the proliferation, differentiation, and
survival of leukemia cells, leading to disease progression and
treatment resistance (Gao et al., 2020; Izadirad et al., 2021).
Regulating specific lncRNAs may alter the expression of genes
that regulate leukemogenesis, thereby providing new strategies for
more effective and targeted AML treatments (Mishra et al., 2022).
Although the general role of lncRNAs in AML is well-studied, a
systematic analysis of lncRNAs specifically associated with
cuproptosis has not been conducted. Such an analysis could
uncover lncRNAs that modulate the response of AML cells to
copper-induced stress, offering new insights into both prognosis
and potential treatment avenues (Xie et al., 2023; Springer et al.,
2024). Cuproptosis is a regulated cell death pathway induced by
intracellular copper accumulation, providing a potential mechanism
for anti-cancer treatment based on manipulating copper levels
within tumor cells (Xie et al., 2023; Tsvetkov et al., 2022). It
involves direct binding of copper to lipid acylases of the
tricarboxylic acid (TCA) cycle, leading to protein aggregation and
lethal protein stress (Tsvetkov et al., 2022). This interaction disrupts
protein folding, causes aggregation, and leads to proteotoxic stress,
which can ultimately kill the cell. This pathway is closely tied to
mitochondrial function and depends on active TCA cycling and
oxidative phosphorylation (Springer et al., 2024). This mechanism
provides a unique approach to exploit the metabolic vulnerability of
cancer cells, especially in AML, where altered metabolism supports
the growth of leukemic cells (Wang X. et al., 2024; Wu et al., 2024).
For cancer treatment, dysregulated copper metabolism is frequently
observed in cancer cells, Aggressive tumors, in particular, often
require higher copper levels to sustain rapid proliferation, making
them more susceptible to copper-induced toxicity. In AML, for
example, copper may activate key signaling pathways like

PI3K-AKT and MAPK, which promote tumor growth and
migration. This dependency on copper suggests that modulating
intracellular copper levels to induce cuproptosis could be a
promising therapeutic approach for cancers characterized by
abnormal copper metabolism (Xie et al., 2023).

Recently, lncRNA-based models have been proposed as
potential tools to improve AML prognosis by integrating
molecular data beyond traditional gene mutations (Gourvest
et al., 2019; Pan et al., 2017; Tian et al., 2019; Zhu et al., 2023;
Zhao et al., 2021). However, cuproptosis-associated lncRNA impact
prognosis in patients with AML has yet to be explored. This study
investigated the prognostic model of cuproptosis-related lncRNAs
in AML by detailed genomic and transcriptomic analyses. This study
aims to develop a prognostic model based on cuproptosis-associated
lncRNAs to improve AML patient stratification. To achieve this, we
will utilize RNA sequencing data from the TCGA database and
identify lncRNAs significantly correlated with overall survival using
univariate Cox regression. Then, LASSO regression will optimize
variable selection to ensure model robustness. Validation will be
performed using Kaplan-Meier survival curves, ROC curves, and
C-index calculations. Additionally, external data sets will help
confirm CRLPM’s consistency and reliability across diverse
patient populations. This model has the promising potential to
provide personalized treatment strategy guidance for patients
with different risk levels and could also provide guidance for
medication recommendations to enhance therapeutic treatment.
For high-risk patients, the model could identify individuals with
low sensitivity to certain chemotherapies, thereby reducing
unnecessary toxicity. Furthermore, CRLPM could support the
identification of patients who may benefit from treatments
targeting copper metabolism pathways, enhancing therapeutic
outcomes in cases where conventional chemotherapy might be
less effective.

Methods and materials

Patients

A total of 214 patients with newly diagnosed and receiving
treatment for non-M3 AML at the Yangzhou Jiangdu People’s
Hospital between January 2018 and August 2022 were enrolled.
Risk stratification of patients was classified according to the
2017 ELN risk criteria. Informed consent was obtained from all
patients before data collection. The study was approved by the
Research Ethics Review Committee of Yangzhou Jiangdu People’s
Hospital and was conducted following the Declaration of Helsinki.

Transcriptomic data, mutation profiles and
clinical information of TCGA

The dataset of RNA sequencing for this analysis includes a total
of 200 acute myeloid leukemia (AML) samples, sourced from the
Cancer Genome Atlas (TCGA) database as of December 2023
(https://portal.gdc.cancer.gov/). This dataset integrates extensive
molecular and clinical data, facilitating a detailed examination of
the relationship between long non-coding RNA (lncRNA)
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expressions and patient outcomes. The patient dataset spans an age
range of 30–85 years, with a median age of 60 years old, and features
an approximately equal distribution of male and female patients,
thus reducing gender bias in the study. The data covers various
histological AML subtypes, allowing for the investigation of
subtype-specific lncRNA profiles (Figure 1).

Before conducting further analyses, RNA sequencing data were
preprocessed to ensure data quality and consistency. Selection
criteria included samples with complete clinical and genomic
data and a sequencing depth of at least 30x. Samples with low
quality or a missing rate exceeding 10% were excluded. To ensure
comparability between samples, data were standardized and
normalized prior to analysis. Normalization accounted for
sequencing depth and gene length, reducing variability and
batch effects.

The overall survival (OS) was applied to assess the prognostic
value of lncRNAs. RNA sequencing data were analyzed using
established bioinformatics tools; utilizing the STAR aligner, reads
were mapped to the GRCh38 reference genome, and lncRNA
expression was quantified by HTSeq-count, normalized for both
gene length and sequencing depth. Differential expression analysis
utilized DESeq2 to highlight lncRNAs linked to clinical outcomes.
LncRNA annotations were provided by GENCODE database
(https://www.gencodegenes.org/), and a subset of genes linked to
cuproptosis was identified based on the research by Tsvetkov
et al. (2022).

Identification and analysis of cuproptosis-
related long non-coding RNAs

To identify the association of lncRNAs and cuproptosis, we
utilized the “limma” package in R to conduct a correlation analysis.
We calculated the Pearson correlation coefficients between lncRNAs
and cuproptosis-related genes. LncRNAs that demonstrated a
correlation coefficient |Cor| > 0.4 and a p-value less than
0.001 were deemed significantly associated with cuproptosis.
These threshold values were selected based on commonly
accepted practices in similar transcriptomic studies within
various subjects, which aim to balance the sensitivity and
specificity of identifying meaningful correlations while
minimizing false positives (Yin et al., 2021; Shi et al., 2017; Yao
et al., 2024; Li et al., 2022; Zhang et al., 2024). We illustrated the
interactions between these genes and the identified lncRNAs using
Sankey diagrams, which were created employing the “ggplot2”,
“ggalluvial”, and “dplyr” packages in R.

Construction of a prognostic risk model

We partitioned the dataset into training and testing cohorts
using a random assignment approach, facilitated by the ‘caret’
package in R. To ensure that clinical variables such as age,
gender, and other relevant factors were evenly distributed
between the two groups, stratified random sampling was
employed. This method maintained the balance of important
clinical characteristics across the training and testing sets,
reducing potential biases and ensuring a more reliable validation

of the model. We constructed cuproptosis-related lncRNA
signatures using the training set and validated these signatures
using the test set and the entire dataset. Univariate Cox
proportional hazards regression analysis was performed on the
cuproptosis-associated lncRNAs using the ‘survival’ package to
identify those significantly linked to OS. To enhance the model’s
accuracy and prevent overfitting, we employed the Lasso Cox
regression via the ‘glmnet’ package in R. The optimal penalty
parameter (λ) was determined through 10-fold cross-validation,
selecting the value that minimized the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC), both
of which balance model complexity and goodness-of-fit. This
approach ensures that the final model retains only the most
relevant features while controlling for overfitting. Subsequently,
we constructed a Cuproptosis-Related Long Non-Coding RNA
Prognostic Model (CRLPM) based on multivariate Cox
regression analysis. The risk score for each patient was calculated
using the formula:

Risk score � Σ i � ln Coef i( ) × Ex i( )
where Coef(i) is the regression coefficient of the multiple Cox
regression analysis for each lncRNA, and Ex(i) is the normalized
expression level of that lncRNA.

Model evaluation and nomogram
construction

To assess the effectiveness of prognostic model, patients in both
the training and testing cohorts were categorized into high- and low-
risk groups using the median risk score calculated from the training
set. Kaplan-Meier survival curves were then generated to compare
the survival outcomes between these groups. The prognostic
precision of the model was further evaluated using receiver
operating characteristic (ROC) curve analysis. The area under the
curve (AUC) was determined employing the “survivalROC” and
“timeROC” packages in R. The performance of the model was
further validated by calculating the concordance index (C-index)
with the “rms”, “survival”, and “pec” packages in R. Both metrics
were used to assess the predictive accuracy and robustness of
the model.

To further validate the robustness of the model, we employed
four external datasets obtained from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The
following datasets were used: GSE12417 (242 adult patients with
untreated AML), GSE37642 (562 samples from adult patients with
AML), GSE71014 (104 de novo AML patients with normal
karyotype), and GSE76009 (534 samples from adult patients with
AML). All these datasets were based on array analysis, using tissues
from bone marrow or peripheral blood mononuclear cells
(GSE12417, GSE37642), bone marrow mononuclear cells
(GSE71014), and human acute myeloid leukemia cells (GSE76009).

To ascertain the prognostic relevance of risk model, both
multivariate Cox regression and univariate analyses were
conducted to determine the model’s independent prognostic
value. To assess the combined impact of risk scores and clinical-
pathological factors on OS at 1, 3, and 5 years for AML patients, a
nomogram was subsequently constructed by using the “rms”,
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“survival”, and “regplot” packages in RStudio, for visually depicting
the predictive outcomes derived from the Cox regression analyses.
Calibration curves, evaluated using the Hosmer-Lemeshow test,
were used to determine the accuracy of the constructed
nomogram models. This nomogram offers a graphical
representation for estimating patient survival outcomes in regard
to risk models and other factors in clinic (Iasonos et al., 2008).

Additionally, principal component analysis (PCA) was
conducted to visualize the distribution of patients in high- and
low-risk categories, using the “scatterplot3D” package.

Pathway and functional analysis

RNA-seq reads were aligned using STAR software (v2.7.9a) with
all default parameters. For differential expression gene (DEG)
analysis, the DESeq2 package (v1.30.1) was used, with thresholds
set at p-value <0.001 and |fold change| > 1. All p-values from
statistical tests were adjusted for multiple testing using the
Benjamini-Hochberg method to reduce false-positive rates.
Following the identification of DEGs, we conducted a series of
functional enrichment analyses to understand relevance of these
genes in biologic.

Gene Ontology (GO) enrichment analysis was conducted to
identify significantly overrepresented GO terms in the categories
of biological process (BP), cellular component (CC), and
molecular function (MF), providing insight into the broader
biological roles of the DEGs. Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis was also carried out
to uncover key signaling pathways associated with the risk
groups. For these analyses, we utilized several R packages,
including “clusterProfiler” for the enrichment analysis,
“org.Hs.eg.db” for human gene annotation, and “enrichplot”
for visualizing the results.

Analysis of tumor-infiltrating immune cells
and immunotherapy response

Single-sample gene set enrichment analysis (ssGSEA) in R was
applied to investigate the connection between the Cuproptosis-
Related Long Noncoding RNA Prognostic Model (CRLPM) risk
score and immune cell infiltration. This approach benefited to assess
the levels of infiltration and the functional activities of tumor-
infiltrating immune cells.

We employed single-sample gene set enrichment analysis
(ssGSEA) in R to investigate the relationship between the
Cuproptosis-Related Long Noncoding RNA Prognostic
Model (CRLPM) risk score and immune cell infiltration. This
enabled us to determine both the infiltration levels and
functional activities of cacner-infiltrating immune cells. The
outcomes of this analysis were depicted through a
heatmap. Furthermore, to estimate the potential response to
immunotherapy, we employed the Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm (Jiang et al., 2018), which is
available online at http://tide.dfci.harvard.edu. The TIDE
algorithm simulated tumor immune evasion mechanisms,

offering insights into potential immunotherapy responses in
the high- and low-risk patient groups.

Calculation of tumormutation burden (TMB)
in AML

In this study, we quantified the TMB in AML samples to
explore its potential role in disease progression and patient
outcomes. Using the R package “maftools”, we analyzed
mutation data and computed TMB scores for each patient
(Mayakonda et al., 2018). The association between TMB and
risk scores was assessed by dividing patients into high-risk and
low-risk groups based on the CRLPM score. The mutation
landscape and TMB distribution were visualized using
waterfall plots, and survival analysis was developed to evaluate
the influence of TMB and risk scores on OS.

Drug sensitivity assessment

To develop the clinical application of the CRLPM model to
treat AML, we calculated the half-maximal inhibitory
concentration (IC50) of several chemotherapeutic drugs using
the R package “pRRophetic” and its dependencies, including
“car”, “ridge”, “preprocessCore”, “genefilter”, and “sva”. The
Wilcoxon signed-rank test was employed to compare
IC50 values between high-risk and low-risk groups for each
drug. Visualization of the results was achieved using boxplots
generated by the R package “ggplot2”. Kaplan-Meier curves were
produced to illustrate cumulative survival probabilities, and the
log-rank test was used to assess differences in survival rates
between groups. Univariate and multivariate Cox proportional
hazards models adjusted for survival-related covariates and
estimated OS. The importance of prognostic factors was
visually represented in forest plots.

Statistical analysis

To handle missing data (≤5.0%), the random forest method was
applied using the “mice” package in RStudio (version 4.3.2). For
continuous variables, their distribution determined how they were
presented: either as median values with interquartile ranges, or as
means with standard deviations. The Wilcoxon rank-sum test was
applied to evaluate differences between two groups for continuous
data. Categorical data were summarized as proportions and
analyzed using the chi-square test for comparisons between
groups. Group differences were analyzed using one-way ANOVA
for data following a normal distribution or the Kruskal-Wallis test
for non-normally distributed data. Constrained cubic spline
functions were utilized using the “rms” package to investigate
potential non-linear relationships. Clustering results were
visualized through heatmaps generated by the “Pheatmap”
package. All statistical analyses were carried out by using
packages such as, “ggplot2”, “rms” “PredictABLE”, “risk
regression”, and “survminer” in RStudio (version 4.3.2).
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Results

Impact of neutropenia duration and copper
metabolism on post-chemotherapy
hematopoietic recovery in AML patients

Among the 214 AML patients analyzed, the duration of
neutropenia (defined as granulocyte recovery time) showed a
significant correlation with hematopoietic stem cell and white
blood cell recovery rates. Patients with neutropenia duration
exceeding 25 days exhibited delayed recovery of stem cells and
granulocytes, with a median age of 38 years (IQR: 29–46), compared
to 35 years (IQR: 25–43.5) in those with shorter neutropenia
durations. Additionally, the cohort with prolonged neutropenia
had higher serum copper levels, suggesting a potential
relationship between copper metabolism and delayed
hematopoietic recovery (Table 1). These findings highlight that
copper ion levels may influence stem cell growth and granulocyte
recovery post-chemotherapy, implicating copper-induced cell death
(cuproptosis) as a contributing factor to hematopoietic impairment
in AML patients. This underscores the need for further investigation

into the role of copper death pathways in post-chemotherapy
recovery dynamics.

Cuproptosis-related lncRNAs and
prognostic model development in AML

In our study, we investigated lncRNAs associated with
cuproptosis in AML from TCGA dataset by filtering cuproptosis-
related genes and applying the Pearson correlation analysis. The
connections between cuproptosis-related genes and their
corresponding lncRNAs were depicted in a Sankey plot
(Figure 2A). Subsequently, a analysis of univariate Cox regression
was produced to determine the prognostic importance of these
lncRNAs. As demonstrated in the forest plot (Figure 2B),
108 lncRNAs were identified as significantly impacting OS of
AML patients, with p-values below 0.05. Among these, some
lncRNAs had hazard ratios (HR) greater than 1, indicating that
they may be associated with poorer prognosis and increased risk of
mortality, while others had HR values less than 1, suggesting a
potential protective effect and association with improved survival.

TABLE 1 Study participant characteristics at enrollment.

Variables Total
(n = 214)

Cohort, median (IQR) P-value

Neutropenia_Duration >25 days
(n = 107)

Neutropenia_Duration ≤25 days
(n = 107)

Age, Median (Q1,Q3) 36 (26.25, 45) 38 (29, 46) 35 (25, 43.5) 0.36

Gender, n (%) 0.213

Female 124 (58) 57 (53) 67 (63)

Male 90 (42) 50 (47) 40 (37)

WBC (×10^9), Median
(Q1,Q3)

17 (11, 25.75) 17 (12, 27) 16 (10, 23) 0.146

Hb (g/L), Median (Q1,Q3) 78.5 (72, 90) 78 (71, 90) 79 (72, 90) 0.857

PLT (×10^9), Median
(Q1,Q3)

143.5 (79,
223.5)

146 (77, 233.5) 143 (83.5, 206.5) 0.714

ELN Score, n (%) 0.696

Adverse 45 (21) 25 (23) 20 (19)

Favorable 100 (47) 49 (46) 51 (48)

Intermediate 69 (32) 33 (31) 36 (34)

Induction therapy, n (%) 0.11

Low intensity 76 (36) 35 (33) 41 (38)

Others 21 (10) 15 (14) 6 (6)

Standard therapy 117 (55) 57 (53) 60 (56)

Status, n (%) 1

CR 183 (86) 92 (86) 91 (85)

NR 31 (14) 15 (14) 16 (15)

Serum Copper Level (μmol/
L), Median (Q1,Q3)

32 (24.25, 39) 35 (27.5, 44) 28 (21, 35) <0.001

2017 ELN: 2017 European Leukemia Network; CR: complete remission; CR: complete remission; NR: no response; IQR, interquartile range; WBC, white blood cell; Hb, hemoglobin; PLT,

platelet.
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For model construction, a cohort of 139 patients was separated
into the training group (n = 69) and the testing group (n = 70). The
model was built using data from the training group and
subsequently validated with the testing group. The clinical
characteristics of the AML patients are detailed in Table 2.
Crucially, no significant differences in clinical features for the
training and validation groups were observed, demonstrating that
both groups were well-matched for further analysis.

To refine the selection of lncRNAs for prognostic modeling, we
produced Lasso-Cox regression, which reduced the number of
variables by selecting key lncRNAs based on regression
coefficient trajectories and cross-validation results (Figures 2C,D).
These lncRNAs were further refined using multiple stepwise Cox
regression, resulting in a final CRLPM that applied as a robust
prognostic tool to predicte patient outcomes in AML. Finally, a
heatmap (Figure 2E) was developed to examine the correlations
between the selected lncRNAs and the cuproptosis-related genes.
Significant correlations were observed between several lncRNAs and
key cuproptosis genes, indicating their potential involvement in the
regulation of cuproptosis pathways in AML.

Model validation and risk stratification
in AML

By setting the median risk score as a cutoff standard, patients
were stratified into two groups with high and low risk. The
distribution of risk scores is depicted in the risk score plot,
clearly differentiating between the two groups (Figure 3A). After
stratification, the survival status plot showed that the high-risk

group had more deaths and significantly shorter survival times
compared to the low-risk group (Figure 3B). The differential
expression of cuproptosis-related lncRNAs between two groups
was visualized through a heatmap (Figure 3C), with several
lncRNAs showing considerable differences between the groups,
correlating with their stratified risk levels. The Kaplan-Meier
survival analysis was conducted to compare OS between the
high-risk and low-risk groups in the training cohort (Figure 3D).
The survival curves revealed a significant difference between two risk
groups (p < 0.001). Patients with low risk exhibited significantly
better OS rates compared to those in the high-risk group.

We validated the model using the testing group and the entire
dataset, and the obtained results were consistent with those observed
in the training group (Figures 3E–L), showing significant differences
in survival outcomes and lncRNA expression profiles across all
cohorts. These findings validate the robustness of the CRLPMmodel
in stratifying AML patients by risk, providing consistent prognostic
insights across different patient groups based on risk scores and
associated lncRNA expression.

Predictive performance of the CRLPM
across expression profiles and
clinical subgroups

PCA was performed to assess the differences across various
expression profiles. The PCA based on total gene expression and
cuproptosis gene expression showed limited separation between the
high- and low-risk groups, with the two groups clustering closely
(Figure 4A, B). However, PCA focusing on cuproptosis-related

FIGURE 1
Flow chart of the study design.
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lncRNAs (Figure 4C) revealed a clearer separation between the two
groups, indicating that these lncRNAs are more effective in
distinguishing between risk categories. The most significant
separation was observed when analyzing the six lncRNAs used in
the risk model (Figure 4D), which displayed distinct clustering of
high- and low-risk groups. In these figures, PC1 accounted for the

largest proportion of variance, reflecting the most substantial
variation in the data, while PC2 and PC3 contributed to
additional but smaller variances. This demonstrates that the
selected lncRNAs, particularly the six used in the prognostic
model, are highly efficient in stratifying AML patients by risk,
with PC1 capturing the primary factor driving this separation.

FIGURE 2
Identification and prognostic analysis of Cuproptosis-related lncRNAs in AML. (A) Sankey relationship diagram of cuproptosis genes and their
associated lncRNAs. (B) Identification of prognostic Cuproptosis-related lncRNAs by univariate Cox regression analysis. (C–D) Lasso–Cox regression
analysis was performed to develop the prognostic model. (E) Heatmap of the correlation between cuproptosis-related genes and 6 prognostic
cuproptosis-related lncRNAs. *p < 0.05, **p < 0.01, and ***p < 0.001.
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These findings further support the robustness of the risk model in
differentiating patient outcomes.

To evaluate the predictive strength of the prognostic model, both
univariate andmultivariate Cox regression analyses were performed.
In the univariate analysis (Figure 4E), significant associations were
identified between patient outcomes and both age and risk score,
while gender did not exhibit a statistically significant association (p =

0.913), The multivariate Cox regression analysis validated the
independent prognostic significance of both age and risk score,
confirming their roles as key survival predictors (Figure 4F). ROC
curves were plotted for different time points. The model showed
strong predictive ability, with AUC values of 0.791 at 1 year, 0.777 at
3 years, and 0.916 at 5 years (Figure 4G). Moreover, the risk score
consistently demonstrated superior prognostic accuracy compared

TABLE 2 The clinical basic information of age and gender distribution from TCGA-AML.

Covariates Type Total Test Train p value

Age ≤65 99 (71.22%) 46 (66.67%) 53 (75.71%) 0.3218

>65 40 (28.78%) 23 (33.33%) 17 (24.29%)

Gender Female 62 (44.6%) 32 (46.38%) 30 (42.86%) 0.8051

Male 77 (55.4%) 37 (53.62%) 40 (57.14%)

FIGURE 3
Validation of the prognostic model in the training group (A–D), testing group (E–H) and the entire dataset (I–L). (A, E, I) The risk score distribution in
the corresponding cohort. (B, F, J) The survival status in the corresponding cohort. (C, G, K) Heatmap of the expression of the prognostic cuproptosis-
related lncRNAs in the corresponding cohort. (D, H, L) Kaplan–Meier curves for survival analysis for the corresponding cohort.
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to other clinical factors. The multivariate Cox regression analysis
validated the independent prognostic significance of both age and
risk score, confirming their role as significant predictors of survival
(Figure 4F). To further assess the cuproptosis-related lncRNA
model’s accuracy in predicting OS, ROC curves were plotted for
different survival periods. The model demonstrated robust
predictive capability, with a series of AUC values (1 year-0.791,
3 years-0.777, while 5 years-0.916) (Figure 4G). Besides, the risk
score consistently showed superior prognostic accuracy when
compared to other clinical variables. Specifically, the AUC for the
1-year risk score was 0.791 outperforming other factors like age
(AUC = 0.711) and gender (AUC = 0.531) (Figure 4H).
Additionally, the C-index for the risk model and age indicated
superior prognostic performance over a 6-year period compared to
gender, reinforcing its strength as a long-term predictive tool for
patient outcomes (Figure 4I). These results align with both the ROC
curve Cox and regression analysis findings, demonstrating that the
cuproptosis-related lncRNAmodel is a robust and reliable predictor
of survival, reinforcing its strength as a predictive tool for
patient outcomes.

A nomogram was developed to quantitatively predict clinical
outcomes for AML patients by incorporating the risk score alongside
key clinical features such as age and gender (Figure 4J). This tool was
designed to estimate individualized survival probabilities at
1–5 years. The nomogram’s performance was validated using
calibration plots, which displayed a close match of the predicted

survival outcomes and the actual observed data at each time point.
This high degree of alignment underscores the accuracy and
reliability of the nomogram for predicting patient prognosis over
multiple years (Figure 4K).

We stratified patients by age and gender to assess the risk
model’s performance. For patients under 60 and those 60 and
above, the high-risk group consistently had significantly worse
survival outcomes compared to the low-risk group (P < 0.001,
Figures 4L,M). Similarly, in both male and female patients, the
low-risk group exhibited markedly longer survival times (P < 0.001,
Figures 4N,O). These findings confirm the model’s predictive power
across different demographic subgroups.

Biological functions and pathway
enrichment analysis of DEGs

To better understand the biological functions and pathways
associated with the differentially expressed genes (DEGs) between
the high- and low-risk groups, we performed GO and KEGG
enrichment analyses. The analysis revealed significant enrichment
in various biological processes, cellular components, and
molecular functions.

In the BP category, the DEGs were significantly enriched in
processes such as blood coagulation, wound healing, and cellular
response to xenobiotic stimuli, indicating their involvement in

FIGURE 4
Predictive Performance of the CRLPM. (A–D) Principal component analysis (PCA) comparing the high- and low-risk groups based on all genes (A),
cuproptosis-related genes (B), cuproptosis-related lncRNAs (C) and prognostic lncRNA prognostic markers (D). (E–F) The univariate Cox regression
analysis (E) and the multivariate Cox regression analysis (F) of the association between age, gender, risk score and patient outcomes. (G) TimeROC curve
predicted the 1, 3 and 5-year OS for AML patients. (H) ROC demonstrated the predictive accuracy of the risk model was superior to other clinical
parameters. (I)C-index curve of the risk mode. (J) A nomogram combining clinicopathological variables and risk scores predicts 1-, 3-, and 5-years OS in
AML patients. (K) Calibration curves test the agreement between actual and predicted outcomes at 1, 3, and 5 years. (L–O) The Kaplan–Meier curves
depicting the OS of patients with different age (L, M) and gender (N, O).
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immune response and tissue repair. For the CC term, the DEGs were
associated with cellular structures including the spliceosomal
complex, platelet alpha granule lumen, and collagen-containing
extracellular matrix, suggesting a role in signal transduction and
extracellular matrix organization, In addition, the T cell receptor
complex and membrane signaling receptor complex in the CC
category, as well as cytokine activity, receptor ligand activity, and
chemokine activity in the MF category, emphasize their importance
in immune regulation and cellular communication (Figures 5A,B).

KEGG pathway analysis further revealed significant associations
with critical pathways, such as the PI3K-Akt signaling pathway,
spliceosome, and cytokine-cytokine receptor interaction, which are

likely to play crucial roles in the disease mechanism. Additionally,
pathways like JAK-STAT signaling, focal adhesion and drug
metabolism were identified, implicating their involvement in cell
survival, proliferation, drug resistance and inflammation
(Figures 5C,D).

Immune cell infiltration and immunotherapy
response prediction

Using the ssGSEA algorithm, we compared immune-related
pathways between the high-risk and low-risk groups. The

FIGURE 5
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Barplot (A) and Circle diagram (B)
display the enriched GO terms. Bubble plot (C) and Circle diagram (D) presenting the results of enriched KEGG terms. GO term: GO:0062023 - Collagen-
containing extracellular matrix; GO:0098802 - Receptor complex; GO:0005125 - Cytokine activity; GO:0030627 - Prefoldin complex; GO:0019838 -
Growth factor binding; GO:0008009 - Chemokine activity; GO:0042101 - T cell proliferation; GO:0120114 - Plasma membrane bounded cell
projection morphogenesis; GO:0030532 - Small GTPase mediated signal transduction; GO:0097525 - Morphogenesis of a branching epithelium; GO:
0006805 - Xenobiotic metabolic process; GO:0042060 - Wound healing; GO:0000244 - Spliceosomal complex assembly; GO:0045291 - Structure
morphogenesis; GO:0000365 - mRNA splicing, via spliceosome; GO:0000353 - Regulation of mRNA splicing, via spliceosome. KEGG term: hsa04510 -
Focal adhesion; hsa04020 - Calcium signaling pathway; hsa04630 - Jak-STAT signaling pathway; hsa05144 -Malaria; hsa00770 - Pantothenate and CoA
biosynthesis; hsa04512 - ECM-receptor interaction; hsa00980 -Metabolism of xenobiotics by cytochrome P450; hsa00860 - Porphyrin and chlorophyll
metabolism; hsa05204 - Chemical carcinogenesis; hsa04974 - Protein digestion and absorption; hsa05418 - Fluid shear stress and atherosclerosis;
hsa04610 - Complement and coagulation cascades; hsa00983 - Drug metabolism - other enzymes; hsa04060 - Cytokine-cytokine receptor
interaction; hsa05205 - Proteoglycans in cancer; hsa04151 - PI3K-Akt signaling pathway; hsa04061 - Viral protein interaction with cytokine and cytokine
receptor; hsa03040 - Spliceosome.
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heatmap (Figure 6A) revealed significant differences in several
key immune regulatory pathways, including APC co-
inhibition/stimulation, IFN Response, MHC Class I,
parainflammation, and inflammation-promoting pathways.
These findings suggest that the immune microenvironment
differs notably between the two groups, with high-risk
patients showing altered immune regulation, potentially
facilitating tumor immune evasion. On the other hand, T
cell-related functions, such as T cell co-stimulation or
inhibition, and cytolytic activity, showed no significant
differences between the two groups. This indicates that the
overall T cell functionality, particularly in terms of immune
activation and cytolytic responses, remains similar across both
risk groups.

The lack of significant differences in T cell-related immune
activities aligns with the TIDE analysis results (Figure 6B). The
TIDE scores, which assess tumor immune evasion potential, did not
show a statistically significant difference between the two groups.
This suggests that T cell-mediated immune escape mechanisms are
not the primary drivers of the differences observed in immune
response between these groups. Instead, the divergence in immune
regulation appears to be more associated with APC function,
cytokine responses, and inflammatory processes, rather than T
cell-specific mechanisms.

To further elucidate the composition of the tumor immune
microenvironment, we additionally employed the CIBERSORT
algorithm, which deconvolutes bulk transcriptomic data to
estimate the relative proportions of different immune cell
types. The CIBERSORT results showed variations in specific
immune cell populations—particularly those involved in
antigen presentation (e.g., dendritic cells) and inflammatory
responses (e.g., certain macrophage subtypes)—between high-
risk and low-risk patients. However, consistent with the ssGSEA
findings, T cell subsets (including CD8+ T cells) did not
significantly differ in abundance between the two groups.
These observations reinforce the notion that while certain
pathways and cell types critical for immune regulation and
inflammation diverge between risk groups, T cell infiltration
and cytolytic function remain relatively unchanged.

Tumormutational burden and its association
with risk of AML

We used waterfall plots to visualize the mutation landscape
between two risk groups. The mutation frequencies of TP53 and
KRAS were particularly prominent in the high-risk group (Figures
7A,B). TP53 is a widely used tumor suppressor gene, while KRAS is
an oncogene associated with tumor aggressiveness. In contrast, most
other genes did not exhibit significant differences between two
groups. It suggests that mutations in TP53 and KRAS probably
are key factors contributing to the poor prognosis of high-risk
AML patients.

To explore the potential role of TMB in AML, we collected
somatic mutation data from AML samples and calculated TMB
scores. Our analysis revealed no significant differences in TMB
scores between the groups (Figure 7C), suggesting that TMB does
not correlate significantly with risk stratification in AML. Further,
patients were categorized into high-TMB and low-TMB groups
based on the median TMB score. Survival analysis indicated that
TMB alone does not significantly influence OS among AML
patients, as no notable differences were observed between the
high-TMB and low-TMB groups (Figure 7D). In a subsequent
combined survival analysis that included both TMB and risk
scores, it was found that patients in the high-risk, low-TMB
category had the poorest survival outcomes, while those in the
low-risk, low-TMB category exhibited the best survival rates
(Figure 7E). These findings imply that integrating lncRNA
profiles with TMB and risk scores might offer a more detailed
prognostic assessment for AML patients.

Drug sensitivity analysis and individualized
treatment potential of CRLPM in AML

We explored the correlation between risk scores and IC50 values
of various chemotherapeutic drugs to assess the individualized
treatment potential of the CRLPM in AML. The results showed
that among all drugs, Axitinib, GSK429286A, Navitoclax, and ZM-
447439 exhibited significant difference in sensitivity for group with

FIGURE 6
Immunological landscape in AML patients. (A) Heatmap of the tumor-infiltrating lymphocytes based on ssGSEA algorithms among the high- and
low-risk groups in AML. (B) The comparison of TIDE prediction scores between the high- and low-risk groups. *p < 0.05, **p < 0.01, and ***p < 0.001.
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different level of risk (p < 0.01) (Figures 8A–D). These drugs
displayed higher IC50 values for high-risk group, suggesting
lower sensitivity to these agents (Figures 8E–H). This suggests
that AML patients with higher CRLPM scores, which are
associated with copper-induced cell death mechanisms, may not
respond effectively to these drugs. The high drug concentrations
required to achieve therapeutic effects in these patients may lead to
increased toxicity and poor treatment outcomes.

Discussion

Model effectiveness and clinical applications

The results of lncRNAs associated with cuproptosis suggested
that lncRNAs have a significant impact on the prognosis of AML
patients. By identifying lncRNAs that were strongly associated with
OS, we developed a prediction model by statistical methods such as
Lasso-Cox regression to stratify patients into risk groups with
different survival outcomes. CRLPM demonstrated robust
predictive accuracy for AML survival outcomes, supported by
AUC values across different time points. This predictive strength
aligns with previous studies where lncRNA-based models
successfully stratified AML patients into distinct risk categories,
reinforcing the prognostic role of lncRNAs in AML. It may enable
high-risk patients to receive more aggressive treatment modalities or
therapies targeting lncRNA activity or induction of cuproptosis

while avoiding overtreatment of low-risk patients. This
stratification also highlighted the potential of these lncRNAs as
therapeutic targets. The robust performance aligns with findings
from previous research where lncRNA-based models stratified AML
patients effectively, reinforcing lncRNAs’ role as prognostic
indicators in hematological malignancies like AML.

Clinically, CRLPM could serve as a personalized tool to aid in
decision-making for high-risk patients, potentially complementing
traditional prognostic markers like FLT3 (Jalte et al., 2023) or
TP53 mutations (Shin, 2023), which are commonly used in
clinical settings (Springer et al., 2024). AML treatment usually
applies to a strong chemotherapy regimen to reduce leukemia
cells in the bone marrow through induction therapy. By
distinguishing high-risk patients who may have lower sensitivity
to certain chemotherapies, CRLPM can support treatment
personalization, potentially reducing adverse effects for those
likely to respond poorly.

Furthermore, the identification of copper metabolism pathways
within CRLPM indicates its utility as an alternative biomarker for
therapies targeting cuproptosis mechanisms, opening avenues for
copper-targeted treatment strategies in high-risk AML patients. The
classic induction therapy regimen includes the “7 + 3″ regimen,
which is 7 consecutive days of intravenous injection of cytarabine
combined with 3 days of anthracyclines (such as daunorubicin or
aclarubicin) (Kantarjian et al., 2021). By analyzing the sensitivity of
chemotherapy drugs in the database, we found that only four drugs
(Axitinib, GSK429286A, Navitoclax and ZM-447439) showed

FIGURE 7
The relationship between tumormutation burden (TMB) and risk score. (A–C) The waterfall plot of mutant genes in the high- (A) and low-risk group
(B) in AML patients. (D) The Kaplan–Meier curves depicting theOS of patients with different TMB groups. (E) The Kaplan–Meier curves depicting the OS of
patients with different TMB and risk groups.
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higher sensitivity in low-risk patients through mechanisms such as
inhibiting angiogenesis, targeting Rho kinase, inhibiting Bcl-2 and
inhibiting Aurora kinase (Gross-Goupil et al., 2013; Fayed et al.,
2023; Mohamad Anuar et al., 2020; Gadea and Ruderman, 2005),
Although their clinical use in the treatment of AML is still mostly
experimental, these drugs have the therapeutic potential to be
advanced to preclinical or clinical studies in the future.
Additionally, the use of Axitinib, GSK429286A, Navitoclax, and
ZM-447439 should be avoided in these patients, as the high
IC50 values indicate poor efficacy and the potential for severe
adverse effects due to the need for higher dosages. Therefore, for
high-risk AML patients, alternative therapies like hematopoietic
stem cell transplantation (HSCT) or CAR-T therapy could be more
appropriate (Wang Q. Y. et al., 2024; Marofi et al., 2021). These
findings suggest that using CRLPM for risk stratification can guide
treatment decisions in AML, helping to identify patients who may
benefit more from alternative therapies while reducing the risk of
adverse outcomes associated with ineffective chemotherapy.

Biological role of cuproptosis-related
lncRNAs in AML

lncRNAs have been implicated in various malignancies, affecting
cell proliferation, apoptosis, and metastasis (Zangouei et al., 2023;
Heydarnezhad Asl et al., 2022). Our results extend these findings to
cuproptosis, suggesting that lncRNAs may play a key role in mediating
the response of AML cells to copper-induced stress. Similarly, current
findings suggest that XIST and MEG3 could potentially modulate
cuproptosis in AML cells by influencing copper metabolism
pathways (Xie et al., 2023; Springer et al., 2024). For instance, XIST
has been shown to influence survival by modulating downstream
molecules like miRNAs that regulate copper metabolism-related

enzymes in AML. XIST downregulates miR-142-5p, which in turn
upregulates enzymes like phosphofructokinase (PFKP), enhancing
glycolysis and promoting cell proliferation (Jiang et al., 2024). This
upregulation of metabolic enzymes creates a cellular environment that
can tolerate higher oxidative stress, allowing AML cells to evade copper-
induced cell death. Similarly, MEG3 has been shown to promote cell
death in AML through its interaction with TP53 and other apoptotic
pathways, further supporting its tumor-suppressive role.
Downregulation of MEG3 correlates with poor prognosis in AML,
likely due to decreased sensitivity to oxidative stress and reduced
activation of cuproptosis. MEG3 might act by modulating copper-
related enzymatic pathways, potentially leading to copper accumulation
in cancer cells and triggering cuproptosis (Zhang et al., 2022). In this
study, our model identified six understudied but critical lncRNAs and
explored their important prognostic value in AML. Our results
innovatively revealed that these lncRNAs may regulate important
signaling pathways in response to cuproptosis. Future therapeutic
functional studies are needed to elucidate the exact mechanism of
action of these lncRNAs and their potential as therapeutic
targets for AML.

Influence on immune infiltration and tumor
microenvironment

CRLPM results also indicated notable interactions between
copper metabolism and the AML tumor microenvironment,
particularly in immune infiltration. Disorder in copper
homeostasis have been observed in several cancers (Lelievre
et al., 2020; Bian et al., 2023),Although it has attracted
widespread attention in research, there are currently no drugs
specifically targeting copper apoptosis in clinical or preclinical
applications. Compared with solid tumors, AML is extremely

FIGURE 8
Drug sensitivity analysis of high- and low-risk patients in AML. (A–D) Correlation analysis of corresponding drug IC50 and risk scores. (E–H) The
IC50 of corresponding drugs in high- and low-risk patients in AML.
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challenging due to its high heterogeneity and the involvement of
both hematopoietic stem and progenitor cells in its pathogenesis
(Chen et al., 2022). Different from solid tumor microenvironments,
AML develops in the bone marrow microenvironment, where
cancer stem cells (CSCs) and leukemia stem cells (LSCs) play a
key role in the initiation, development, metastasis, and relapse of the
disease. These LSCs have self-renewal capabilities and are resistant
to traditional chemotherapy, making them a key factor in AML
relapse and poor prognosis (Pimenta et al., 2021; Thomas and
Majeti, 2017). The differential expression and enrichment
analysis in this study revealed several enriched signaling
pathways that are highly relevant to cancer stem cell biology:
PI3K-Akt signaling, which regulates cell proliferation and growth,
is also important for the self-renewal and homeostasis maintenance
of leukemic stem cells in AML (Gu et al., 2024). In addition, JAK-
STAT signaling pathway, ECM-receptor interaction and focal
adhesion pathways were also proven to be significantly relevant
to cancer stem cells and the bone marrow microenvironment
(Huang et al., 2021; Zanetti and Krause, 2020). The results also
showed that cytokine and receptor activity were enriched in AML,
further validating the role of inflammatory signals such as IL-6 or
TNF-α in the development of cancer stem cells. These findings also
emphasize the complex link between copper metabolism and
immune response in AML, suggesting that immune modulation
could be a viable therapeutic strategy for high-risk AML patients.
CRLPMmay also serve as a biomarker for identifying candidates for
immunotherapy, particularly treatments targeting immune
checkpoints and antigen presentation pathway.

Our research explored differences in the immune
microenvironment between low-risk and high-risk groups, but no
notable differences were observed for T cell-related functions,
indicating that T cell activity remains stable across risk groups. This
suggests that immune evasion in the high-risk group may not be
primarily driven by T cell dysfunction, but rather by disruptions in
antigen presentation and other non-T cell immune mechanisms. This
hypothesis is consistent with the TIDE analysis, which showed no
significant differences in TIDE scores between the two groups. In the
high-risk group, tumors may evade immune responses by inhibiting
antigen presentation and reducing immune cell infiltration. Given these
findings, targeting antigen presentation pathways (e.g., MHC Class I)
and reducing chronic inflammation may represent more effective
strategies for treating high-risk patients, rather than therapies solely
focused on enhancing T cell activity.

TP53 and KRAS were confirmed to have significantly high
mutation frequencies in the high-risk group, suggesting that
therapeutics targeting these two genes may improve patient
prognosis. Although our analysis showed that the TMB score did
not significantly affect patient OS, when TMB was grouped together
with our model, it had a better distinction for patient prognosis,
indicating that therapies targeting these two genes have the potential
to be adjuvant treatments, but making such a decision still requires
careful and comprehensive consideration.

Study limitations and future directions

While CRLPM presents significant potential, several limitations
warrant consideration. First, the model’s reliance on publicly

available datasets introduces potential bias stemming from
demographic or population-specific factors. This highlights the
need for multi-center, prospective studies that include diverse
patient populations to minimize sampling bias and better capture
the heterogeneity of AML. Second, the lack of detailed AML subtype
stratification restricts CRLPM’s current applicability, given AML’s
diverse genetic and clinical profiles (e.g., FLT3, NPM1, IDH
mutations, etc.). Future investigations should therefore include
larger cohorts and incorporate molecular subtypes to validate
CRLPM in a variety of AML subsets.

Moreover, although our analyses focused on cuproptosis, the
intricate interplay between copper-induced cell death and other
metabolic or cell-death pathways (e.g., ferroptosis, pyroptosis,
apoptosis) remains incompletely characterized. Further research
dissecting these interactions—including synergy or antagonism
among different forms of regulated cell death—could refine
CRLPM’s predictive accuracy and expand its mechanistic scope.
Additionally, functional experiments are necessary to validate the
direct link between identified lncRNAs and cuproptosis, further
solidifying the mechanistic foundation of the model. Such studies
may involve in vitro assays (e.g., siRNA knockdown or CRISPR-
Cas9 editing of candidate lncRNAs) to observe changes in copper-
dependent cytotoxicity, as well as in vivo xenograft models to evaluate
disease progression and therapeutic response.

Looking forward, in vitro and in vivo experiments investigating the
interaction of lncRNAs with copper-induced cell death in AML cells
will be essential. These efforts may elucidate the precise molecular
circuits through which lncRNAs modulate cuproptosis, potentially
revealing new therapeutic targets or combination strategies.
Integrating single-cell sequencing data and high-resolution imaging
could also uncover cell-to-cell heterogeneity in CRLPM activity, leading
to more personalized risk assessments and treatment strategies. Finally,
combining CRLPM with established prognostic biomarkers or
immunotherapy response predictors (e.g., TIDE, CIBERSORT) may
yield a multifaceted approach that accounts for both metabolic
vulnerability and immune microenvironment dynamics. Altogether,
these directions will help establish CRLPM not only as a robust
prognostic marker but also as a foundation for new precision
medicine strategies in AML.

Conclusion

In summary, we established a cuproptosis-associated long
noncoding RNA prognostic model (CRLPM) for AML treatment.
CRLPM effectively stratified patients into high-risk and low-risk
groups and accurately predicted OS, providing guidance and
reference for clinical treatment and administration strategy. T-cell
activity-based therapies and gene therapies targeting TP53 mutations
may not be effective in treatment. High-risk patients may have reduced
sensitivity to specific chemotherapies, including axitinib, GSK429286A,
Navitoclax, and ZM-447439. It indicated that patients defined as high-
risk groups by CRLPM should avoid using these drugs in treatment to
improve therapeutic activity and reduce side effects. Therefore, the
CRLPM provides valuable guidance for personalized potential
treatment strategies and prognosis for AML based on risk level.
CRLPM could improve the clinical outcomes of AML by combining
risk stratification and formulating treatments accordingly.
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